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Kinetic approach for matter transport by the dumbbell mechanism in a di&ute random fcc alloy
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This paper describes a theory for matter transport by the dumbbell mechanism in a random fcc alloy.
By means of kinetic equations we have evaluated the phenomenological coefficients, L;J, from the linear-
response expressions. It is shown that all the exact expressions for 1.;,- (i,j = A, B) can be obtained from
this method in a random binary alloy dilute in component B when rotation and translation-plus-rotation
jumps are allowed for all the dumbbells. The method can be extended to the more complex system of
concentrated AB alloys.

I. INTRODUCTION

When an alloy is irradiated with high-energy particles
both vacancy and interstitial defects are produced. The
matter transport in such materials is described by the
phenomenological transport coefficients L;, which relate
the Aux of atoms of species i to the thermodynamic force
acting on species j in the equations of linear nonequilibri-
um thermodynamics (see Refs. 1 —3). In a solid solution
of a dilute solute B in a solvent 3 it is shown that there
are only four independent phenomenological coefficients,
~ately L», L» =L», LBB and L + A + where A * is

the tracer of solvent A. The last two of these are trivially
related to the diffusion coefficients. The calculations of
the tracer diffusion coefficients are mainly based on the
Einstein relation for the diffusion coefficients. For the
nontracer coefficients L AA, L AB the kinetic approach
and the exact time correlation formulas for the L; have
been employed.

In this paper we are concerned with the calculation of
the transport coefficients for a particular model of matter
transport, i.e., the dumbbell model due to Bocquet in a
random fcc alloy. The dumbbell comprises a pair of
atoms associated with one substitutional site with the axis
of the pair in the (100) direction. In an elementary
jump the dumbbell is translated to a nearest-neighbor
(NN) site with the axis of the pair rotated through m j2.
Recently Chaturvedi and Allnatt obtained accurate ex-
pressions for L», L», and LBB in a binary alloy dilute
in component B when the rotation about a lattice site is
allowed for all dumbbells in addition to the usual
translation-plus-rotation jumps. Their method is based
on the well-known matrix method of random walks
and proceeds by a classification of jumps into "types" fol-
lowed by matrix inversion to evaluate the generating
functions of random walks of the point defect between
successive tracer atom jumps. The method is, however,
specific for dilute alloys. There is considerable practical
interest in alloys where the solute concentration is
sufficiently large. So far there are no generally agreed
upon approximation schemes in these concentrated sys-
tems, even for vacancy mechanism; earlier studies have
been made only by rather ad hoc analogies with dilute
systems and the vacancy mechanism. The aim of this pa-

per is, therefore, to develop a method that reproduces all
the exact expressions obtained earlier for L,. in dilute al-
loys and can be extendable to the much more complex
system of concentrated alloys.

We start with the exact linear-response formulas for
L; and obtain expressions for the fcc alloy in which
matter transport is accomplished through the interstitial
migration. The correlation functions appearing in L;. for
dilute alloy are obtained through the use of kinetic equa-
tions in line with Okamura and Allnatt' for the vacancy
mechanism. We, however, work entirely in Fourier
space, which is much more convenient as compared to
Okamura and Allnatt who solved the kinetic equations in
Fourier space but go back to real space to obtain the
correlation functions.

II. ATOMIC MODEL

CAB A ~BA/A AA B ~A A/B (2.1)

where CAA and CAB are concentrations of solvent and
mixed dumbbells, respectively, and C„' and CB denote
the respective concentrations of A and B atoms which
are not members of dumbbells. The total concentrations
of A and B atoms, CA and CB, are given by

CA =CA+2CAA+CAB

CB =CB+CAB

(2.2)

(2.3)

We consider a solid solution dilute in solute B in host
3 in which the transport of matter is given by the motion
of the dumbbell interstitial. We denote by 8';J-/k the
jump frequency for an ij dumbbell to be displaced to a
nearest-neighbor site occupied by a k atom, thus leaving i
at the original site of the dumbbell and forming a jk
dumbbell at the new site. The transport of matter thus
takes place by the atom of species j alone; the atoms of
species i and k merely relax around their lattice sites.
The model also allows the dumbbell ij to rotate through
~/2 with frequency 8'", while remaining at the same lat-
tice site.

We further assume that the solution is dilute enough
that close pairs of solute atoms and the pairs of solute de-
fect and solute atom are neglected. The condition of de-
tailed balance is then given by
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All the concentrations (C and C') are defined as substitu-
tional site fractions. For very low defect concentration
(Cz=C„„+Cd')) the distinction between C and C' can
be ignored.

