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We work out a theory of low-energy Raman scattering in glasses. The scattering and the energy
transfer are due to interaction of the light with the soft potentials in glasses. We exploit relations be-
tween the scattering cross sections at a certain energy transfer, Ace, and the mean free paths of sound and
electromagnetic radiation for the frequency co. A comparison between the theory and experiment is
made. An explanation of the boson peak is proposed. We come to a conclusion that the peak may be
due to a reconstruction of the low-energy density of states due to interaction between soft harmonic os-
cillators. The interaction is enhanced with the frequency co and, as a result, soft harmonic vibrations, lo-
calized for comparatively small co, become extended (but not propagated) for bigger values of co.

I. INTRODUCTION

During the last two decades it was established that
different glasses exhibit universal properties, which are
usually regarded as anomalous compared to those of the
crystalline prototypes. ' The universal low-temperature
properties of glasses (below a few Kelvin) are described
well in the framework of the model of Anderson, Halpe-
rin, Varma, and Phillips (AHVP model). ' This model
postulates the existence of two-level systems (TLS's) with
an almost constant density of states P in glasses. There
are several articles where experimental data and their in-
terpretation are reviewed on the basis of the AHVP mod-
14—8

However, above a few Kelvin the universal properties
of glasses deviate from the predictions of the AHVP
model. The thermal conductivity shows a plateau around
10 K, which cannot be understood in terms of a constant
density of tunneling states. The sound velocity decreases
linearly with temperature above a few Kelvin. ' Further-
more, there is an additional increase in the specific heat,
indicating the existence of at least one other kind of low-
frequency mode. Experimental data by Stolen" on far-
infrared absorption as well as on the low-frequency Ra-
man scattering have shown these to be low-frequency
harmonic oscillator modes (see also the review paper by
Jackie' ). This interpretation is supported by neutron
measurements' that have shown in glasses the existence
of soft harmonic vibrations with a crossover to anhar-
monicity at the low-frequency end (at frequencies corre-

sponding to several Kelvin).
All these experimental facts indicate that there is a

common basis for the low-temperature (below a few Kel-
vin) and the higher-temperature (above a few Kelvin)
universal properties of glasses and that the AHVP model
describes only one part of them. In addition to the TLS's
there are other low-energy excitations in glasses, which
are, in particular, responsible for their properties at
higher temperatures. Grace and Anderson' and Brand
and von Lohneysen' on the basis of their experimental
data have arrived at the conclusion that TLS's and these
additional excitations have the same basic vibrational
structure.

The experiments give only very limited information on
the microscopic origin of the soft mode. A computer
simulation of a glass of soft spheres' has shown the ex-
istence of (quasi ) localized modes at low frequencies.
These modes are formed by chains of atoms with side
branches and are centered typically on 20 atoms, i.e.,
they have an effective mass of about 20 or more atomic
masses. The modes are connected with structural
anomalies of the glass. With increasing temperature re-
laxational modes of similar structures are observed. '

Recent simulations on Se glass showed similar proper-
ties. ' There the soft modes involve atomic chains as well
as rings with effective masses of again typically. twenty
atomic masses. Both the soft vibrational modes and the
relaxations can be considered as a collective motion of a
group of atoms, which for this particular motion can be
thought of as forming a quasimolecule.

These properties are predicted by the soft-potential
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model (SPM), which was proposed in Ref. 19 and
developed further in Refs. 20—26. A short review of this
model and its application to description of universal
properties of glasses is given in Ref. 27. The SPM ex-
plains all the universal low-temperature properties of
glasses in the same way as the AHVP model. ' In this
model, besides the TLS's there exist also soft harmonic
oscillators (HO) and both these types of low-energy exci-
tations have a common basis, namely soft atomic poten
tials. The TLS's exist in the soft double-well potentials
and the HO in the soft single-well ones. The soft har-
monic excitations are the low-energy excitations, which
are responsible for some universal properties of glasses at
higher temperatures.

Another type of excitations that inAuences the proper-
ties of glasses are the usual delocalized phonons, or hy-
personic plane waves. In the paper we shall call them
phonons or hypersound. The lower the frequency, the
better these excitations are defined. At sufficiently high
frequencies, where their mean free path becomes of the
order of their wave length, they cease to exist (see Sec.
VI).

The main purpose of this paper is to consider in
glasses, within the framework of the soft-potential model,
the low-frequency Raman scattering with comparatively
small energy transfer. This model, under rather natural
assumptions, allows one to treat the scattered light inten-
sity as a sum of independent contributions of various sites
(where the soft potentials reside), the linear dimensions of
each mode being much smaller than the light wavelength.
An equivalent description can be also formulated for the
calculation of the hypersonic and infrared absorption.
Such an approach permits us to exploit the idea formulat-
ed by Jackie in Ref. 12 and to present the results for the
Raman scattering in terms of other observable quantities,
namely, coefficients of hypersound and infrared (or mi-
crowave) absorption. In such a way one can interrelate
various experimental data and explore the range of appli-
cability of the assumptions used.

For many years the most widely recognized model used
for interpretation of the experiments on Raman scatter-
ing in glasses was that of Martin and Brenig. Some at-
tempts have been made to extend the initial ideas of the
Martin-Brenig model and give an interpretation of some
correlation or structural length in glasses. Other
models for some part of the inelastic light spectrum have
been proposed. The quasielastic contribution has been
attributed to some unknown damped oscillators. ' The
boson peak was also related to the vibrational density of
states. But up to now the physical origin of the experi-
mental data, including all the aspects of the low-
frequency Raman spectrum, remains unknown.

The approach we propose here is an alternative one.
Therefore we compare the predictions of the soft-
potential model with those of the model considering the
combined action of the photons and fluctuations of polar-
izability of the glass (see Refs. 28 and 38).

