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Nature of states in a random-dimer model: Bandwidth-scaling analysis
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The scaling properties of the energy spectra of a random-dimer system are studied to discern
the nature of the states at and around the dimer energy (eo). The system is described by a tight-
binding Hamiltonian. The scaling behavior of bandwidths for

~
eo ~( 2 shows that the system

contains extended states in the neighborhood of eo. This result is further substantiated by the
scaling behavior of the total bandwidth. The number of nonscattered states is found to increase
with the increase in chain length. The scaling behavior of bandwidths also shows that the width
of the nonscattered states depends on the dimer energy and its concentration in the sample. These
results are consistent with results obtained from the transmission coefBcient analysis. When the
dimer energy is at the band edge (eo = +2), the bandwidth scaling analysis shows that states around
eo are algebraically localized. This result is further substantiated by the behavior of the site Green
function. The significance of our results in understanding the anomalous electrical conductivity in
polyaniline is discussed.

I. INTRODUCTION

One of the well known results of the one-dimensional
Anderson model for site diagonal disorder is the absence
of difFusion of an initially localized particle. This is true
irrespective of the strength of the disorder. The same
result is equally applicable to a binary distribution even
if the probability of any component is negligibly small.
This result stems from the exponential localization of
eigenstates in such systems. The random-dimer model '

(RDM) at first sight will appear to be another example
in this category. The mean square displacement of an
initially localized particle in the RDM, however, grows
superdiffusively in general for a significant length of time
without showing any sign of saturation. This result alone
makes this model an interesting subject of study. Fur-
thermore, polymers such as polyaniline can be mapped
into a RDM of its general kind. ' Given the current in-
terest in understanding the anomalous electronic trans-
port in polymers of the kind of polyaniline, ' the work of
Wu and Phillips ' indeed adds a new dimension to the
RDM and its possible generalizations. It is, therefore,
worthwhile to study this model by various techniques de-
veloped to understand the localization of eigenstates in
one-dimensional systems. Our plan in the present work
is to employ a technique, called bandwidth scaling,
to discern the nature of states in the RDM in the vicin-
ity of the dimer energy. This method has already been
used successfully to probe the characteristics of eigen-
states in the one-dimensional Harper model ' and Fi-
bonacci crystals. To our knowledge this work is the erst
attempt to employ the above technique in random sys-
tems such as the one under study. A brief discussion on
the RDM is presented below to help the readers under-
stand the applicability of this technique in this case.

In the context of Anderson's tight-binding Hamiltonian
(TBH),i the RDM is described as a one-dimensional cor-

related random binary alloy with site energies c and eb.
The energy e is assigned in a pair, called a dimer. It
is distributed randomly in the system with probability
q. All nearest neighbor hopping matrix elements are as-
sumed to be the same in the present model. Without
any loss of generality we can assign the value unity to
this element. Insofar as the physically relevant parame-
ter is the difFerence in site energies, we set eo ——e —~b to
the dimer site energies. Of course, the other site energy
then has to assume the value zero. For a system contain-
ing just one dimer Dunlap, Wu, and Phillips (DWP)
showed that the reAection coefficient [~ r(E)

~ ] vanishes
if E = Ep 'with

~
Ep

~

& 2. Of course, E is the incident par-
ticle energy. Further analysis, albeit approximate, of
the transmission coefficient [~ T(E)

~ ) for a segment con-
taining many dimers randomly revealed that the system
contains ~K states having a localization length superior
to the sample size. Here N is the number of sites in the
chain under study. This analysis was further substan-
tiated by the calculation of the Lyapunov exponent
and the density of states in the vicinity of the dimer en-
ergy. The invariant measure technique was employed to
obtain the results.

The complex nature of the problem makes any rigorous
analytical calculation extremely prohibitory. This, there-
fore, necessitates a thorough investigation of the model
by numerical techniques. Sen and Gangopadhyay
along with us calculated numerically the transmission
coeKcient of chains containing randomly placed dimers.
The basic difFerence in these two calculations is that we
implemented the basic idea of DWP from the beginning
in our method. According to the first set of authors, the

1
number of resonance states in the system goes as A 3

(Refs. 19 and 20) instead of N 2 .s s is Furthermore, they
claim that the superdifFusive behavior of the mean square
displacement is a short time phenomenon. On the other
hand we obtained the following results.
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(i) There is a weakly configuration dependent energy
width (AE) where

~
T(E)

~

1. This width is found to
be asymmetric around the dimer energy.

(ii) The averaged transmission coefficient yields ap-
proximately a I orentzian curve. The half width, how-
ever, depends on the concentration (p) and the energy of
the dimer (ep). This half width seems to scale as N
where A is a function of these parameters. A 2, if the
concentration is large or eo is close to one of the band
edges of the host system.