III LINEAR RESPONSE EXPRESSION FOR L J'

1I.,( '= orb, (i) rb, (j)Wb,P, .
b, a

(3.2)

Here p, is the probability of finding the system in state a
and S'b, is the jump frequency of the jump that changes
the state from a to b. rb, (i) is the sum of the displace-
ments of all atoms of species i in the transition from state
a to b. The dynamical part L "can be expressed as

L(&)—
EJ

1

3/~7 rf rfrd (i)~d G b rr b(J)~b ib
c, b d a

(3.3)

I

The theory of nonequilibrium thermodynamics intro-
duces a set of phenomenological coefficients L;, which
relates the Aux of atoms of species i to the thermodynam-
ic force acting on species j. Exact expressions for these
coefficients have been obtained by Allnatt and Okamura
from linear-response theory, which expresses L'j as a sum
of two contributions:

L(o)+L(&) (3.1)
EJ EJ EJ

in which L ' is the uncorrelated part and L " contains
correlations between successive states of the system. For
a crystal of volume Vand temperature T we have

in which

G,b
=f dt G,b(t) . (3.4)

Here G,b(t) is the conditional probability that if the sys-
tem is initially in state b it will be in state c after time t.
Pb is the equilibrium probability of finding the system in
state b after a jurnp of atoms of species j from state a. In
our analysis we shall refer to the transition from state a
to state b as the initial jump and the transition from state
c to state d as the final jurnp.

Applying the above results to a dumbbell model in an
earlier paper, Chaturvedi and Allnatt considered a finite
dissociation distance of the dumbbell defect which ap-
peared only transitorily in the expressions of the direct
and correlated parts of the L; 's, but finally canceled out
in the total expression. It seems that it comes from the
separation between direct and correlated terms: It inter-
rupts the description of the trajectory of an atom at the
point where the latter has just been pushed into an inter-
stitial location by the defect. We know however that this
separation is somewhat arbitrary and has been intro-
duced for mathematical convenience. From a physical
point of view, a defect coming from a source, approaches
the atom, lets it perform a finite number of jumps (at least
in three dimensions), and goes back to infinity or to a
sink. The traveling distance for the atom cannot be any-
thing else than a lattice vector. Therefore, in this paper
we assume a dumbbell as a point defect whose direction
determines those sites towards which the defect will be
able to jump at the next step. In a transition, denoted by
jump frequency 8' &I„only the atom of species j gets dis-
placed by a nearest-neighbor vector. Thus in a random
fcc alloy, Eqs. (3.2) and (3.3), respectively, yield

2
L( '= — 5;) g C; (1+5; )C„W';~„,

m, n

(3.5)

NL( )—
XT

S-So —( I, I —s:Ip, Ip
—sp) —( I, 1 —s:lp, lp —sp)

~mix'n ~pj/q g X [ [6t) ( )+ (mi) n:(pj) q
+ p+( )+ (im ) n:(pj) q 16x—( 0)

. mnpq I P

(I I s:Ip Ip sp) ( I I s'Ip Ip sp)+[6 (s)V( ';, „'.(". )' '+6 (s)%„',„.,". )'
' ]6 (s )I,

(3.6)

in which translation and orientation symmetry has been
used for the defect at site Io. Here N is the number of lat-
tice sites per unit volume, a is the distance between fcc
lattice planes and 6 is the Kronecker delta function. The
notation (mi)t) denotes that the dumbbell (mi) is in p
orientation at site l and the atom of species i is in the pos-
itive p direction. The summations over m, n, p, and q are
over atomic species and so, s are the initial and final NN
jump vectors, respectively; the jump length s =&2a. The
8 functions are defined as

selects contributions from only those sites which are NN
to the origin and lie on the + side of it with respect to the
p axis. The correlation function

o o so ~ (l, l-s;t:lo o so '
+(mi ) n:(pj ) q (mE )~n:(pJ )„q (3.8)

in which

( I, I—s; t, Ip
—

sp,
.t =0)

(mi)&n:(pj )„q

=g p, (E)p",(E —s)G&b(t)pb (10)p)c(l0 )ibs0i
jl

6t)+(r)= 'O
if I'p =+a
otherwise, (3.7)

c, b

(3 9)

where r(3 is the p component of the vector r. 6t)+(r) Here pb (1), where y denotes an atom species or a
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dumbbell species, is defined to be unity when site I is oc-
cupied by a "particle" of species y and the molecular
state is b and zero otherwise. The function

(1,1—s; t:1p, 1p
—sp) .

4( ) (pj ) q
' is then defined as the joint probability of

finding (mi)& dumbbell at site 1 and an atom of species n

at its NN site (I —s) at time t when initially (pj )

dumbbell was at any site lo and an atom of species q at its
NN site (lo —so).

