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A quantitative physical model is presented for the breakdown of solids by void or channel discharges.
It is found that fractal treelike structures only occur when the “fields” at the growth tips are allowed to
fluctuate about their Laplace values. By treating the local-field enhancement factor as a white noise pro-
duced by the breakdown mechanism itself, it is shown that the amount of branching depends only on the

range of fluctuations allowed.

I. INTRODUCTION
A. Breakdown structures in solids

Dielectric breakdown in solids may be caused by a
number of alternative processes.! All such processes are
electric-field driven mechanisms in which a positive feed-
back overcomes equilibrating factors at high fields caus-
ing a property such as the current density, temperature,
or compressive strain to “run away” uncontrollably.>?
During breakdown the solid suffers irreversible damage
of a form which supports a short circuit between the elec-
trodes, i.e., an air channel, a conducting pathway, or a
collapsed region of material. In an idealized homogene-
ous solid the damage would occur on a broad front, but
in practice material inhomogeneity introduces regions
favoring breakdown, the self-enhancing nature of which
causes the ensuing damage to be restricted to a single
narrow puncture between the electrodes. A major por-
tion of high-voltage breakdowns observed during devel-
opment tests on insulation systems* have structures of
this type.

The fields which are applied to insulation systems in
service are chosen to lie well below the theoretical onset
values for the various breakdown mechanisms.?> How-
ever the manufacturing process often allows defects to
occur, e.g., sharp metallic asperities which raise the elec-
tric field locally, or voids filled with air whose breakdown
strength is very much lower than that of the insulating
solid. These features may lead to breakdown via the for-
mation of branched hollow gas-filled tubular structures
which have a “treelike” aspect, and are termed electrical
trees.? Following the lead given by Niemeyer, Pietronero,
and Wiesmann® in their work on single discharges in
gases (Lichtenberg figures), these electrical trec:,is have also
been shown to be fractal objects,3 ie., Sx(L)/, where S
is the “mass” of a structure of length L. In general elec-
trical trees can take one of two basic forms, characterized
as “branched” (fractal dimension in the range
d;=1.2-1.8) or “bush” (d;=2.5). It is known® that
when grown under identical conditions branched trees
propagate faster than bush trees (which may even cease
growing) and are thus more dangerous to the insulation.
It is therefore a matter of some importance to understand
both what causes defect-induced breakdown in solids to
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assume the form of trees, and what the factors are that
determine the tree’s fractal dimension.

B. Comparison of electrical tree formation
and stochastic models

The stochastic model of Niemeyer, Pietronero, and
Wiesmann® associates the branched fractal propagation
of a conducting discharge with a stepwise development in
which the step (bond on a grid) to be added to the struc-
ture is chosen at random from all possible growth steps,
each of which is assigned a failure probability proportion-
al to E", where E is the local field along the bond.

While electrical trees have some things in common
with this model, e.g., it is known that they propagate in
steps,’ they differ fundamentally in that they are a propa-
gating damage structure rather than the advancing
boundary of an injected charge fluid.>® Gas discharges
do take place during electrical tree formation but these
are restricted to the tubular channels of the existing
structure. The extension of the tree is not therefore given
by the extension of the discharge beyond the preexisting
structure. Instead each discharge, which has a finite
duration (~20 ns), induces damage generating events in
the insulation adjacent to its path, both to the side as well
as to the front. Such damage does not give an instant ex-
tension to the tree. Tree extension is only accomplished
when the damage accumulates until it attains the form of
a tubular channel capable of sustaining a gas discharge.
There is therefore a minimum length to each extension
and experiment®’ shows that this is ~4—10 um. Chan-
nel formation typically requires damage from >10°
discharges in the preexisting tree channels (formation
time =1 s).