H. SOFT-POTENTIAL MODEL

According to the SPM, ' the quasilocal low-frequency
modes in glasses are described by the soft anharmonic os-

cillator Hamiltonian

'2 3 4

V(x)=@0 g — +g — +
a a

The description of a quartic potential by (2) is unique
only if for q) 0 one restricts g by g & 32ri/9 and we will
imply this restriction in the following. x is the general-
ized coordinate of the soft mode having units of length, a
is a characteristic length of the order of the interatomic
spacing (a = 1 A), 60 is of the order of binding energy of
the atoms constituting the glass, i.e., of the order of 10
eV. The values of the dimensionless parameter g and g
are random due to fluctuations of the structural parame-
ters of a glass. Soft potentials correspond to ~g~, ~g~ && l.
The distribution function of these parameters for

~ g ~, ~ g ~
&& 1 is given by '

P(,, g)= &~~„ (3)

where P0 is a constant and the factor
~ q ~

describes a
singularity in the distribution of the parameter q which
in Ref. 22 was called "seagull" singularity. Since the
glass is inversion symmetric on a macroscopic scale, the
distribution function is even with respect to
P(ri, g)=P(q, —g). The interaction of the soft atomic
potentials, Eq. (1) with an elastic strain e, is described by
a bilinear term

r

X
V;„,(x ) = 60H —e,

with the dimensionless coefficient ~H
~

of order 1. This
term describes the interaction of the strain field with both
the TLS and of HO with the same coupling constants
(different for the longitudinal and transverse sound). To
introduce scales the dimensionless parameter q~ and 8'
the characteristic energy of the purely quartic potential,
(2) for g =g =0, are introduced

(4)

=(fi /2MQ 8 )' =10 w=6 7J =k 10 .

We assume that the interaction Hamiltonian (4) does not
depend on the parameters g and g.

If
~ g ~ /Qgr & gr /~ g ~, and, at the same time g is neg-

ative and within the limits ~g~ )3gt (see Fig. 1) the two
lowest levels in the potential (2) form a TLS with the en-

ergy splitting E=+6,0+9 . The tunnel splitting 60 and
asymmetry 6 are determined by

60= 8 exp
3 YJg

(6)

For 6« V& the height V& of the barrier between the
two minima in the double-well potential (2) does not de-

d &+V(x),
dx

where M is the efFective mass of the considered "soft" en-
tity and
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E (q, 0)

31

21

molecule immersed in a glass. The ac electric field of the
light induces a dipole moment in each quasimolecule,

P; =y;&Ei exp( i—roi; h, t ),
where coilght is the frequency of light. This oscillating di-
pole moment is considered as the source of the scattering
light.

Quasilocal soft modes modulate the dipole moments of
the quasimolecules. This modulated part 6I'„which
determines the Raman-scattering part, can be written as

I I I

5
5P, (t) =5y, , (t)Ei exp( iso—„s„,t ) . (10)

FIG. 1. The interlevel distance in the potential (2.1) (in units
of W) as a function of 71/rlL for /=0 (i.e., for symmetric soft po-
tential). The arrows indicate the minimal distance between the
levels c&~'"=3.65, c,32"=3. These are the points of absolute
minimum of the functions e3, (rl, g'l and E32(rt, g) on the plane

The corresponding density of states makes a finite jump
(from zero) at this energy —the so-called van Hove singularity.

pend on the value of g and is given by
28

4

p SZZ '4

(E) 1 09L E
6v'2 W W

(9)

It rapidly increases with the energy E.

III. I.OW-FREQUENCY RAMAN SCATTERING

We are going to use the following physical considera-
tions. We assume that the Raman scattering occurs at
the soft-potential sites and the energy transfer is due to
the motions of oscillating or tunneling entities in soft po-
tentials. Every site can be looked upon as a quasi-

The density of states of TLS's as a function of their en-
ergy E is nearly constant ' (throughout the paper we
denote by energy E the interlevel spacing). It differs only
slightly (by a logarithmic factor) from the corresponding
distribution function in the AHVP model.

It is clear from Fig. 1 that the TLS's picture is lost for
small ~g~=rlL when the distance to the third level be-
comes comparable with the TLS energy E. This means
that the TLS's alone cannot be responsible for excitations
with energies larger than 8'. Single-well potentials will
also contribute to these excitations in glasses.

Besides the TLS's corresponding to double-well poten-
tials with tl &0, Eq. (2) describes also quasilocal anhar-
monic oscillators in single-well potentials with positive
rl &9/ /32. The excitations in the single-well potentials
with g))gI are nearly harmonic with the interlevel
spacing

E =2W+rilril
For E » W the density of states n(E), of these excita-
t1ons 1s

Here c is the velocity of hght, e and e' are the polariza-
tion vectors of the ingoing and scattered electromagnetic
waves, respectively, while ( (tx) (0x) ) is the Fourier
component of the time correlation function:

(x(t)x(0)) = f (x(t)x(0))le' 'dt,

where ( . ) denotes the ensemble average. In Eq. (12)
we have assumed that

co/coi; h +( 1

and throughout the paper we will neglect the terms pro-
portional to this small parameter as compared to 1. In
particular, this approximation permits us to consider ten-
sor a as symmetric. Indeed, the tensor y, l is assumed to
correspond to the frequency interval where the glass is
transparent. In the absence of the external magnetic
field, it should be real and therefore symmetric. The ten-
sor n describes the effect of the reaction of the electronic
wave functions of the quasimolecule to the additional
external perturbation by the atomic motion in the soft
mode. This motion is slow, so that on the electronic time
scale it may be considered as adiabatic, i.e., the motion
should not break the symmetry of the tensor y, and

cx;) =cxI; (14)

Equation (12) describes the effect of a single soft mode.
Now we are going to sum over all the soft modes in the

We assume that in the first approximation 5y;i(t ) is pro-
portional to x /a

5y;t(t ) =a;i(x /a ),
where the tensor a;I denotes the coefficient of propor-
tionality which we call tensor ofpolarizability modulation.
The time dependence of the coordinate x describes the
soft motion that brings about the modulation of the elec-
tric dipole.

Following the standard theory of light scattering (see,
for instance, Ref. 40) we can write for the differential
cross section of light scattering do. proportional to the
part of the light intensity scattered into the given solid
angle dQ, and given frequency interval dro (with ro the
frequency shift)

41ght
der(co)= e *ekeie~a;&a& (x(t)x(0))„dQ

a2C4 ' 2' '

(12)
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unit volume. This can be easily done if there is no in-
terference of the light scattered by different soft modes
which can happen in two cases. First, when the general-
ized coordinates x of all quasimolecules are independent,
i.e., the adjacent soft modes do not interact. Then the
scattering by di6'erent quasimolecules is independent even
though their modulated polarizabilities can be correlated
(such a correlation could, in principle, be created during
the glass transition).