(iii) Whenever
~

ep ~= 2 or infinitesimally close to this
value, it appears that the states at and around the dimer
energy are no longer extended. The exact nature of the
states, however, cannot be discerned from the analysis of
the transmission coefFicient.

The analysis of the transmission coefFicient, albeit nec-
essary, is not, however, adequate to probe the nature of
the states in the RDM. Note that the RDM has an energy
width with the properties that (i) the states inside this
width appear to be extended, and (ii) it decays with the
chain length. We call this width for convenience the spe-
cial spectral zone (SSZ) of the RDM. Our job is to find
the number and the nature of the states in the SSZ. The
number of states can be obtained &om the analysis of the
transmission coefFicient. In principle, we can also probe
the nature of the states by investigating the behavior of
this quantity as a function of the chain length. If a state
at a particular energy E is extended,

~
Trv (E) ~

will be
an oscillatory function of the chain length ¹ We in-
deed observe such an oscillatory behavior in

~
T~(E)

~

in the RDM. The amplitude of the oscillation, how-
ever, decays with the chain length. If the length beyond
which the decay will be dominant is N, this quantity
is found to depend on the energy probed, the energy of
the dimer, and the dimer concentration in the sample.
These are observed by numerical calculations. Inasmuch
as the width of the SSZ in the RDM decreases with the
system size, this kind of observation is expected. Prom
this analysis one may be tempted to conclude that all
states, except the one at the dimer energy, in the RDM
are exponentially localized. However, it should be borne
in mind that any numerical calculation has the disad-
vantage that one cannot probe arbitrarily close to the
dimer energy. Hence, any such conclusion regarding the
nature of states in the vicinity of eo from the studies of
the transmission coeKcient may not be appropriate at
all. One, therefore, needs a technique which will com-
plement the transmission coefI1cient an.alysis by probing
the nature of states inside the SSZ. The method of band-
width scaling happens to be suitable for this purpose.
Since the RDM always maintains an extended state at the
dimer energy, ' this advantage can be exploited to em-
ploy this technique in this model. It should be apparent
from this discussion that if this method is wisely blended
with the analysis of

~
T(E) ~, one can obtain a great deal

of information regarding the nature of the states in the
SSZ.

The organization of this article is as follows. We dis-
cuss the method empolyed here in the next section. In
Sec. III we study the influence of concentration and en-
ergy of dimers on the nature of the states inside the SSZ.

The nature of the states for
~

ep ~= 2 is also discussed.
Section IV deals with the analysis of the site Green func-
tion. This is done to substantiate the results obtained
for

~
ep ~= 2. We end the article by discussing the sig-

ni6cance of our results in understanding the anomalous
electronic transport in nonconducting polymers.

II. FORMALISM

The RDM, mentioned earlier, is described by the well
known TBH with nearest neighbor hopping only. All
nearest neighbor hopping elements in this model are as-
sumed to be unity:

+ g )+1 l+ )—1 l
l

where a& (ai), as usual, is the operator which creates (de-
stroys) a particle at the lth site. The Fourier transform
of the site amplitude C (E) at any arbitrary site n for a
given initial condition can be calculated by the successive
application of transfer matrices2s (P) which for the nth
site is

—1
0 (2)

Note that the determinant of P, Det(P ) = 1, for all n
The amplitude vector X for any site n in the transposed
form (X ) is

X. = (&-(E) &--i(E)).
Then for the (N + 1)th site we have

X~+. ——(P~P~ . P.)Xi
= Q~(E)Xi. (4)

The two eigenvalues of Qiv, 8~(X, E) for any X are

1
8~(N, E) = — TrQ~ 6 y (TrQiv)2 —4

= exp[+((K, E)],

with Tr designating the trace of the matrix. To obtain
(5) we used

Det(Q~) = 0+0 = 1 for all K.

Furthermore,

TrQiv(E) = 8+(K, E) + 8 (% E)
= 2 cosh((N, E).