Even if it is assumed® that channel-forming damage is
the result of an attempt by a discharge to extend beyond
the tree tip, the necessity of many discharges will inevit-
ably alter the extension probability in electrical trees
from that of a single discharge. This situation is to some
extent reflected in the Tang9 simulation rules, which re-
quire a given bond to be chosen a number of times (from
a field-weighted distribution) before it is added to the
structure. However the distribution of choices for all the
bonds can only be regarded as the distribution of damage
around the tree if the probability algorithm can be given
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a physical interpretation in terms of the field dependence
of the damage. Wiesmann and Zeller'® avoid this
difficulty by postulating a threshold field below which
discharge-induced events are not damaging, and above
which they inevitably proceed to channel formation along
the chosen bond. The accumulation of damage which is
known to be required for electrical tree formation in ac
fields is not allowed for in this model and it is probably
more appropriate to breakdown by nanosecond impulses,
where however it is not clear that the structures are frac-
tals.!! Neither of these two models therefore properly
reflect the known physics of electrical tree formation.

The major drawback to the application of stochastic
models to breakdown structures in solids is the absence of
a physical derivation® for the parameter 7. Such
mechanistic arguments as have been proposed for the E”
probability law in gases® are based on the time required
for the establishment of a filamentary projection of the
discharge as a “conducting fluid” in a given region of lo-
cal field, and are inappropriate in solids. Furthermore
values other than %=1 have been given no real
justification even in this case. The shape of the break-
down structure is however extremely sensitive to the
value of 7 used, for example the pin-plane electrode sys-
tem in a three-dimensional (3D)-lattice gives'®!? bush
structures (d;~2.5) for =1 and branched structures
only if 7 is increased to ~3. Stochastic models therefore
leave unanswered questions concerning the physical and
mechanistic origins of branched breakdown structures in
solids.

C. Proposed quantitative approach

Here we present a quantitative physical model for
breakdown structures in solids based on the known physi-
cal processes involved in electrical tree formation. In-
stead of advancing the structure by a stochastic selection
of bonds the damage induced in each bond per unit time
is calculated quantitatively and irreversibly accumulated
until a critical level for channel formation is reached.
Stochastic features are introduced into the model by
treating factors, such as material strength and local-field
enhancement, as random variables in space and/or time.
As a result the appearance of various structures can be
related to the physical, morphological, and mechanistic
conditions prevailing.

II. DISCHARGE-AVALANCHE MECHANISM

The formation of electrical trees has an initiation stage
which is dependent upon the type of initiating defect!?
(i.e., metallic asperity or preexisting void). However once
initiated in the form of a tubule’ they propagate in the
same way. In an applied field a potential difference is
produced between the tube ends because the tube walls
are not conducting. When in an ac or ramped field it
rises to the inception voltage>!® a gas discharge takes
place within the tube, thereby reducing the potential be-
tween the tube ends (to the extinction voltage®) and in-
creasing the fields in the insulation around it for the dura-
tion of the discharge (~10-100 ns). It is known that
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ballistic bombardment of a surface by particles of similar
kinetic energy (KE) to those of the tube discharge (i.e.,
~10 eV) produces very little damage.!* We therefore as-
sume that the induced damage events take the form of
electron avalanches which are known to cause break-
down in thin (~10 pm) films.>!> Here an electron in the
solid is accelerated in the high field produced by the
discharge to kinetic energies sufficient to ionize a mole-
cule on its path thereby generating two electrons. The
process is carried on in the form of a chain reaction until
the electrons produced can no longer acquire sufficient
KE for ionization and are thermalized and trapped.? The
supply of initiating electrons is plentiful because of the
gas discharge in the tube. The distance over which the
avalanche takes place is limited for a number of reasons:
(i) the required high fields are limited to the duration of
the discharge ( <100 ns); (ii) the field reduces with dis-
tance from the tube tip and eventually will be too low to
continue the process; (iii) the positive ions produced in
the avalanche give a counter field which decelerates the
electrons; and (iv) in solids trapping may remove elec-
trons from the process. Because the damage eventually
takes the form of a new tubule whose length is known to
be>” 4-10 um, we restrict the range of an avalanche L,
tobe L, =10 um. We further assume that the amount of
damage produced by the avalanche is proportional to the
number of ionizations that occur. Such ionizations may
lead to damage in a number of different ways: (a) direct
breaking of chemical bonds during ionization; (b)
mechanical deformation and fracture caused by electro-
static forces; and (c) indirect chemical bond scission util-
izing energy released by subsequent charge recombina-
tion.'®