It is more likely, however, that the polarizability ten-

sors e;& are uncorrelated and their average values a;& van-
ish. The latter is true provided the glass is inversion sym-
metric on a macroscopic scale. The tensor e is the
coefficient of the first power of x in the expansion of the
polarizability of a quasimolecule. This tensor, in its turn,
enters the part of free energy that is associated with ac
electric field,

——g 5y;iE;Ei*, (15)

where the summation is over all the soft-potential sites.
Under inversion x transforms into —x, and, as the contri-
bution, Eq. (15), should be invariant we have

a;(=0 .

vz= —,
' [—(Tra) +3Tra ], (20)

and therefore

ekele a'Iak [vile'*el'+vz(1+ le'el')] (21)

~Hvi Jvv . (22)

Here Izz stands for the intensity of scattered light with
the same polarization as the incident light. To be specific
we take here a polarization perpendicular to the plane of
scattering. IH& is the intensity of scattered light polar-
ized within the plane of scattering. For linear polariza-
tions of the incoming and scattered light one gets from
(21) for the depolarization ratio D

This equation determines the angular dependence of
the light scattering, i.e., the dependence of the extinction
coe%cient on the polarizations of the incoming and scat-
tered light. In general, the polarization vectors in this
equation can be complex. This means that also the case
of circularly (in general, elliptically) polarized light is in-
cluded.

To analyze the angular dependence of the linearly po-
larized scattered light, let us introduce the depolarization
ratio

In this case we can write

~( l )~(2) —~( l ).~(2) —p+il +mn ~i1 +mn (16)

vz 1 3 (Tra) —(Tra) ( 3

v, +2vz 2 2 Traz+(Tra)z 4
(23)

where the superscripts (1) and (2) refer to two different
quasimolecules. In this case there would be no interfer-
ence and one can sum the intensities of light scattered in-
dependently from all the soft-potential sites even if there
is interaction between the soft potentials, so that different
x are correlated.

Summing over all the soft modes within a unit volume
we get the differential extinction coefficient dh, describing
the part of light intensity scattered into a given solid an-
gle and given frequency interval provided the ingoing
light has passed a unit length. We shall perform the sum-
mation over the soft modes in two stages. First, we sum
over all the quasimolecules with fixed values of g and rt
As a result, the product a;&a& will be replaced by its
average, n;&Q. k . Second, we integrate over all the values
of g and z1, with regard of their distribution function, Eq.
(3). Assuming that, due to the slowness of the motion de-
scribed by a soft potential, such electronic characteristics
as a;iak would not depend on g and z) we get

CO.light
dh = e; eke&e cz;&aka'c4 '

X f fdz)de(rt, g)(x(t)x(0)) dQ . (17)

Provided the tensor a is symmetric the following rela-
tions hold in isotropic media:

ail akm Vl~il 5km +Vz(~ik ~1m +~jm ~kl )

where

v, = —,', [2(Tra) —Tra ],

It does not depend on the frequency co as long as e;&ak
is independent of g and rt. Investigating the frequency
dependence of the depolarization ratio found in experi-
ment one can check the validity of this assumption.

So far we considered coordinates x as classical. As we
are going to make a definite distinction between the
Stokes and anti-Stokes light scattering, we should in fact
use the quantum-mechanical description. This means
that x(t) should be replaced by the corresponding opera-
tor in the Heisenberg representation [see Eq. (28) and the
text below it]. As is shown in Ref. 40, after this replace-
ment Eqs. (17) and (12) remain valid if one takes the aver-
age (x(t )x(0) ) in Eq. (13) to include both statistical- and
quantum-mechanical averaging.

As the operators x(t) at difFerent t, in general, do not
commute, their order is important. As shown in Ref. 40,
Eq. (17) gives the proper order of the operators for the
Stokes scattering.

IV. GENERAL EXPRESSIONS FOR THE SOUND
AND INFRARED ABSORPTION

In the previous section we have related the extinction
coefficient due to the scattering of light by soft potentials
to the correlation function of the soft coordinates, x.
Now we make use of the fact that the coefficients of
sound and infrared absorption can be expressed through
the same function, or rather, through a function, closely
related to it.

Let us assume that a glass is subject to the action of an
external perturbation of the form

(24)
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periodic in time with f(t ) a generalized force.
Let 8 be the operator of some macroscopic physical

quantity whose average we wish to calculate. We assume
that in the absence of the perturbation the average van-
ishes. Then within the theory of linear response one can
write for a Fourier component of the average value

(25)

where f is the Fourier component of the generalized
force, while

b(co)= j dr e'"'b(t) .
0

the following equation

@OH
A,(co)= — b(co)

a

—I dt e' '([x(t),x(0)]) . (34)
fi 0

A,"(co)=— 6'OH 1

2A
(1— " )( (r ) (0) ) (35)

Using the FDT (29) we derive for the imaginary part of
the elastic modulus

b(t ) =(i/h')( [x(t ),B ] ) (27)

The coefficient of sound absorption l ' is related to
A,"(co) by

and l '= — I,"(co) .
pV

(36)

x ( t ) =exp( iHot /fi)x exp( —iHo t /A'), (28)

b "(co)= (1—e " )(x(t )B )=1
2A'

(29)

Let us apply these general statements to two examples:
ultrasonic and infrared absorption.

where H0 is the Hamiltonian of the system including all
the interactions except the perturbation Eq. (24) itself.
The fiuctuation-dissipation theorem (FDT), see the Ap-
pendix, states that the imaginary part b "(co) of the gen-
eralized transport coeKcient is related to the Fourier
component of the corresponding correlation function by 2

e hculkT)—
ai A."(co)=

pv 2pAV

X f fdridgP(i), g)(x(t )x(0) )

(37)

Here p is the mass density of the glass, while v is the
sound velocity.

So far we considered the contribution of a single soft
mode to the sound absorption. Actually, to get the ab-
sorption coefficient, one should sum over all such modes
within the unit volume:

A. Ultrasonic absorption

In this case

V(r) =B~ e(r ), —
a

(30)

f(&)=— (31)

where e(t) is the strain produced by the sound wave
whence

To get this result we need, in full analogy with the Ra-
man scattering, either absence of the correlation between
different x or validity of the relation H'"H' '=0. We
will see, however, in the following that Eq. (37) breaks
down when the interaction between the soft potential be-
comes important.

Actually one should discriminate between longitudinal
and transverse sound absorption. To do this, one should
introduce the indices of polarization for the constants H
and v, as well as for the absorption coe%cient l

av -x
o = =6'OH-

BE a
(32)

In the spirit of the general relations given above we get
for the elastic modulus A,(co), as the proportionality
coefficient between (o ) and e:

Here we wish to emphasize that, in the spirit of the
ideas expressed above, the interaction Hamiltonian (4)
has two physically entirely different meanings. First, it
describes interaction of the ac strain with the soft poten-
tials. According to the theory of linear response this
term should not be included into H0. Secondly, it also
describes the interaction with the thermal acoustic plane
waves (phonons), which should be included into Hamil-
tonian H0.