For the perfect system when all e 's are same, ((N, E):—
~@(E).Jf

~
TrQrv (E) ~) 2, both eigenvalues 8+ and 0

are real with 0+ increasing exponentially with the chain
length. Since no physically relevant boundary condition
can be satisf1ed, the system cannot contain any eigenstate
at those energies satisfying

~
TrQ~(E) ~) 2. Hence, there

will be spectral gaps at those energies. On the other
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hand if
~

TrQ~(E) ~( 2, both eigenvalues are complex
with

~
Hg(N, E) ~= 1. The solution vector X~+q cannot

grow in this situation. It is, therefore, possible to sat-
isfy physically acceptable boundary condition at those
energies for which

~
TrQ~(E) ~( 2. Energies satisfying

~
TrQ~(E) ~= 2 separate these two regimes.

Consider a chain containing N sites. All the site en-
ergies (e ) in this chain may or may not be identical.
Treating this chain as the unit cell we construct a ring
comprising of M such units. The amplitude equation for
the (NM + 1)th site is

XNM+1 [QN (E)) Xl
= [U T(M, N, E)U]Xg,

with

exp[M((N, E)]
) 0

0
exp[ —M((N, E)]

U is the matrix that diagonalizes Q~(E). To satisfy the
prescribed periodic boundary condition we need

27m
TrQ~(E) = 2 cosh((N, E) = 2 cos

M '

M
with n = 0, +1,+2, . . . , +—.2' (10)

Inasmuch as there are (MN) eigenstates in the present
system with the property

n+N = 6~)

it must contain N bands and (N 1) gaps. Th—e bands are,
of course, characterized by the energy widths satisfying

~
TrQ~(E) ]( 2.s

Since the eigenstates of this superlattice extend over
the whole sample, at the unit cell level states appear-
ing at those energies must be extended for any finite
value of ¹ Of course, they are not necessarily of the
Bloch type at the unit cell level. However, in the limit
N + oo, the efFect of the superlattice structure on the
unit cells will disappear. So the states which are ex-
tended for a given value of N may undergo localization
as N increases. To understand how the extended states
are changing the characteristics, it is necessary to inves-
tigate the scaling behavior of the isomorphic bands with
N. It is a case of multi&actal analysis and is described
below. This method has one important advantage. Site
amplitudes in the unit cell are allowed to develop freely
in this mode of analysis. This is the appropriate bound-
ary condition for infinite systems. Many important and
interesting results can be obtained by investigating the
system this way.

The basic idea in the multifractal analysis is to parti-
tion a given set in a prescribed way. The next stage in
the analysis is to attach a Lebesgue measure (A;) and a
probability measure (p;) to each of the partitioned sub-
sets. One can then obtain criteria for the localization of
states in a given sample by examining the scaling prop-
erties of either the Lebesgue measure (A, ) or the prob-

ability measure (p;). The details can be found in Ref.
13. The set in the present example is the total allowed
spectral region. The band structure generates the desired
partitioning. p; here is a constant, namely, N . N is num-
ber of sites in the system of interest. 4, (i = 1, 2, . . . , N)
is the width of the ith band. The nature of the states
in the allowed spectral region can be obtained from the
asymptotic scaling behavior of the bandwidths with chain
length (N). The scaling criteria ~s for identifying the
nature of states are presented below with examples.

(i) If e ~~ = e, we have N bands characterized by
~
TrQ~(E) ~( 2. We also have (N —1) gaps.

(ii) If a band decays exponentially with the chain
length, states in that energy width are exponentially lo-
calized.

Consider the case e = Atan[2vr(nor —v)] and u = "—.

p and q are integers. Bands in this example have widths
proportional to e ~ (p & 0) irrespective of the value of
A. All states in this sample are exponentially localized.

(iii) If a band scales as N and n = 1, the states in
the band are extended. If o. ) 1, states are critical.

This behavior is beautifully exemplified by the Harper
model characterized by e = Acos(2mnw) where w is an
irrational number. ' If A ( 2, each bandwidth scales as

except the ones at the ultimate spectral boundaries.
The width of the bands there goes as ~, . All states
are, therefore, extended. If A = 2, each bandwidth is
proportional to N, o. ) 1. So states are critical. In
Fibonacci crystals also one finds bandwidths scaling as

, o. ) 1. It is well known that states are critical in
Fibonacci crystals.