Equations (3.5) and (3.6) give a general expression for
the phenomenological coeKcients in a random fcc alloy
in which matter transport is accomplished through
dumbbell interstitials. We now obtain explicit expres-
sions in an AB alloy dilute in component B. Equation
(3.5) readily yields

exact to the lowest order in B concentration, we substi-
tute

p(", ( I ) = 1 —
)()i, (I ) (3.12)

where

(s:sp)
4(mi)t)B:(pj) B (3.13)

in each P function in Eqs. (3.6)—(3.11), in which n = A or
q= A. This introduces four kinds of P functions, the
functions that are independent of s and so and the func-
tions that depend on either s or so, or both. for example,

(S:Sp) (:Sp) (s. )
0(mi )t)A:(pj )„A 0(mi)&(pj )„4'(mi)&(pj )„B 0(mi)i)B:(pj )„

L (o)—
BB

L (0) —0

4&a
AB AB/A (3.10a)

(3.10b)

—(1:lp )

4'(mi)B. (pj) X (mi)p. (pj)p x p' x

(:sp) —(1:lp, lp —sp)
0(mi)t) (pj) B.. X (mi)& (pj) B.p' x p' x

(3.14)

(3.15)

4Na
LA A 3

( CA A ~AA/A + AB ~BA/A ) (3.10c) ( . )
—(1,1 —s;Ip)

4(mi)P:(pj ) 2 (mi)i)B:(pj )„ (3.16)

To obtain correlated part we introduce the function

(s:s,) —(1,1 —s:lp, lp —sp)
4(mi) n:(pj) q g (mi)pn:(pj) qp ' x p x

(3.11)

which depends on the distance between the defect and the
atom in the initial and final states. In order to keep L "

We refer to the functions g and P defined in Eqs. (3.14)
and (3.15) as one-site functions and those defined by
(3.16) as two-site functions, according to the number of
lattice sites whose occupancy specified at time t. The
sum over s and so in Eq. (3.6) can then be carried out if
we introduce the Fourier transforms

P(s:so) = a
2&

3

6

J f d3K d K()exp(ik s+iko. so)P(k:ko), (3.17)

P(s:)= f d k exp(ik s)P(k:),2'
3

(3.18)

(t (:so)= f d koexp(i ko so)$(:ko),
2%

(3.19)

in which limits for each k integral are from —irla to m. la. The final expressions for LBB, LA'B, and L„"A respectively
yield

2Xa 2
BB

— 6 ( WAB/A ) [X(AB) .( AB) g( AB) (BA)]. (3.20a)

Xa 2

LAB =16
KT ~AB/A(Fx:(AB) Fx:(BA) ) ~

x x
(3.20b)

2

LAA 16,~AB/A(Fx (AB) x (BA) )+i~~ X[~, (1 ~t), ) ~t), ( ~a,
a, p

3

X
27K f 3 (:&p)

d Kocos(KDt)a )sin(ko a ) F,
( „„)B

(3.20c)

In the above we have introduced for any initial state the
following final state functions: (i)

I(AA) B

't 3

f d k sin(k a)
2&

jt(AB) 4(AB) 4(BA) (3.21) x g cos(kt)a )it)((„)A)~,
pea

(3.22)
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(2)I(aw) a=
'3

J d k sin(k a)
2m'

X g cos(kpa) p(("A)A) B,
pea

and for brevity used the notations

F~= W BA/ Ay( Aa) +thW(I(AA) B+I(AA) a),(&) (2)

~~= ~saga

(3.23)

(3.24)

(3.25)

IV. KINETIC EQUATIONS

In order to evaluate I. " (i,j= A, B) from Eqs.
(3.20a) —(3.20c) it is evident that the same one- and two-
site-correlation functions are to be evaluated for di6'erent
initial states. Therefore we first obtain a general expres-
sion, i.e., for any given initial state, for these correlation
functions through the use of kinetic equations which re-
late an n-site function to the (n +1)-site functions. For
example, the kinetic equation for the one-site function
g(AB) (1), the probability of finding a ( AB) dumbbell at

site I, can be written as

~+( AB) =X, WAa/A6 —(r) X 6p —(r)'pIaA')'A'+6p+(r)'pI'Aa')'A'
dt P

+ W„„/B6 +(r) y [6p (r)+6p+(r)]+I'AA')p
pea

—[ W„a/A6 (r)+ WBA/„6 +(r)] g [6p (r)+6p+(r)]%'I'A'B) 'A

pea

+ WAB g [%(AB) (1)+%(BA) (1)]—4%(AB) (1)
P P

(4.1)