The number of electrons #n produced in an avalanche is
determined from the incremental increase in number (dn)
in the path-length interval x to x +dx, which is given by
dn=a(E)ndx. Here a(E) is the impact ionization
coefficient defined as the number of ionizations per elec-
tron per unit path length.>*!> Integration over x (up to
L,) gives n =exp(a(E)L, ), and subtraction of the initiat-
ing electron gives the number of ionizations as

N 4=[expla(E)L,)—1]«<damage per avalanche . (1)

Because of their easy availability a number of electrons
n, may initiate avalanches simultaneously in a given re-
gion, and thus the number of ionizations per discharge
Np=nyN 4. The short duration of a discharge also al-
lows a number, b, of discharges to occur on each half-
cycle of the ac field (frequency f). Multiplication of N,
by b and the number of half-cycles in time ¢ (2f?) gives
the number of ionizations N, produced by time ¢, as

N,=2ftbny[exp(a(E)L,)—1]
o« damage per region in time ¢ . ()

Note that because of charge recombination on opposing
half-cycles, N, is not the amount of positive charge
present at t. The expression used for a(E),

a(E)=(1/A)exp[ —1,/(erE)] (3)

originates with the work of Seitz,!” where A is the mean-
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free-path length between collisions and the exponential
factor is the probability that an accelerated electron will
reach the ionization energy I, without colliding. In
solids the length A and sometimes the ionization energy
I, are treated as adjustable parameters.'® Here we have
taken I,=9.6 eV as for polyesters and determined A as
~60 nm from experimental data on electrical tree
growth,! a value that is consistent with the separation of
ionizable centers in polymeric insulation.?®

Each discharge will initiate avalanches at several
points along its path within the tree, and the damage ac-
cumulated in each of the avalanching regions, at time ¢,
will be proportional to N, as calculated from Eq. (2) with
the field E determined from the local potential difference
A¢ along the avalanche path, i.e., E=A¢/L,. At some
time the damage will become sufficient for a new tubule
to form. We take this critical amount of damage to be a
material dependent quantity equivalent to a critical num-
ber, N, of ionizations. By setting N,, from Eq. (2), equal
to N, an expression may be obtained for the time to form
a tubular channel 7 under the assumption that the
discharge-induced local field (A¢/L,) remains invariant
during its formation,

(1/t)=2f(bny/N_)[exp(a(E)L,)—1] . (4)

A comparison!® with experimental data for polyesters
gives N,/bn;=10%. A rough estimate of N, can be ob-
tained by assuming that each ionization can only break
one chemical bond in forming a new cylindrical tube of
length 10 um and radius 1 um, giving N, ~10" in re-
gions of normal density. Bigger values may be expected
in regions of high mechanical strength and smaller ones
in low-density regions. Since typical tube discharges are,’
1-5 pC (~ 107 electrons) consistency between the experi-
mental and theoretical estimates of N, can be obtained if
the avalanches make use of only a very small fraction
(=0.3%) of the available electrons.

During tree propagation local values of E will alter if a
tree branch is added at a point other than the one under
consideration, or if a modification to the discharge and
space charge distribution occurs. In this case we treat
Eq. (2) as giving the number of ionizations in the time in-
terval Az, for which E=E, (a constant) and express the
amount of damage accrued during the period as a frac-
tion, f, 4> Of that required for tube formation,

fq=Atq2f(bn0/NC)[exp(a(Eq JL,)—1] . (5)

Values of f, in successive intervals g are added until the
sum reaches unity at which point a new channel has been
formed, i.e.,

9ch 9ch

;fq =1 defines 1, =3 Az, . (6)
1

Equations (5) and (6) allow the damage and time to chan-
nel formation to be calculated at various points around a
tree structure in terms of the parameters A, N,/bn,,
which have been determined from experiment, and the lo-
cal field E,, which must be computed.
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III. COMPUTATION OF STRUCTURES