The successful implementation of the bandwidth scal-
ing method requires identification of isomorphic bands
in the successive partitioning of the total allowed spec-
tral region. The Harper model and Fibonacci crystals
generate bands in a regular way to form Cantor set
spectra. So these models can be studied successfully
by this method. On the other hand, in a purely random
system the fragmentation of the bands does not follow
any prescribed rule. Consequently, the scaling of indi-
vidual bands in such a system is not possible. In this
respect, the RDM is unique due to the presence of a non-
scattered state at the dimer energy. So there must be an
energy width for all N around the dimer energy where

~
TrQ~(E) ~( 2. This band can be used as a reference to

number the bands in the system. For example, its nearest
neighbors can be called (1') or (1) depending on whether
the band is towards the nearest band edge of the parent
system or not. Similarly, we can number other bands as
(2'), (2), (3'), (3), etc. We can, therefore, exploit this
advantage to employ the bandwidth scaling method here
to discern the nature of states.

We end this section by discussing the utility of the scal-
ing of the total bandwidth (Bz). ' ' It is well known
that almost all states are exponentially localized in a
totally random system. So B'~ in such systems must
decay exponentially with ¹

' 4 On the other hand, if
Bz oc N ~, P ) 0, we must conclude that the sys-
tem contains states which are either extended or alge-
braically localized. Consider now the RDM. Since it con-
tains site diagonal disorder, one would expect that B~ in
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0.5

TABLE I. The value of C and bandwidth scaling index
(n) of the reference band for difFerent dimer energies (es).
Concentration of dimers p = 0.33.

1
I—

Qj
C

-1.5

Dimer energy (es)
0.001

0.8

1.98

Cp
6.28107

5.27411

0.70467

CXp

0.999979

0.991917

0.977748

-2
4.5 5.5

I

6.5 7.5

FIG. 1. The log-log plot of the total bandwidth (BT ) with
¹ The dimer energy ep ——0.8 and concentration p = 0.33.
The solid line corresponds to the least squares Bt of the data
points. The fitting curve is obtained as InBT = lnC —Pin%,
where C 11.01 and P 0.57.

this model will decay exponentially with N. BT, how-
ever, scales as K o for eo ——0.8 and p = 0.33 (Fig. 1).
Since this value ef the exponent resulted from relatively
small sample sizes, it is an approximate value. However,
it should be noted that the obtained value is in quite
good agreement with 0.5 obtained by DWP. Inasmuch
as the scaling result for BT points out that all states
in the RDM are not exponentially localized, we, there-
fore, examine next the scaling of individual bands at and
around the dimer energy (eo).

III. RESULTS AND DISCUSSION

ln Lo ——ln Co —o.o ln N (12)

Results are presented in Figs. 2(a)—2(c). The values of
o.o and Co for diferent values of eo are also listed in Ta-
ble I. Since every investigation of the RDM suggests that

We first present the scaling behavior of the band
around eo. The width of this reference band (Ao) is plot-
ted against the chain length (%) in the log-log plots for
varieus values ef eo. Data points are found to obey

the state at eo is extended, we should expect o,o —+ 1 as
N —+ oo. When eo is well inside the parent band, the
desired asymptotic value of o.o is obtained for N not ex-
ceeding 10 . However, for eo ——1.98 we obtain 0;o 0.98
in the investigated range of N. This value is, of course,
perceptibly away ft. om the desired asymptotic value. This
can be explained by noting that eo ——1.98 is very close to
one of the band edges of the host system. It is well known
that states near the band edges have high propensity to-
wards localization in the presence of disorder. Hence, to
obtain the desired asymptotic value of Q.o, larger values of
N will be needed. This explanation is further supported
by the scaling behavior of adjacent bands for eo ——1.98.
We present the scaling behavior of (1) and (1') bands in
Figs. 3(a) and 3(b). Note that the band which is away
from the band edge shows better scaling behavior in the
investigated range of N.