In this case we take for the operator B in (25) the elas-
tic stress tensor o., where

B. Far-infrared absorption

For the sake of definiteness we are speaking here about
infrared absorption although our results will, of course,
be equally applicable to microwave absorption. We start
by writing the Hamiltonian of interaction of a soft mode
with an ac electric field F(t ) (see Refs. 23 and 24)

V(t)= —F(r)d —.'a (38)

Here d0=q*an, while q* is the "effective charge" and n
is a unit vector parallel to the electric dipole moment of
the soft mode. The generalized force of (24) is now

f(t)=F(t)d, /a . (39)

and the operator B in (2S) is the electric dipole moment
operator of the soft mode

p =do( x /a ) . (40)
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Acting in the same way as above we introduce y(co) as
the tensor relating the Fourier components of the electric
field and the dipole moment

( p ) =g(cu)F (41)

Its imaginary part averaged over all the directions of dp is
given by

1 dpx"(~)=—
3 a

—f dt e' '([x(t), (0)]) .
p

(42)

The FDT gives us for this case
'2

dpg"(cu) =
6A a

(1—e " ~ )( x(t) x( 0)) (43)

The coefficient of infrared absorption P(cu) is related to
X"(~)by

P(cu) = —g"(cu),c/E (44)

d; d =dp; .d =0,
and the property

dp;=0

(46)

(which again reflects the fact that macroscopically the
glass has a center of symmetry). In the latter case we can
use the expression (45) for P also if the soft potentials in-
teract.

where c. is the dielectric susceptibility of the glass. Sum-
ming over all soft potentials we obtain

2
dp

P( )
— ~~ O

( 1 Aro lkT)—
3cR&e

X f fdgd(P(q, g)(x(t)x(0))

This is the equation for the absorption coefficient that
can be compared with the data for the light scattering.

The condition for applicability of Eq. (45) is either the
absence of correlation between different x or lack of
correlation between the dipole moment components for
different soft potentials:

Of course, the same conclusions are valid for the anti-
Stokes scattering with replacement of N(cu)+ 1 by N(cu).
Here N(cu) is the Bose factor N(cu) = [exp(RculkT)—1] ' for temperature T. As the phenomena discussed
above are closely related within SPM it is sufficient to in-
vestigate in detail the temperature and frequency depen-
dence of either of them. For this we choose the hyper-
sound absorption.

%'e restrict ourselves to consideration of the case of
not very small temperature where kT)) 8'. This in-
equality covers most of the experiments on Raman
scattering in glasses. In this case within the SPM there
are the following contributions to the hypersound absorp-
tion.

A. Processes associated with double-well potentials

The contribution of the double-well potentials to the
coefficient of relaxational sound absorption is given by

3/4 2
7Tcuc kT iy4 1

, c=
euro

'
pv'Qg

y
—1

'rc&, DWP

(49)

B. Processes associated with quasiharmonic oscillators

There are two kinds of absorption processes by
quasiharmonic oscillators, resonant and relaxational
ones. Both can be described by the bilinear coupling be-
tween the hypersound and oscillators given by Eq. (4).

1. Resonant attenuation

Resonant attenuation is due to direct transitions be-
tween the levels of the harmonic oscillators accompanied
by a variation of a phonon occupation number. The tran-
sition amplitude is the matrix element of the bilinear cou-
pling Hamiltonian. For the absorption coefficient we
have

The relaxation processes are due to thermally activated
hopping over the barrier of the height Vb with the relaxa-
tion time r =ro exp( Vb /kT ). The dimensionless parame-
ter C is equivalent to the parameter Py Ipu in the
AHVP model, where y is the deformation potential of
the TLS's.

V. FREQUENCY AND TEMPERATURE DEPENDENCE
OF HYPERSOUND ABSORPTION

3
7T Cco %co

res, Ho 6&2 u
(50)

As we have seen in the previous sections, as a conse-
quence of the FDT the frequency and temperature depen-
dence of the Stokes Raman-scattering intensity is related
to the absorption coefficient of hypersound (as well as to
that of infrared radiation) by the following simple rela-
tions that can be checked on experiment [see Eqs. (17),
(37), and (45)]

This process is characterized by a very steep frequency
dependence ( eccu ).

2. Relaxational absorption

The relaxational absorption due to the bilinear cou-
pling to the quasiharmonic oscillators needs a more care-
ful discussion. The absorption mechanism is effective if

I(cu, T) er. l '(co, T),

( )
[1+N(cu)]

p( )

(47)
Ace « kT (51)

and only if the equilibrium between different quantum
levels of the oscillator is shifted by the hypersonic wave.
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For this to happen the diagonal matrix elements,
( n ~x ~n ), should not vanish and should be different for
different n. This can only be the case if one accounts for
the anharmonicity (due to the term gx ) in the potential
(2) when calculating the coupling. Otherwise the oscilla-
tor can be treated as harmonic. This is why we use the
term quasiharmonic.

A sound wave traveling through a glass modulates the
distance between the levels of the HO and thus shifts the
thermal equilibrium. Because of the finite value of the re-
laxation time ~, the response of the HO lags behind the
strain of the sound wave e, resulting in energy dissipation
and hence sound absorption. In the classical frequency
region A'co &(kT this absorption is given by a formula,
analogous to the one obtained for the relaxational ul-
trasonic absorption in glasses due to TLS's (Refs. 41 and
5)

For E =38, its magnitude is of the order of the deforma-
tion potential

y= iH~ W/q,'"=1 eV

for TLS's (Ref. 23), and it decreases with increasing ener-

gy E
The relaxation time ~ of the HO is determined by one-

phonon processes, i.e., resonant absorption and emission
of phonons. The probability of these processes is deter-
mined by the off-diagonal matrix element, Eq. (2)

N Nq q Xq+1 % 1) Vqqr N(Nq+1)

(58)

where

1 D 1 CO 7

& Ho pu 4kT sinh (E/2kT) I+co r (52)
Vq=i 3~~

v'W/E Q(A'/2pVcoq)q .. O'H

IL
(59)

where V is the volume of the glass, r is the relaxation
time of the HO, and D is the deformation potential of the
HO:

BE
Be

(53)

In order to calculate I,,l'Ho we need the deformation po-
tential D and the relaxation time ~ of the HO. We can
derive them within the framework of the approach
developed in Refs. 23 and 24.