In the discharge-avalanche model, the stepwise devel-
opment, the damage accumulation in many regions and
the treatment of some factors as random variables forces
computer computation of the breakdown structures. The
grid chosen for the calculation must reflect the known
physics of the mechanism. Thus the mesh size (bond
length) is the minimum length of a tubular extension L,,
i.e., 10 um and the electrode separation is typical of solid
insulation, e.g., 1 mm in laboratory experiments. There
are therefore 100 bonds across the system, and we have
chosen a 100X 100 grid, since the grid width does not
influence the structures unless they approach close to the
sides.!>2! Note that solid insulation®? is usually no more
than 6 mm thick and so the largest grid appropriate to
the problem would be one 600 bonds wide. Very big
grids such as used in diffusion-limited aggregation simula-
tions?® are unphysical and incorrect for the problem ad-
dressed. They would tend to map out the path of an indi-
vidual avalanche, which in a gas is an extension of the
discharge. In solids, however, the repetition of
avalanches, which is essential to tree extension, will take
place in the same bond but with different overlaying
paths. As a result the fine structure of an individual path
becomes irrelevant. The only important feature is the to-
tal damage in the bond, which is dependent upon the po-
tential difference®® A¢ across it, since this determines the
maximum kinetic energy available for damage produc-
tion.

An important consequence of using the small grid im-
posed by the physical mechanism is that the breakdown
structures computed will not reach a single definitive
form.!? Instead repeat calculations will yield a distribu-
tion of structures (e.g., lengths, dimensions, total
“mass”). This is in fact what is observed in the experi-
mental investigation of electrical trees,?® where it leads to
a probability description of the likelihood of insulation
failure in a given time.®*?* We have therefore made 50 re-
peat calculations (a typical experimental value) and ana-
lyzed the data in terms of the Weibull function common-
ly used in breakdown. An excellent fit was obtained.
Here the cumulative probability P(S) that the total num-
ber of bonds ( =mass) in the structure at failure is <., is
given by ?

P(S)=1—exp[—(S5/S,)"], (7

where S, is the characteristic tree mass, and 8 the shape
parameter. The bigger the B the narrower the distribu-
tion. Table I contains the results for a range of calcula-
tions.

The defect used in our calculations was a centrally
placed void of length 50 um. This choice allows us to
work with a uniform applied field, and to set a value, 10
kV/mm, which is both close to that typically found and
sufficient to cause the void to discharge.>?? The calcu-
lation proceeds by first using Laplace’s equation
(V2$=0) to determine the potential difference across all
the bonds due to the tube discharge. Initially the poten-
tial difference along the discharge was taken to be zero,
but this almost certainly is not the case for discharges
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TABLE 1. Parameters defining the cumulative distribution
function of the structures [ P(S), Eq. (7)] obtained for the calcu-
lations stated. The Weibull distribution density (=dP(S)/dS)
is asymmetric with a standard deviation (SD) about the mean
[S,T(1+1/B)] of® S.[T(1+2/B)—T(1+1/B)*]'/%, which gives
a SD of 0.097S, for =12, 0.1158S, for B=10, and 0.2916S, for
B=3.4.

Potential drop in tube discharges E,

E;=0 E;=4 kV/mm

Calculation S, B S. B
Frozen electrical 604 11.7 243 34
disorder
Time-dependent 856 10.4 339 10.4
field fluctuations
(TDFF)
TDFF with 875 12.0 355 9.2
one-order-of-
magnitude spa-
tial fluctuations
in N,/bn,
TDFF with 953 12.9 378 10.0

two-order-of-
magnitude spa-
tial fluctuations
in N./bng

confined to narrow tubular channels.?® To obtain a rough
estimate of its value we assumed that the discharges
lie on a negative-differential-resistance portion of the
current-voltage (I-V) curve. Using the empirical rela-
tion?” E;=k /I, with k=1 W/m and I~5 pC/20 ns
= 0.25 mA gives E;~4 kV/mm, which is close to the
extinction field for pico-Coulomb discharges in air gaps
of 0.05—1 mm length.!"%13

Having calculated the fields (E=A¢/L,) induced
along each bond adjacent to a discharge every time that it
occurs, the bond that fails in the shortest time is deter-
mined from Egs. (5) and (6). This bond is then failed.
The time interval required is calculated from Eq. (6) and
used to derive the incremental fractions of channel-
forming damage accumulated (f,) in all the other adja-
cent bonds during this period. The field distribution is
now calculated for the extended structure and the pro-
cedure repeated until the structure crosses the grid.