Since the value of N beyond which the reference band
shows the expected scaling behavior depends on eo, the
width of the nonscattered states must also depend on
this quantity. This dependence is beautifully exhibited
in the scaling behavior of the bands around the dimer
energy for eo ——0.001 and 0.8. The concentration of the
dimer (p = 0.33) in. the chain is same in both cases. The
scaling behavior of (2), (5) and (2'), (5') bands for these
energies are shown in Figs. 4(a)—4(d) and Figs. 5(a)—
5(d), respectively. The values of n.; and C, are also given
in Table II and Table III. We Gnd that for ~o ——0.001, the
desired asymptotic value of o.; is obtained for relatively
small values of ¹ Furthermore, for this value of eo,
values of o. and C show no dispersion in the investigated

0-

-4"

0

-6-
+

-8-

—10-

FIG. 2. The log-log plot of the width
(Ao) of the reference bandwidth K. Note
that one constant E is added to the ordi-
nate for clarity. The value of Z increases
every time by one unit as we go up from
the bottom Bgure. (a) The diiner energy
ep ——1.98, concentration p = 0.33, and Z = 0.
The least squares fit {solid line) obtained as
lnAp ——lnCp —Q.pin&. Values of |p and np
are given in Table I. (b) Same as (a) but

0.8 and Z = 1. {c) Same as (a) but
t p

——0.001 and Z = 2.
—12-

I

4 10 12
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—9"

—10-

FIG. 3. (a) The log-log plot of the band-
width (4,) having index i = 1 with N. The
dimer energy eo —— 1.98, p = 0.33, and
Z = 0. The least-squares fit (solid line) of
the data points yields in&& ——ln C& —n~lnN,
where Cq 0.845 and o.q 0.997. (b) Same
as (a) but band index i = 1' and Z = 1. Here
Cq~ 0.425 and nq 0.928.

ln(N&

I

'fQ 12

0-

FIG. 4. The log-log plot of the band-
width (A, ) with ¹ (a) The dimer energy

0.001, p = 0.33, band index i = 2, and
E = 0. (b) Same as (a) but band index i = 5

and Z = 1. (c) Same as (a) but band index
i = 2' and Z = 2. (d) Same as (a) but band
index i = 5' and Z = 3.

I

5

[n(g )

I

fP

cQ —4
C
+

—6-

-8-

-&0 '

lnCg)

40

FIG. 5. The log-log plot of bandwidth (A, )
with N (a) Here i = .2, eo ——0.8, p = 0.33,
and Z = 0. The least squares fit (solid line)
is shown for three different regions of N, (i)
10 —10, (ii) 10 —10, (iii) 10 —10 . (b)
Same as (a) but band index i = 5 and Z = 1.
(c) Same as (a) but band index i = 2' and
Z = 2. (d) Same as (a) but band index i = 5'

and Z = 3. (e) Same as (b) but p = 0.01
and Z = 4. The least squares fit (solid
line) of the data points shows the behavior
as in&5 ——lnC5 —o.qlnW, where Cs 5.374
and ~5 0.994.
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TABLE II. The value of C and bandwidth scaling index

(n) of different bands for dimer energy sp = 0.001 and con-
centration p = 0.33.

Band index (i)
2

C
6.2562 0.999695

6.2574 0.999655

6.2517 0.999643

6.2473 0.999554

range of ¹ On the other hand, to obtain stable values of
o. and C for eo ——0.8, larger values of N are needed. This
observation suggests that the width of the nonscattered
states for eo ——0.001 is larger than the corresponding
width for eo ——0.8. Our scaling result is also corroborated
by the analysis of the transmission coefBcient. The plots
of the transmission zone for these two values of eo and
N = 10 are presented in Fig. 6(a) and Fig. 6(b) for
comparison. This result can be explained by considering
the effect of scattering on a given energy (E) state due to
dimer impurities. Scattering depends on two quantities,
the magnitude of sp and its distance from ep, that is,

i
E

ep ~. When ep is large, scattering is also large. Similarly if
~
E —ep

~

is large, a given band may not be in the SSZ for
a certain range of ¹ However, if N increases, this band
will eventually move into the SSZ where the scattering
effect vanishes. Of course, this can only happen if the SSZ
in the RDM does not decay exponentially with N. Hence,
any increase in ep will require a decrease in

~

E —ep
to overcome the effect of scattering. Inasmuch as the
number of bands that will enter the SSZ decreases with
the increase in eo, the width of the nonscattered states
in the RDM must decrease with increasing eo.

That the effect of scattering from dimer impurities on
a given band depends on

~

E —ep
~

can be observed in the
scaling behavior of bands for a given t.o and concentration
(p). Consider the scaling of bands for ep ——0.8 and p =
0.33. Our results are as follows.

(i) Bands do not exhibit any scaling behavior for small
values of ¹

(ii) The value of N beyond which a given band exhibits
a well defined scaling behavior depends on the index of
the band. This value of N increases with the index of
the band.