The interaction of the soft atomic potential Eq. (2),
with a strain e is described by the bilinear term Eq. (4).
We can transform the total potential energy
V(x )+ V;„„(x) into the form of Eq. (2) again by shifting
the origin of the generalized coordinate system x. As a
result, coefficient i) in Eq. (2) is changed. For small
strains e,

3 lHe.
2 7l

(54)

BE dE Bg
1

HW W
BE d7) BE i)L E

3

(55)

It is proportional to the asymmetry coefficient g of (2).
This is to be expected because for symmetrical potentials
( g = 0) all the diagonal matrix elements vanish:
( n ~x ~

n ) =0. Since the density of states (9) and the relax-
ation time [see (60)] do not depend on g, the relaxational
absorption (52) is determined by the value of D averaged
over g in the interval —V32i) /9 & g & i/32' /9

D = 2i/9/32' I — D (g)dg, (56)—+32'/9

which gives for the mean-square average value

Using Eqs. (54) and (8) we can calculate the deformation
potential D

Here co is the frequency of the phonon with wave vector
q, while N and X are the occupation numbers of HO
and phonons, respectively. Using the "golden rule" we
obtain

1= 1

r(E) 3/2 2~PA4U5 I E (60)

where the energy E, is defined by
r

E, —=+2m.pA u'
IL

(61)

16''2 Cco 2 ~ dx x
rel, HO 2 4 49 U X ~ h2 4+64

where

(63)

For example, for a-Si02, E, /k =50 K [we take for u the
transverse sound velocity U,

=3.8 X 10 cm/s; p =2.2
g/cm and HW/i)1=1 eV (Ref. 23)]. The relaxation
time ~ of the HO does not depend on the temperature.

We can rewrite Eq. (S2) for the relaxation absorption
throu'gh the integral over the HO energy E, Eq. (8), with
the density of states n (E ) (9):

2
1 M 7l iHo= dEn(E)

Eo pu 4kT sinh (E/2kT) 1+(cow)

(62)

Here Ep is the minimum energy when we can still use the
concept of the HO. From Fig. 1 it is clear that the first
levels in the potential (2) are more or less equidistant be-
ginning with the energy E of the order of 3 W. There-
fore, we take Ep=3 W. The jump of the partial density
of states between the second and the third levels occurs
just at this energy (for energies E «Eo we have to use
the TLS's conception). From Eq. (62), using Eqs. (9),
(57), and (60) we obtain

3/2
H 8' 8'

3/2
9L

2

Xp= and b = i/iiico/W .2kT 2kT (64)
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(i.e., xp «1), since at low temperatures, kT « W, the
HO are not excited and their contribution to the absorp-
tion, Eq. (63), is exponentially small. In the temperature
region (65) there are three different frequency intervals:
low frequencies, where the main contribution to the ab-
sorption is due to the HO with typical values of cur «1,
intermediate frequencies, where typically co&= 1 and high
frequencies, where su~))1. For our purpose only the
second case is important, i.e., the case of intermediate fre-
quencies, x p « b « 1, or

2
Ep8

C

(66)

This is the usual frequency region for Brillouin- and
Raman-scattering measurements. In this case we can re-
place xp by 0 in Eq. (63). The inain contribution to the
absorption comes from the HO with x =b (cur= 1).
From Eq. (63) we derive

16' 2 Cco„z f~ dx
rel, HO 9 0 JP b4

16' Cco kT~
9 0 E

V

»1

(67)

The absorption in this case is proportional to the temper-
ature and to +co. Its magnitude can be comparable with
the relaxation absorption (49) from the TLS's.

The same three contributions characterize the temper-
ature and frequency dependencies of the infrared absorp-
tion in glasses. To illustrate this point, we shall give a
simple relation between the absorption coefficient P and 1:

2

Pl= 4~ P0 do~
3 cvE Ap

(68)

In the following, we will analyze the absorption (63)
only in the temperature region

(65)

strongly and the picture of independent quasilocal har-
monic excitations is lost. Phonons and HO with energies
of the order of Ed cannot be considered as independent
excitations but are intermixed with each other. Above
this energy the total density of states should be recon-
structed. One may ask whether this phenomenon can ex-
plain the bump in the specific heat C(T)/T at tempera-
ture of the order Ed/5k, the rise of the thermal conduc-
tivity above the plateau, and the "boson" peak at fre-
quency Ace =Ed in the Raman scattering in glasses?

Let us discuss interaction between the soft harmonic
oscillators in more detail. The physics of the interaction
is basically the same as that indicated by Black and
Halperin for TLS's at low energies. As we have seen,
soft harmonic oscillators are coupled to strain field by a
bilinear term, Eq. (4). Due to this coupling each soft har-
monic oscillator is surrounded by a strain field that is
proportional to its coordinate, x, . Such a field acts on
another oscillator. As a result, any two oscillators in-
teract, the Hamiltonian of interaction being given by

J„.x,x, (sos') . (70)

One can give the following order-of-magnitude estimate
for J„:

6p H, H,
2 3a P0 r„.

(71)

where r„ is the distance between the sites where the soft
oscillators reside. Here we disregard the tensor structure
of H, and H, ; however, we wish to emphasize that they
can be effectively of the same as well as of the opposite
signs.

To discuss the interaction we shall investigate pairs of
"resonant" oscillators with almost the same energy (inter-
level spacing) which we shall denote by E. Making use of
the explicit expressions for the matrix elements of x [see
below —Eq. (89)] we can write for the off 'diagonal matrix-
element I(E ) for transitions of two such oscillators
separated by distance r

This relation follows directly from comparison of Eqs.
(37) and (45).

VI. BOSON PEAK

I(E)=XI(E)/r

where

(72)

The steep rise of the resonant scattering of phonons by
HO (50) implies that at some energy Ed, the mean free
path of phonons reaches the Ioffe-Regel limit, i.e., it de-
creases to their wavelength. ' The value of this energy
is estimated as"

~( '=
ME2ME

1 8' H 8'
02 02~3

(73)

Consider oscillators with the energies within the inter-
val E,E+b E(b E «E ). The average distance r between
these oscillators can be estimated from the equation

Ed = ( 0.6—0.75 ) WC (69)
n (E)b E= 1/r (74)

For example, for a-SiO2, 8'/k=4 K, C=3X10, and
Ed/k=45 K. At this energy another process will be-
come dominant where excitation from one oscillator hops
to another directly over the distance of the wavelength
(compare with the Einstein model of thermal conductivi-
ty; see also Ref. 44, where the application of the Ein-
stein model to glasses is discussed in detail). In other
words, under these circumstances the oscillators interact

Then, for the off-diagonal matrix element we have the fol-
lowing estimate:

I(E)=
3 =2)(E)n(E)bE .2)(E ) (75)

I(E)=(E/Ed) bE . (76)

Inserting Eq. (9) and Eq. (73) into Eq. (75) and making
use of Eq. (69) we end up with the following relation:
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Interaction between two oscillators may be considered
as a small perturbation if the modulus of the off-diagonal
matrix element is smaller than the difference of their en-
ergies, AE. Vice Uersa, if it is bigger than the difference
AE the states of the oscillators become collectiUe, and the
same is true for a greater number of oscillators. Equation
(76) tells us that if E «Ed the matrix element is much
smaller than AE which means a negligibly small interac-
tion. On the other hand, if E ))Ed the interaction is so
strong that one may expect completely reconstructed
states. They become delocalized and spread over a large
number of soft oscillators. In particular, the typical ener-

gy difference is of the order of I(E)»bE. As a conse-
quence of the term repulsion the eigenstates are distribut-
ed more or less uniformly over any small energy interval
that still contains a big number of levels. This makes a
strong contrast to the distribution of eigenstates of a set
of noninteracting oscillators where there is virtually no
level repulsion.