Unlike the stochastic models®® the bond that fails is
not the result of a random selection. It is instead the
consequence of a deterministic accumulation of damage
under specified local conditions of material strength
(=< N,) and field E. Solid insulation invariably contains
regions of different material strength and density, and
this is accommodated in our model by treating N, /bn as
a random variable. A value was assigned to each bond
which was selected at random from a distribution chosen
to reflect the known morphology of insulating solids.
Most regions in these materials have a well-defined densi-
ty and strength, but there is a long tail towards low densi-
ty and strengths that may be orders of magnitude weaker.
We therefore chose a Gaussian distribution in
logo(N./bny), truncated at the maximum value
N, /bny=10% and minimum value of zero, with a half-
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width corresponding to N,/bn,=10°% Solid insulation
may also possess electrical inhomogeneity (i.e., spatial
variation in resistivity and permittivity), which leads to
distributed local values for the bond impedances. Since
the total potential difference along a path from the
discharge to the electrode is divided up in proportion to
the impedances of the bonds in the path, electrical inho-
mogeneity will cause the local field to vary about its cal-
culated Laplace value. We have represented this effect by
multiplying the calculated A¢ by a factor g, which is the
ratio of the actual local impedance to the average value
of a nominally uniform material. In order to retain sim-
plicity and avoid biasing any particular direction, values
for g assigned to each bond were randomly selected from
a ‘“‘top-hat” distribution of limited range [i.e.,
Prob(g)=const, 0.5<g <2.5; Prob(g)=0, otherwise]
whose extrema correspond roughly to a local doubling of
either the admittance or impedance.

The above features represent the effects of “frozen dis-
order” previously commented® upon as a possible origin
for branching in solids. There is however another possi-
ble origin for local fluctuations about the calculated La-
place field. This is the breakdown mechanism itself,
which as a result of the tube discharges will deposit space
charge around the tree tips and on the tube walls. Such
space charges will modify the local fields, in general re-
ducing them through a smoothing of the periphery of the
tree. They may also however prevent some sections of
the tree from discharging simultaneously with the others.
Consequently the Laplace calculation which considers
the whole tree as a single conducting entity may overesti-
mate the shielding of the tips and thus underestimate the
local fields. A detailed calculation of these effects is a
major undertaking and in order to gain an insight into
their influence we have resorted to a common approxima-
tion for the field around a conducting (or polarizable) de-
fect. This treats the defect-modified field as being given
by the applied field multiplied by a factor dependent
upon the defect shape and orientation.?>?® The Laplace
equation is first used to obtain the local fields appropriate
to a discharge in the complete tree skeleton. These are
then converted to an effective local field by multiplying
by a factor g whose value represents the ratio between the
actual local field enhancement and that of the tree
skeleton. Thus extra shielding reduces the enhancement
of the skeleton giving g <1, whereas g > 1 obtains when
only part of the skeleton discharges. As before we assign
a value of g to each bond by random selection from a
top-hat distribution with the range 0.5=<g <2.5. The lo-
cal field enhancements obtained in this way are well
within the range expected for conducting inclusions,
which may vary from 2 to 100 times the average field.
Unlike the case of frozen electrical disorder we expect
these mechanism-induced field modifications to vary in
time. We have therefore reassigned g values to each bond
after every extension of the structure. We have also in-
vestigated the effect of an additional variation in the local
field by including an extra reassignment of g after fixed
time intervals. A variety of times were used reflecting the
different timescales on which space charge may be ex-
pected to rearrange.
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FIG. 1. The calculated propagation behavior of the single
puncture breakdowns produced when spatial and temporal fluc-
tuations of N,/bn, and E were neglected (i.e., N./bn,=108
E =E(Laplace). The length is quoted in units of L, =10 um.