(iii) The values of n and. C depend on the range of
Furthermore, because of randomness in the system

these quantities do not obey any well defined pattern in
a certain range of ¹ The value of N, of course, depends
on the band index.

(iv) As N ~ oo, n ~ 1 and C attains a stable value.
This is true for all bands.

(v) In a given range of N the value of the scaling am-
plitude (| ) decreases as the distance of a band from the
reference band increases.

The effect of scattering due to dimer impurities and
the inHuence of the SSZ on a given band need to be
considered to explain these results. Note that scatter-
ing will play an important; role until a given band enters
the SSZ. Because of this scattering, the bandwidth will
not decrease systematically with N. So no well defined
scaling behavior will be observed. This band will, how-
ever, enter the SSZ if N exceeds a certain value. Then
the effect of scattering will reduce. Hence a well defined
scaling behavior will be observed. But the value of o. will
not be unity in general. This band will move further in-
side the SSZ with further increase in ¹ When it moves
well inside the SSZ, it is totally shielded from scattering.
We then obtain o. = 1 and a stable value of C. Further-
more, the approach of o. asymptotically to unity from
below suggest, s that randomness introduces nonlinear de-
cay in bandwidths for finite values of ¹ In addition,
the algebraic decay of the SSZ with N has another im-
portant consequence. Any band with finite index (i) will
eventually enter the SSZ. However, the value of N be-
yond which the band moves into the SSZ diverges with
i. So the range of N in which no well defined scaling be-
havior is obtained also diverges. This is observed in our
analysis. The critical value of i beyond which no band
can effectually enter the SSZ can be estimated from the
scaling of the total bandwidth. This will yield an estima-
tion of the nonscattered states in the system for a given
value of ¹ Furthermore, the absence of a well defined
regime separating the extended states from the localized
ones explains the observed decrease of C, as band index
i increases.

The effect of p on the width of the nonscattered states
is also examined, albeit not elaborately. The result for

p = 0.01 and ep ——0.8 is presented in Fig. 5(e). Inasmuch
as the reduction in the concentration of the dimers will
reduce the effect of scattering, any given band should
exhibit ~ behavior for relatively small values of ¹ This
is actually observed. Compare Fig. 5(b) and Fig. 5(e).

TABLE 111. The value of C and bandwidth scaling index (o.) of different bands in diferent range
of N. The dimer energy eo ——0.8 and concentration p = 0.33.

Range of N
Band index (i)

2

C
4.070

10 —10

0.968
C

3.791

10' —104

0.956
C

5.493

10 —10

0.996

2' 2.699 0.904 4.685 0.979 0.992

1.299 0.825 3.364 0.949 0.976

0.231 0.556 0.921 4.804 0.987
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We also investigated the scaling behavior of gaps. For
none of the gaps did we obtain any well de6ned scaling
behavior. However, gaps adjacent to the reference bands
did not show any indication of exponential decay with
¹ This observation, albeit not conclusive, suggests that
states around ep are not exponentially localized.

We showed in our previous work that 'the nature of
state at Ep when ep ——k2 cannot be discerned by the anal-
ysis of the transmission coeKcient. The method of band-
width scaling can be applied successfully in this case.
Results are presented in Pigs. 7(a)—7(c). The values of
o. and C for various bands are shown in Table IV. The
scaling results suggest that states at and around Ep for
ep ——+2 are critical like. To substantiate this result we

examine the Green function of a one-dimensional chain
containing dimers randomly. Before leaving this section
we emphasize that all results have been checked with
more than one sample. Here we only presented the typ-
ical results. Furthermore, all quantities that are plotted
are dimensionless.

IV. SITE GREEN FUNCTIONS ANAI. VSIS

We analyze the site Green functions for a one-
dimensional chain containing dimer impurities randomly.
The relevant TBH (II) for this system has already been
discussed in Sec. II. The Green function in the operator
form is

oo

AJ

g O
(g

(L) cUoc.
Q O

o
Ixf

o

I—

COc:o
(L)

U

(L) ~0

I I I I I I
J

I I I I I I I I I
f

I I I I I I I I I
f

I I I I I I I I I
f

I I I I I ! I I I
J

I I I I I I I I I
f

I I I I I I I I I
J

I I I I I I I I

—l.0 —0.5 0.0 0.5 l.0 'l, 5 2.0
Energy (E)

(b)

FIG. 6. Plot of transmission
coefficient (f T
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—2.5-

FIG. 7. The log-log plot of bandwidth (A, )
with N, where (a) i = 0, eo = 2.0, p = 0.33,
and Z = 0. (b) Same as (a) but i = 2 and
2=1. (c) Sameas(a)but i=5andZ=2.
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G(z) = (z —H)-',

where z is a complex parameter. The properties of the
system are obtained from the analysis of G(z) along the
real line. The real value of z is given by E, the energy
under investigation. Inasmuch as detailed analysis of the
site Green function can be found in the literature, we

discuss in bare details the behavior of G(z) for the system
under consideration.