Let us estimate the reconstructed density of states of
these new delocalized harmonic modes:

n(E)bE 1

2)(E )n (E )b,E 2)(E )
(77)

i.e., it has a linear dependence of the energy. It is in-
teresting to investigate by order-of-magnitude estimates
up to which energies Eq. (77) is valid. Using the estimate
~H

~

= 1 and (5) we can write

2E
n(E) =

nL&O
(78)

n(E) =
a (A'co, )

(79)

This equation is valid for E ((Ace, . In other words, we
can conclude that with increasing energy E the spectral
density of delocalized soft vibrations in a glass ap-
proaches gradually the Debye density of states.

The reconstructed density of states has an important
property of self-consistency. The number of states per
unit volume up to some arbitrary energy E is

For pu we use the estimate (see, for instance, Ref. 46)
pu =ho/a . The frequency co, of the maximum of the
density of states is approximately (see Ref. 24)

flcdq Ao'gL
3/2

and, therefore,

scatter of the eigenvalues due to their repulsion is E or, in
other words, the density of states n(E), is determined by
a self-consistent procedure.

The approach developed above is an alternative to the
one used in Refs. 47 and 48, where a linear energy depen-
dence of the density of states of harmonic oscillators was
predicted too, above some energy of the order of a few
meV. The difference is that in Refs. 47 and 48, the densi-
ty of states of quasilocalized noninteracting (or indepen-
dent) harmonic oscillators was considered. Linear energy
dependence comes in that case from the special form of
the distribution function of g and g which has been pro-
posed. In our case density of states above Ed is density of
states of the whole ensemble of interacting harmonic os-
cillators. It does not depend on the distribution function
of r) and g at all.

Generally speaking, for the energies higher than Ed,
the theory of hypersound absorption discussed above
ceases to be applicable. The general relations for A,", the
imaginary part of the elastic moduli, still remain valid.
However, as the imaginary part is, in general, not smaller
than the real one, Eq. (36) relating A,

" to the mean free
path and therefore Eq. (37) break. This happens because
the hypersound mean free path in the vicinity of energy
Ed becomes comparable to the sound wavelength. As has
been pointed out above, to check this one needs to com-
pare in this frequency interval the main (resonant) contri-
bution to the mean free path, given by Eq. (50), with the
wavelength 2mu /co. Above the frequency cod =Ed /fi, the
sound waves cease to exist as well defined propagating ex-
citations. But harmonic excitations above this energy
need not be overdamped. For example, for a-SiO2,
Ed-E„and from Eq. (60) we have

= 8'«E„.
r(Ed )

(83)

The situation with the infrared absorption may be
somewhat difterent. The point is that in a number of
cases of interest the interaction constant of infrared radi-
ation with the soft vibrations can be substantially smaller
than that for the hypersound of the same frequency co.
The interaction near the energy Ed can be characterized
by a dimensionless parameter %'—=PdAd, where Pd and
Ad are the absorption coe%cient and wavelength of in-
frared radiation for frequency cod=Ed/h', respectively.
One can present this parameter as the product Pl given
by Eq. (68) times the ratio of the velocities of light and
sound:

E2A'=
a (A'co, )

(80) c 4'
v&s

2
PU2 doa

C. @0

4m

3 cC
(84)

By the method given above one can estimate the charac-
teristic energy that determines the repulsion of the eigen-
states belonging to this interval

Here C is given by Eq. (49) and for dimensionless parame-
ter A we have

I(E ) = 1/n (E )r =JV/n (E),
where we have used

(81)
P d2 7/2

0 0 IL

W
(85)

r =IV(E)

From (81) one sees that the energy determining the

In the SPM this parameter determines the logarithmic
temperature dependence of the dielectric constant of the
glass at low temperatures (the so-called resonant contri-
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bution of TLS's) (Ref. 23)

E(T)—e(To) 8~ ~
ln

e(TO) 3 e To

As for parameters 3 and C, they can be taken from the
experimental data. According to these data we have for
Suprasil 8' 3 =0.92X10 and C=3.1X10 . For
the dielectric constant we take the value c, =3.8. In this
way we obtain for the vitreous silica the value of the
product given by Eq. (84) of the order of 3X10 (for
the longitudinal sound).

This means that although the relation (68) is valid only
for the frequencies much smaller than cod=Ed/A', the
general equation (45) may be valid up to the frequencies
well above cod provided A' is much smaller than 1. We
wish to emphasize that, at the same time, Eq. (45) relat-
ing Raman-scattering intensity to the coefficient of in-
frared absorption also remains valid although it is impos-
sible to give explicit analytical expressions for both quan-
tities.

VII. IS THERE ANY RELATION
BETWEEN LIGHT SCATTERING

AND SPECIFIC HEAT OF A GLASSY

x„„+,=x„+i „=i'&(n+1)/2ME (89)

For co) 0 (the Stokes component), only the term with
m =n+1 remains in the whole sum over rn, and we are
left with expression

(x(t)x(0)) = [N(co)+1]5(fico E) .—
o)M

(90)

After summation over all the harmonic oscillators we get

g A, (x, (t )x,(0) )
1

S

7rh2 A. ,[N(co)+1] g 5(%co E, ) —.
CO V, M,

This equation can be rewritten as

(91)

1 g A, (x, (t )x, (0) ) = [N(co)+ 1]%(co)n(irido),
CO

Here 7 is the free energy; m and n label the exact eigen-
states of the whole Hamiltonian Ho, while E and E„are
its eigenvalues. The matrix elements are those of a single
oscillator with the eigenfrequency E/A:

x„„,=x„,„=i' n/2ME

So far we have considered the simplest version of the
soft-potential model where g and i) were the only fiuc-
tuating quantities. However, the soft potentials with the
same values of g and i) can, in general, differ by the
values of other parameters, such as the effective masses
M, or the modulated polarizabilities a. I.et us discuss,
with regard to this assumption, whether there exists any
relation between the light-scattering intensity and the
density of states of harmonic vibrations that determine
the specific heat. Such a relation has been extensively
discussed in the literature (see Refs. 49 and 37).