IV. RESULTS

When material inhomogeneity and field fluctuations
are neglected the structures obtained had the form of a
straight puncture hole between the electrodes. Damage
was accumulated in the lateral bonds but never reached
more than 0.1% of the level required for channel forma-
tion. In spite of its step-by-step development the break-
down exhibited a runaway propagation, Fig. 1, during
which the calculated channel formation time eventually
reached unphysically small values considering the
mechanical disruption involved. We therefore subse-
quently restricted ¢4, to the range ¢, =1 ns, in accord
with the fastest measured time for tree propagation.?

b

FIG. 2. Characteristic breakdown structures in the distribu-
tion produced when ‘“frozen spatial disorder” in the material
strength parameter N, /bn, is allowed for. See text for details of
the N,/bn, distribution used. The centrally placed initiating
void is shown as a thick line in this and the subsequent figures.
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This restriction tended to allow a few lateral branches to
form as the puncture approached close to an electrode
giving a “thistlehead” to the structure. The introduction
of material strength inhomogeneity tended to introduce
weak paths in the solid which were followed by the
breakdown structure, leading to kinking and a few short
lateral branches, Fig. 2, though without changing the
basic form from that of a single puncture. Reducing the
half-width of the N,/bn, distribution to N,/bn,=10’
generally eliminated the kinking. Under these condi-
tions, therefore, the stepwise damage-accumulation
mechanism behaves as if it were almost a deterministic
high-field runaway process.

When the local field is allowed to fluctuate about the
Laplace value branched structures are formed. Figure 3
shows the characteristic structures obtained for the case
of frozen electrical disorder, and Fig. 4 those for the
time-varying (dynamic) mechanism-induced field fluctua-
tions. In both cases widening the range allowed for the

é (a)
% (b)
FIG. 3. Characteristic breakdown structures in the distribu-
tion produced when frozen electrical inhomogeneity is intro-
duced into the calculation via randomly assigned local values of
the field-enhancement factor g [i.e., E(local) = gE(Laplace)]. (a)

g selected from a top-hat distribution with range 0.5=g <2.5;
(b) range of g widened to 0.5=<g <3.5.
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(a)

i
;
1

(c)

FIG. 4. Characteristic breakdown structures in the distribu-
tion produced when time-dependent field fluctuations are con-
sidered (local enhancement factors g altered after each tree ex-
tension). (a) allowed range of g 0.1<g <0.5, potential drop in
tube discharge = 0; (b) range of g 0.5<g <2.5, potential drop
in tube discharge E;=4 kV/mm, material strength inhomo-
geneity included; (c) range of g 0.5<g <3.5, E;=4 kV/mm,
material strength inhomogeneity included.
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field-enhancement factor g increases the number of
branches produced as the structure crosses the grid, com-
pare Fig. 3(a) with 3(b), and Fig. 4(b) with 4(c). In con-
trast to the stochastic model,’® reducing the potential
difference within the tube discharge of the tree increases
the amount of branch formation in addition to accelerat-
ing the propagation. Frozen electrical disorder differs
from mechanism-induced field fluctuations in allowing
the possibility of permanent high-field routes in the solid.
As a result there is a tendency to form material-oriented
kinked breakdown structures such as Fig. 3(a). This ten-
dency is reflected in the wider Weibull distribution of
structures (smaller B) obtained for this case in compar-
ison to all others, see Table 1.

The only structures that can be truly regarded as frac-
tals are the ones where the field fluctuations are mecha-
nism induced, and even here it is necessary for g to both
enhance and reduce the Laplace field, compare Figs. 4(a)
and 4(b). In this case the structures start off growing
linearly but then tend asymptotically towards a fractal di-
mension dy, Fig. 5. The characteristic tree of the distri-
bution was found to increase in fractal dimension as the
range of field fluctuations widened, ie., d r=~1.4 for
0.5=g=2.5 and d;~1.6 for 0.5=g <3.5, however d,
will also increase if E; is reduced from 4 kV/mm. There
is no evidence in our calculations for structures which
crossover from d;>1 to d;=1 as the tree length in-
creases, such as is found in some stochastic models.*
The introduction of additional field fluctuations which
vary on a fixed timescale does not alter the fractal dimen-
sion of the characteristic tree, or the width of the struc-
ture distribution ( =< 1/8). The width of the propagation
time distribution does however widen considerably as the
fluctuation timescale increases beyond ~ 1 min.