We consider first the simplest possible case. This is
the case of the perfect system containing only one dimer
with dimer energy ep. Since a dimer is equivalent to two
substitutional impurities with equal strength occupying
nearest neighbor sites, say, / and m, the Green function
for this system is

G(z) = Go, ( (z, eo) + Go, & (z, eo)
~
m) (m

~
Go, l (z, eo),1 —eoGo ~ m, m, z, eo

(14)

where

Go, l(m m z &0) (m
~

Go, l (z &0)
~

m) ~

Go ~(z, eo) is the single-impurity Green function for the
system containing a substitutional impurity of strength
ep at the 1th site. The poles of the Green function under
investigation are obtained &om

Go )(m, m, Ep, eo) =
Cp

Since the poles of G(z) correspond to discrete eigenvalues
of the Hamiltonian under consideration, Ep must be real.
Furthermore, if

~
eo ~( 2, only one discrete level outside

the parent band is obtained. However, for
~

eo ~= 2,
we obtain two poles. This is illustrated in Fig. 8(a) for
E'p = 2. If we take cp = —2, we obtain the mirror image
of Fig. 8(a). Note one discrete level is always outside the
band at Ep]: 3 The most significant aspect, however,
is the appearance of a second pole exactly at Epp —2.

If we take rp ——2 + b and b & 0, for small values of
b, we obtain E„2 2 + b . Since E„2 is outside the
parent band, states at that energy must be exponentially
localized. This should be true even if b is vanishingly
small. On the other hand, this pole disappears if b ( 0.
Su, for b ( 0, this state becomes extended. Since a state
cannot suffer such an abrupt change in nature in a small
energy neighborhood, we argue that the state at Ep~ for
Ep = 2 is neither extended nor localized. In other words,

TABLE IV. The value of C and bandwidth scaling index
(o.) of different bands for dimer energy eo = 2.0 and p = 0.33.

Band index (i)
0

C
40.839 2.0367

99.176

191.115

1.95351

1.92707

it must be algebraically localized. If the state at E„2 for
t'p = 2 is indeed exponentially localized, we must obtain
a b function singularity in the density of states. Instead
we obtain the following results.

(a) When eo —— 2, the imaginary part of
Go ~(m, m, E, eo) vanishes at E = 2 which is shown in
Fig. 8(a). Go ~(m, m, E, eo) is the Green function at the
mth site with the impurity at the l th site.

(b) The imaginary part of the two-impurity Green
function around E = 2 diverges as (2 —E) ~ [Fig.
8(a)j. Note that the local density of states for perfect
systems also exhibits the same kind of divergence at the
band edges. These observations are consistent with the
intermediate nature of the state at E = 2, when ep ——2.

We next study a system containing more than one
dimer. Our procedure to calculate the relevant site Green
function is as follows.

(i) We take a chain of size 1V. The chain contains many
dimers randomly with a given concentration (p).
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(ii) We attach this chain to perfect systems of infinite
length at both end. points.

(iii) This chain of interest always contains a dimer at
one end. We calculate the Green function for this end
point. This gives us the actual site Green function.

(iv) We replace next that site of the dimer which is at
the end point under consideration by a perfect site.

(v) We calculate the Green function for this altered
system at the site of interest using the renormalized per-
turbation expansion (RPE) method. s We denote this

Green function as G.
(vi) The actual Green function is calculated then by

using the technique to calculate this function for a single

1.5

0.5

0.0

-0.5

impurity.
Let m be the site of interest. If Ez is the pole of the

actual Green function, it is obtained &om

1
G(m, m, ep, Ep) = —,

6p

when

1
G(m, m, ep, E) =

E —6(m) m) cp)
(17)

A(m) is the self-energy and is given by

A(m) = G(m —1, m —1, [m]) + G(m + 1, m + 1, [m]).