The labels referring to the initial state of the system have been omitted, since they are the same for every probability
function in this and subsequent kinetic equations. Equation (4.1) gets simplified when we make use of (3.12) and neglect
terms that contain more than one 8 atom for an alloy dilute in 8. Then integrating with time and sum over l we get

Q +(Aa) (1 t =0)=(WAB/A+ WAa) g [4'(BA) +4(AB)B] 4WO(AB) + WAA/a g6 +(r)g [~p—(r)+~p+(r)]NIAA)pa,
I pea r pea

(4.2)

in which

8 =Waagw+Sawyw+8wa R (4.3)

Similarly one can write the kinetic equation for the probability function f(BA) (1). Then subtracting (4.2) from the
a

latter equation we get

y( ~~) —48 y( ~~) + i 4 W~ ~ )~I ( ~ ~) ~,(0) (&) (4.4)

in which

y(AB) —Q [g(AB) (1,t=O) —
%(BA) (1&t=0)] . (4.5)

Equation (4.4) relates the one-site function y(AB) to the two-site function p(„'„) B [see Eq. (3.22)]. We now write the
a a

kinetic equation for two-site function by using the arguments of gain and loss in the probability as

(I, I —r)d+(~~).a =[6 (r)+6 +(r)]
dt

x . WaA/A X [6p—( )+I'Aa)'A'+6p+(r)+IaA')'A'] —
WAA/B X [ p —( )+6p+(r)] +I'A'A)'B

pea pea

+2WAA Q [VI'A'A)+ 2%'I'A'A) a]
pea

+WAA/A y 6. (')+6.+(r') g[6p (r')+6p+(r')]
r'Ar pea

@(I—r', I —r, 1 ) @(1,I —r, I —r')
(AA)BBA (AA) BA (4.6)
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Now making use of (3.12) in (4.6) and neglecting the terms that are higher order in B we see that the three-site functions
reduce to the two-site functions only. We now sum over I and integrate with time and follow the procedure used by
Okamura and Allnatt' in the vacancy mechanism. That is, after adding and subtracting the terms r'=r in (4.6) we
keep the terms with sum over r' on the left and take rest of the terms on the right-hand side. The Fourier transform
then yields,

(&)
4(AA) B g G &'( ) —

(It)I&z)+
—2WB&/icos(k a) g [6 —(k)P(&B) +e +(k)P(B&) ]

AA /A r yap

3

+468
2& f d k'cos(k& —k&)a

in which
(0)(k)~ ~ (I, I —r; t =0)

4(~~) =X e"p( 'k'r) X +(i~)p=
P

X g cos[(k —k' )a] P((~)„)~ . ,
yap

(4.7)

(4.8)

and G ' is the inverse of the matrix whose elements are given by

R

G B(k)= —5 B 1+
R

+ —,'(1—5 &) cos(k a )cos(kBa )+
28'AA &A

(4.9)

We may mention that G
& (k) is the Fourier transform of the generating function of the dumbbell for the random walk

in the host matrix from a P orientation to an a orientation at the vector distance r. Equation (4.7) is an integral equa-
tion for p((~'~)B but in the evaluation of L(,".

)
we need its integral forms, given by (3.22) and (3.23), which can be evalu-

ated by the following sequence of simple steps.
We erst note the two symmetry properties of the Brillouin-zone integral in cubic lattices. A Brillouin-zone integral

vanishes whenever (1) the integrand is an odd function of one of the wave-vector components k or (2) the integrand is
simply a function of odd powers of cos(k a ), where a =x, y or z. In order to use these properties it is necessary to note
from (4.9) that G &(k) is an even function of the wave vector and for Wzz =0 is also a function of the even powers of
cos(k a ) and cos(kBa ) when it is multiplied by these cosines.

When Eq. (4.7) is substituted into Eqs. (3.22) and (3.23) the contribution to I can be factored into a product of in-
dependent integrals over k and k' if we expand cos(k —k' )a, appearing in the k' integral of Eq. (4.7) as a sum of prod-
ucts of cosines and sines. The contributions from the summation over y in Eq. (4.7) arising from y=a and y&u are
next considered separately. A straightforward application of the above-mentioned symmetry properties then yields

Wgg/gI(gg) B iWB&/&QpX(&B) +AW[QpI(pp) B+QoI(zp) B](&) ~ (&) (2)

3

f d k sin(k a ) g cos(k&a ) g G&z' (k)PI „"„")'B,8 2m r
(4.10)