600

400

200

Total length

100
80—

60—

40 T T T T T

8 10
Longitudinal length @

FIG. 5. A log-log plot of the total length (number of failed
bonds) in the tree structure formed on one side of the void as a
function of its longitudinal length measured from the void in
units of L,(=10 pm). The data presented is taken from a calcu-
lated breakdown whose overall structure [S in Eq. (7)] has the
characteristic value in the distribution of tree structures pro-
duced by the time-dependent field fluctuations. An asymptotic
approach to a fractal dimension of d »=1.4£0.05 is found.
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V. DISCUSSION

The physical conditions under which a known break-
down process in solids may be converted from a deter-
ministic runaway mechanism giving single narrow punc-
tures to one giving branched structures, has been
identified by means of these calculations. It has been
shown that spatial inhomogeneity in material strength is
insufficient!® and only causes the breakdown puncture to
follow weak paths, examples of which can be found ex-
perimentally.* The necessary condition for the formation
of branched structures is the existence of local-field fluc-
tuations about the Laplace values calculated for the tree
skeleton discharging as a whole. Even in this case the
structures only take a fractal form when the fluctuations
vary in time as well as space. If the fluctuations are
caused by frozen local disorder, high-field routes may
influence the structures obtained destroying any fractal
arrangement. It is likely that both factors may contrib-
ute to experimental results leading to the wide distribu-
tions often found.>®

The time-varying field fluctuations responsible for frac-
tal breakdown structures in solids have been identified
here with the breakdown mechanism itself, which gen-
erates nonuniformly distributed regions of trapped space
charge (on tube walls and around tube tips), within which
the tree skeleton is embedded. When discharges occur in
the tree tubes the resulting Laplace fields in the solid will
be either enhanced or reduced by the space charges (of
both polarities). Space charge redistribution may occur
both on tree extension or as a result of the discharge ac-
tivity itself. By defining the local field via a randomly
selected enhancement factor g, [E(local)=gE(Laplace)],
we are treating each region as a stress modifying de-
fect?®?® whose shape and orientation are determined by
local factors such as charge deposition, diffusion, trap-
ping and resistivity, which are known only within certain
limits. The top-hat distribution from which g is selected
treats all values of g within the defined range as equally
probable, and hence g can be regarded as a white-noise
variable of limited range.

This picture of the electrical tree and its formation in
solids allows us to draw a parallel between the present
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physical model and an approach to single-discharge
structures in gases which ascribes branching to charge-
density fluctuations on the advancing charge boundary.
In that case it was argued that if the local field is
sufficiently enhanced by a random fluctuation then a fila-
mentary projection can be stabilized.»!® A similar ex-
planation has been proposed for viscous fingering in fluid
displacement.3!"3? In both cases branch formation can be
regarded as the result of a noise which causes the driving
force of the mechanism to fluctuate, and in the process
stabilizes structural variations from the symmetry (radial
or linear) imposed by the applied field. Unlike the sto-
chastic models however the effect of noise is here incor-
porated directly into the magnitude of the driving field of
a quantitatively expressed physical mechanism. Instead
of introducing a parameter 17 which cannot be assigned a
value a priori, the noise here is quantifiable via its type
(i.e., white-noise: top-hat distribution) and range. It can
therefore be demonstrated that the range required to ob-
tain branch type trees of a fractal dimension typically ob-
served (d,=1.4-1.8) is equivalent to a physically realis-
tic range of field enhancements. For example if the local
regions are treated as conducting ellipsoids, the tree
skeleton with a ratio of major-to-minor axis of ~5 gives a
field enhancement of ~ 10, and the range 0.5<g <2.5
then corresponds to axis ratios varying between?® ~2 and
~20, with that of a single unshielded branch being ~ 10.
Widening the range of g leads to structures which are
progressively more space filling and could be expected to
form bush trees (d,~2.5) in 3D calculations. In the con-
text of this model it is therefore possible to evaluate the
effect of various factors upon breakdown through their
influence on the range of field fluctuations that they al-
low. For example, the applied field, its frequency, the
temperature and thermal history, may all alter the
amount and location of space-charge trapping, and its
diffusion, giving rise to the known changes in tree struc-
tures when these conditions are altered.>!>
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