Here G(m —1, m —1, [m]) is the Green function at the
site (m —1) with the site m is excluded. The real part of

the Green function G(m, m, ep, E) is shown in Fig. 8(b)
for ep ——2, p = 0.33, and N = 100. Note again the
Green function has a pole at E = 2 when ep ——2. Also
it can be shown that the local density of states diverges
as (2 —E) ~ . Hence, the nature of the state at E =
2 for ep ——2 does not change by changing the number
of dimers in the system. This result is also consistent
with the results obtained from the scaling behavior of
the bandwidths. Note that the scaling analysis yielded

2.03 for the band at ep ——2. Also, the value of the
scaling parameter (n) for other bands is much larger than
1. All these results together prove that the states around
the dimer energy for ep ——2 are critical like.

0.54" V. CONCLUSION

0.5

0.46

1.99 1,995 Z.O05

(b)

0

FIG. 8. (a) The solid curve corresponds to the real part of
Gp ~(m, m, , E, ep) as a function of E. The solid straight line
corresponds to Gp i(m, , m, E, ep) = —.The dashed curve cor-
responds to the imaginary part of Gp i(m, m, E, Ep). The dot-
ted curve corresponds to the local density of states. All curves
are drawn for ep = 2. (b) The real part of G(m, m, Ep, E)
as a function of E which is represented by the solid curve
and the straight line corresponds to G(m, m, pp, E)
Here eo ——2.0 and p = 0.33. The inset shows details of the
curve G(m, m, pp, E) with E and G(m, m, pp, E) = —around
E= co ——20.

We employed a technique, called bandwidth scaling, to
discern the nature of states in the special spectral zone,
present in the RDM. The observed scaling behavior of
the total bandwidth (Bz ) is consistent with the presence
of states which are not exponentially localized. Further-
more, the bands at and around Ep for

~
ep ~( 2 yield unity

to a fair degree of accuracy for the scaling exponent o..
Since an extended state is characterized by o. = 1, we
conclude that the system contains extended states in the
neighborhood of ep. Furthermore, the eKect of scattering
on the states due to dimer impurities is also amply evi-
dent in the scaling behavior of the bands. For any given
band we find that no definite scaling behavior is obtained
unless the value of N exceeds a certain value. This range
of N, albeit not well defined, increases with increasing
the band index (i), the dimer energy (ep), and the con-
centration of dimers (p) in the sample. The dependence
of this range on ep and p suggests that the width of the
nonscattered states in the RDM depends on these quan-
tities. We obtained similar results previously by investi-
gating the transmission coefBcient. Since all bands show
the tendency to enter the SSZ, we conclude that number
of states in the SSZ increases as N increases. However, it
should be borne in mind that H~ decreases algebraically
with N. Hence, all bands cannot enter the SSZ. The
number of nonscattered states can be estimated from the
scaling behavior of B~. This is consistent to a fair degree
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with the results of DWP.
When the dimer energy is at the band edge (eo ——+2),

the picture is quite diferent. States at and around eo
are no longer extended. This is clearly seen in the scal-
ing behavior of bands in the neighborhood of co. The
observed scaling behavior suggests that states are crit-
ical. The behavior of the site Green function supports
this inference.

Since Wu and Phillips showed that polymers such as
polyaniline can be mapped into a random dimer problem,
the dependence of the width of nonscattered states on eo
should not be belittled. This may be the key to the un-
derstanding of anomalous electrical conductivity in poly-
mers, such as polyaniline. Polyaniline shows anomalous
electrical conductivity upon oxidation and protonation.
The oxidation reaction transforms a benzoid ring to a
quinoid ring. The polyaniline chain upon oxidation be-
comes a random mixture of benzoid and quinoid rings.
If the protonation of the quinoid rings decreases the self-
energy of this unit significantly, the transformed problem
will be a random dimer model with small eo. Since the

number of nonscattered states in such a case will be quite
large, a high electrical conductivity should be expected.
The eKect will be prominent at low temperatures and
Gnite size samples.

The basic idea of the RDM can be employed to gener-
ate new and interesting systems. Phillips and co-workers
did a great deal of work to generalize the RDM. In all
cases, however, they obtained only one energy around
which nonscattered states exist. We have been able to
generate a system which contains two zones of nonscat-
tered states. Similar behavior is, of course, found in the
system containing randomly placed dimers of two types.
The details of our model and its relevance to physical
systems will be presented elsewhere.
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