(2) ) (1) )) (2) 1 a
AA/A (AA) B

— BA/AQox(A—B) + [QP(AA) B+Qo (AA) B]——
3

f d k sin(k a)

where
3

X g cos(kBa)g G '(k)p((„"„"))B,
pea y

(4.1 1)

Qp= — f d k sin (k a) g g G& '(k)cos(k&a)cos(k&a),
pea yea

'3

(4.12)

1 aQo=—
4 2m

)) 1 aQo=—
4 2m

3

f d k sin (k a) g g G& '(k)cos(k&a)cos(k~a),
pea yea

f d k sin (k a )G '(k) g g cos(k&a )cos(k&a ) .
pea yea

(4.13)

(4.14)
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Equations (4.4), (4.10), and (4.11) provide coupled sets of
equations from which g( AB), I( A A) B and I

( A A) B can be
a a a

obtained in terms of the integrals with initial time corre-
lation functions, which can be evaluated explicitly for a
given initial condition. In the next section we shall evalu-
ate these functions for the initial conditions required in
Eqs. (3.20a) —(3.20c).

in which

Q= WAAiBl WAAiAQo+~WI —gogo'+«o)'l j~D

Q I. WAAyA WAAIBgol~D

(5.5)

(5.6)

V. FINAL EXPRESSIONS FOR Lii
~ Wgo )( WA A y A ~ Wg o' ) ( ~ Wg o )

(5.7)

(o) —1 ~ g — (o)+( AB):(AB) 6 ~ AB ~a, x +( AB):(BA)

(0)(k:) — (o)(&:)
'P( A A) B:(AB)„0(AA) B:(BA)„

(5.1)

(5.2)

Let us consider that initially there is a mixed dumbbell
( AB) at any site lo. Then, we have Equations (5.3) and (5.4) are the same as obtained earlier

by different approaches. ' To obtain I.A"A) from (3.20c)
we also need to know the function F, defined by (3.24),
when initially an (AA)„dumbbell is at site lo and a
solute atom at site (Io —so). For this we have

Using the above results in (4.4), (4.10), and (4.11) we final-
ly obtain

(o )(:&p)
X(AB):(AA) B =O (5.g)

(i) 4 Xa 8 AB/A

3 KT ( W+ WBAyAQ)

~BA /AI-"' = I.'" — 1+ (Q+ g')
~AB/A ~A A /B

(5.3)

(5.4)

and

(O )( k:&p) ~BA/A
0( A A) B:(A A) B ~n x CAB 5(k+ko) .

~A A/B

Using the above results we finally obtain

(5.9)

I.(&)—
AA

4%a CAB

3KT

8'BAyA (Q, )
hW

W+ WBArAQ
—(Q+Q')'

~A A/B

2

68+ WBAyA (Q+2Q +Q )
AA/B

(5.10)

The expression for I.A'A agrees with that obtained by
Chaturvedi and Allnatt; Q" given by their Eq. (50)
should be read as —Q". Here g" can be obtained from
(5.5) if Q and Qo are interchanged by Q" and Qo, respec-
tively.

VI. CONCLUSION

In this paper linear-response formulas are used to ob-
tain the nonlinear phenomenological coe%cients in a di-
lute random fcc alloy where matter transport is accom-
plished through the migration of dumbbell interstitials.
%Pith the help of kinetic equations accurate expressions
for all the phenornenological coeScients L, AA LAB =L,BA
and L,BB are obtained when the rotation about a lattice
site is allowed for all dumbbells in addition to the usual
translation-plus-rotation jumps. Similar expressions were
obtained by Chaturvedi and Allnatt using the well-
known matrix method of random-walk theory as original-
ly described by Mullen and Howard. This method
proceeds by a classification of jumps into nonequivalent
types which are not known a priori; physical arguments
are required to know them for a particular model. Also,
a perturbatic approach is used to obtain the generating
functions. In this sense, the present results can be treated

as first-principles calculations, since the correlation func-
tions appearing in L "are obtained through the kinetic
equations. The present method can be further extended
to the concentrated alloy, where to the best of our
knowledge, there is no reasonable theory for the
interstitial's motion. Bocquet' has investigated models
of interstitial behavior in binary alloys using both Monte
Carlo simulations and analytical techniques based on the
random-alloy model developed by Manning' for
diffusion via the vacancy mechanism. Recently Mur-
phy' has used kinetic equations to study the migration of
dumbbell interstitials along the principle x direction but
for simplicity neglected the inAuence of correlation be-
tween successive jumps of the interstitials. The present
method is quite general and can be extended to the calcu-
lations of tracer and nontracer transport coefticients in a
concentrated random alloy. These works are currently
under progress and will be reported in future publica-
tions.
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