The extinction coefficient dh is proportional to the sum
over all the oscillators, which we shall specify in this sec-
tion by indices s, s', etc.,

yA, (x, (t)x, (0) &„,
1

S

(87)

A. Noninteracting oscillators

To begin with, we consider the intensity of light
scattering by a system of noninteracting soft harmonic
oscillators. According to Eq. (87) a single-oscillator con-
tribution to the extinction coefficient is proportional to
the Fourier component of the correlation function,
(x(t)x(0)) . Here x is the coordinate of a single soft
harmonic oscillator noninteracting with other soft modes.
For the correlation function one can write

(x(t)x(0)) =2vrfig e " ~x„~ 5(fico+E„E) . —

(88)

where A stands for the appropriate combination of
a;&uk, which we need not specify now.

where n (E ) is the density of states of noninteracting har-
monic oscillators,

n(E)= +5(Ace E, ) . —=1
S

The same quantity determines also the specific heat:

E2 E/kT
C = JdE „,n(E) .

kT (e " —1)

Now, X(co) is defined as

(1/V) g (A, /M, )5(fico E,)—
S

(1/V) g 5(fico E,)—

(93)

(94)

(95)

B. Interacting oscillators

Above the energy Ed interaction of different harmonic
oscillators becomes important. One can show that above

In general, function S(co) can be frequency dependent.
However, within the framework of the traditional soft-
potential model exploited above, this function does not
depend on the frequency. Indeed, according to this mod-
el, the fiuctuations of the effective masses (and other pa-
rameters, such as B„and A ) are independent of g and i1
and therefore %=A/M is a constant. So, for this case
one may expect a simple relation between the light
scattering and the density of states (which determines the
specific heat) of the form

I(co, T)co
N(co)+ 1
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Ed the retardation of interaction due to finite value of the
sound velocity is of no importance. So one can write the
Hamiltonian in the form

2 x, = g QM, /M, a„y, (98)

leaves the total kinetic energy invariant, so that as a re-
sult we get a set of noninteracting harmonic oscillators

fz d
0$ $+g

$

1+ g Jg~~x~x~
2 Q I

(97)

where a„. is an orthogonal transformation matrix that
obeys the conditions

Let us introduce new coordinates y, by a linear transfor-
mation which diagonalizes the total potential energy and

$$

a -a =pa a ~ =5 ~ .
stl

Then instead of Eq. (88) we have

(99)

(x, (t)x, (0)) =2rcfig e " g QM, ./M, a„(y,.)„5(fico+E„—E ) . (100)

As different harmonic oscillators defined in such a way
are noninteracting the wave function of the system is a
product of the wave functions of single oscillators.
Therefore, we have for sos',

We see that Eq. (103) still has the Bose factor N(co)+ 1

that determines the temperature dependence of the light-
scattering intensity. However, X could be, in general, a
function of ~, in particular, due to the fact that the trans-
formation matrix elements a„are dependent on the ener-

gy interval in consideration.
However, if for all the harmonic oscillators M, and A,

are the same then due to relations (99)

(y, )„ (y, )„

%(co)=%(co)=A /M =const,

and from Eq. (100) we get

m62
(x,(t)x, (0)) = [N(co)+1]g a„,5(fico E, ), —

AM,

(101)

where E, are the energies of the new harmonic modes.
After summation over all the "molecules" in the unite

volume we obtain

gA, (x, (t )x, (0) )
1

$

mA [N(co)+ 1] g g a„, 5(%co—E, )
1 A,

s' s

i.e., the two constants are equal. To the contrary, if one
allows for ffuctuations ofA, and M, we have

%(co)A%(co) .

If, irrespective to such fiuctuations X remains constant,
the value of the constant may still diff'er from X. In such
a case one should not expect a simple relation between
the light scattering and the density of states of the form
of Eq. (96) in the whole frequency region, although it may
still hold below and above Ed iA.

(102) VIII. DISCUSSION OF EXPERIMENTAL DATA

pa, (x, (t)x, (0)).=1

$

(103)

We can rewrite Eq. (102), in full analogy with Eq. (91), as

g2
[N(co) + 1]X(co)n (fico),

Wm ((kT, (106)

we have

In the classical region of frequencies and temperatures
where

n(E) = g 5(E E, ), —1
(104)

where n (E ) is the new (renormalized) density of states of
the harmonic oscillators (that determines also the specific
heat)

N(co) =kT/fico

and Eq. (47) takes the form

I(co, T) ~ T ~ T (co)
co2 co2

(107)

(108)

and%(co) is given by

(1/V) g g a, , 5(fico E,)—
s s ™$
(1/V) g 5(%co—E, )

(105)

It is exactly this observation that was made by Stolen. "
He indicated that for fused quartz P/co has a similar
spectral shape as the Raman scattering for co & 120 cm
On the basis of this observation he came to the con-
clusion that the far-infrared absorption of fused quartz
arises from the same normal vibrations as the low-
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frequency Raman scattering. For u&20 cm ' the ab-
sorption was found to be independent of temperature
which is consistent with the modes behaving like har-
monic oscillators. This is in agreement with our theory.

As for the hypersound attenuation from the experi-
mental point of view, difFiculties arise from the compar-
ison between the hypersound attenuation l '(co, T) and
the Raman-scattering intensity I(co, T). In the tempera-
ture range of interest, l ' is only available from
Brillouin-scattering experiments, i.e., at frequencies near
to 1 cm ' (30 GHz) in usual glasses. Due to the high in-
tensity of the strictly elastic component and the finite
width of the instrumental profile, the conventional Ra-
man spectrometer gives information on inelastic scattered
light above a few cm '. Recently, a new spectrometer
has been able to extend the low-frequency range of mea-
surements. The published data concern ionic glasses
but there are no available experimental data about hyper-
sound absorption in these materials.

Following the first idea of Jackie, three attempts have
been made in the literature to compare l and I in vitre-
ous silica, ' in borate glasses, ' and in optical glass with
metal ions (Schott LaSF7). In the previous analysis
comparison between l ' and I arises essentially from the
calculation of the hypersonic attenuation at higher fre-
quencies than those at which the measurements have
been made. These calculations use a model of relaxation
defects with a distribution of barriers and of course do
not account for the difT'erent contributions to l '. More-
over, the parameters of the model have been determined
from the ultrasonic data and the Raman intensity under
consideration is extracted from the light-scattering data
where, apart from relaxation defects, other contributions
were present.

In spite of large uncertainties in experimental deter-
mination, a satisfactory agreement has been observed for
the T variation of l ' and I, up to 300 K for SiOz and
8203 glasses, ' ' and these results demonstrate at least
qualitatively the correspondence between l ' and I.

As a result of the previous section, the hypersound ab-
sorption coeScient for co &&cod is determined by the sum

has a minimum. The position of this minimum is deter-
mined by the value of 8'and slightly depends on temper-
ature. The characteristic energy 8' can be estimated
from the position of the minimum T;„ in the tempera-
ture dependence of the specific heat C( T ) /T:
W=(2 —2.5)kT;„. ' For example, in a-Si02, where
one can neglect the relaxational contribution of HO, Eq.
(67), at these frequencies we obtain
A'co;„=1.6W(kT/W)'~ . For T=80 K and W/k=4
K the minimum should be located at m/2m. =10 cm
which coincides with experiments ' (see Fig. 2). The
theory describes, without fitting parameters, the experi-
ment at other temperatures, too (see Fig. 2).

For the frequencies of the order of, or bigger than cod,
Eq. (109) is no longer valid. Yet harmonic vibrations are
responsible for the Raman scattering in this frequency in-
terval, too [see Eq. (103)]. However, an essential feature
of these vibrations is that they are extended over a large
number of soft vibration sites. Their density of states
n(E), Eq. (77), is a linear function of energy E. If X(co)
in Eq. (103) is a constant or only weakly depends on co,

we have from Eq. (103)

I(co, T) ~N(co)+1, (112)

i.e., for kT »Ace this is an descending function of co. As
a result, at ~ =cod we have the famous boson peak.

However, the soft-potential model is capable to give a
description of the Raman scattering in a wider frequency
and temperature interval where the first two terms in Eq.
(109) can compete with the third one. As they are tem-
perature dependent, they are responsible for the "light-
scattering excess" (LSE) that is usually observed in
glasses at low frequencies. ' Their frequency depen-
dencies are much weaker than the one of the third term
[see Eq. (49) and Eq. (67)]. Therefore, the reduced Ra-
man intensity

I~ =Ice '[N(co)+1] ' ~ l '(co, T)/co

l =l,e~ Dwp+l«s Ho+l«, (109) —12—

Because of its strong frequency dependence the third
term in this sum [see Eq. (50)] dominates for sufficiently
high frequencies (Ace)) W), and we have

I(co, T) ~co [N(co)+ I] . (110)

This equation describes nothing else than light scattering
by quasilocal soft harmonic modes whose density of states
goes as E [see Eq. (9)].

This dependence is observed in many experiments on
Raman scattering in glasses and amorphous solids for the
frequencies below the boson peak (see, for instance, Refs.
53, 54, 12, and 55). Earlier these data were interpreted in
favor of the Martin-Brenig model, which used a concept
of light scattering due to the combined action of structur-
al defects and phonons. As we see, the SPM arrives at
the same results in regard to the temperature and fre-
quency dependence of the Raman scattering (the numeri-
cal coefficient can be much bigger in the SPM).

I I I I I

10 20 30
FREQUENCY SHIFT (cm )

0
0

FIG. 2. Reduced Raman-scattering intensity (relative units)
as a function of frequency for a-SiO& for different temperatures
T=80 K, T=40 K, and T=21 K. Symbols are experimental
data (Refs. 58 and 12) and lines are theory. For all these plots
the values of 8'/k=4 K, and 7p 10 s has been used. Two
contributions were taken into account: One is the relaxation
contribution from TLS's—Eq. (49) and the second is the reso-
nant contribution from harmonic oscillators —Eq. (50).
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The standard interpretation of the light scattering in a
wide interval uses a combination of the Martin-Brenig
model (for the high-frequency part) with the defect
scattering model (for the low-frequency part). The role of
defects is played by the two well potentials. This is a
combination of two entirely di6'erent mechanisms. It is,
however, very dificult to provide within the framework
of this combined model an explanation of the fact that
the depolarization ratios of the light-scattering excess
and the first-order vibrational spectrum remained almost
constant within the whole frequency interval (even above
the boson peak). ' ' " The explanation of this fact emerges
from our theory in a natural way [see Eq. (23)] as a conse-

quence of the assumption that a;tak is independent of g
and q (see the end of the Sec. III).

IX. CONCLUSION

We developed a theory of the low-frequency Raman
scattering in glasses. For the inelastic light-scattering,
soft atomic potentials, which determine a lot of universal
properties of glasses, are responsible. The theory can ex-
plain in a uniform way the Raman scattering in a wide
frequency and temperature interval. For the low-
frequency part of the spectrum, which usually has more
pronounced temperature dependence (light-scattering ex-
cess), the relaxation processes in double-well and one-well
potentials are responsible. At higher frequencies the
main contribution is due to the resonant processes from
soft quasilocal harmonic modes.

Their density of states sharply increases with energy
~ E, so that at some energy of the order of a few meV
the interaction between these oscillators becomes impor-
tant. This interaction leads to reconstruction of the den-
sity of states of harmonic modes which become delocal-
ized above this energy (being quasilocalized below this
energy). The density of states of this new harmonic
modes has a linear dependence on the energy. This is, ac-
cording to our opinion, the reason for the famous boson
peak which was discussed a lot in the literature and a lot
of explanations of its origin was proposed. All these ex-
planations, however, do not relate the boson peak, which
is one of the universal properties of glasses, to other
universal properties. Such relations appear in a natural
way in our theory.

Exploiting the universality we can take relevant pa-
rameters of our theory from other low-temperature ex-
periments in glasses. After that, without any additional

fitting parameters, a striking agreement between theory
and experiment is achieved.
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APPENDIX: FLUCTUATION-DISSIPATION THEOREM

To derive the FDT we start with Eq. (26) for a trans-
port coeIIicient b(co):

b(co)= —I dt e' '([x(t),B]) .
o

This equation can be rewritten in the following form:

(Al)

Here 5 & 0,6~0.
For the imaginary part of this function we get

b "(co)=~(1—e "
)

X g e " x„B „5(Aco+E„E). (A3)—
n, m

For the Fourier component of the correlation function,
( x ( t )B), we get in the same manner

(x(t)B)„=2vrA'ge " x„B „5(Aco+E„E). —

(A4)

Comparing Eqs. (A3) and (A4) we arrive to FDT, Eq.
(29).

(, 9—E„)IIEETb(co)= g e " x„B „1—exp
n, m

X f dt e px[icot+(i Ih )(E„E)—t 5t] . —

(A2)
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