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Models for lattice dynamical systems possessing first-order structural phase transitions have recently
been constructed, and extensive molecular-dynamics calculations have been carried out for them. The
mechanism producing the transition is that there are lower vibrational frequencies in the high-

temperature structure than in the low-temperature structure, thereby increasing the entropy of the
high-temperature phase. These structure-dependent frequencies are produced by anharmonicity in the
interparticle interaction. This paper describes a mean-field theory for such entropy-driven transitions.
It is based on making a Gaussian ansatz for the single-particle probability density function. Qualitative-

ly, the results agree well with the molecular-dynamics simulations. We use the theory to make a more
extensive survey of the parameter space than has been done with the simulations. We find that there are
three different intervals for the strength of the anharmonicity, in each of which the high-temperature
behavior of the order parameter is different in an important way. This change is a possible explanation
for the hysteresis found in the simulations.

I. INTRODUCTION

The diversity of both the categories of phase transi-
tions and the mechanisms for causing them continues to
motivate further research. The category of structural
phase transitions provides some of the most interesting
examples and problems. The earliest theoretical under-
standing of continuous structural transitions came from
Cochran's' and Anderson's theory of the soft-mode
mechanism, which was a mean-field theory. The experi-
mental results on the continuous (second-order) transi-
tion in SrTi03 showed that in addition to the soft mode,
there are additional features beyond those captured by
mean-field theory. These include non-mean-field critical
exponents, and the existence of anomalous intense quasi-
elastic intensity in the neutron-scattering spectrum in a
large temperature interval around the transition. This
example showed that the continuous structural transi-
tions are members of the universality classes identified by
the renormalization-group analysis of critical phenome-
na.

Efforts to extend these ideas to their limit of applicabil-
ity have produced the recognition that a far larger set of
structural transitions are discontinuous (first-order) and
have phonon frequencies which are only very weakly
temperature dependent. The cannot be included in the
soft-mode classification. This realization led to a
search for models possessing mechanisms which produce
first-order structural transitions. One such model, which
has been the subject of recent investigations, has an
en, trophy-driUen first-order transition. There are two ver-
sions of this model; the one we are concerned with in this
paper has an asymmetric transition, whereas the other
has a symmetry-breaking transition. These recent pa-
pers describe the motivation and construction of this
model in detail and also present results of extensive
molecular-dynamics (MD) calculations of its properties.
The same physical idea has also been used recently to

model the denaturation transition in DNA. '

Anharmonic forces are an essential feature of this mod-
el, for both the single-particle and interparticle forces. In
models for second-order transitions (e.g., the "P " mod-
el" ), the on-site potential is a symmetric double well; this
symmetry is spontaneously broken in the transition to the
low-temperature phase. The model used here for first-
order transitions has an asymmetric on-site potential,
which eliminates the possibility for spontaneous symme-
try breaking. This asymmetry pushes the particles to-
ward the deeper minimum of the on-site potential, and
thus acts like an external field, which usually prevents
phase transitions. However, having anharmonicity a1so
in the interparticle interactions introduces a competing
factor. These anharmonic interactions are constructed to
make the phonon frequencies structure dependent in such
a way that the structure with the higher internal energy
has lower frequencies. This mechanism increases the en-

tropy associated with that structure. If the interparticle
anharmonicity is sufficiently strong, then the structure
with higher internal energy achieves lower free energy at
higher temperatures, so that a phase transition to that
structure occurs.

Our purpose in this paper is to develop a mean-field
theory (MFT) for this model. We know that MFT does
not describe the details of phase transitions quantitatively
accurately. However, a comprehensive theory for first-
order transitions, comparable to the renormalization
group for second-order transitions, does not exist. Fur-
thermore, the resource-intensive nature of MD calcula-
tions means that method can be used to study only a few
values in the parameter space of the system. For these
reasons, it is desirable to have a means to make an exten-
sive, albeit approximate, survey of the properties of the
system throughout its parameter space.

The particular MFT developed here is a modification
and extension of a theory introduced by Thomas' ' to
analyze second-order structural transitions, like that ex-
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hibited by SrTi03. The fundamental hypothesis is that
the single-particle probability distribution for the dis-
placements is a Gaussian function. From that assump-
tion a theory can be constructed which agrees qualitative-
ly with the MD simulations for those sets of parameter
values where the simulations have been done and which
extends throughout the parameter space.

The outline of this paper is as follows. Section II de-
scribes the model. Section III derives the MFT equa-
tions. Section IV analyzes the MFT equations for the
case of no interparticle anharmonicity, showing the rela-
tion of the present theory with other models. Section V
then gives the solution with the interparticle anharmoni-
city included, which is the focus of this paper. Section VI
gives our conclusions.

II. THE MODEL

Here n denotes the sites of a D-dimensional hypercubic
lattice, 5 denotes the set of nearest-neighbor lattice vec-
tors, and u is a scalar displacement variable at the nth
lattice site. The on-site potential energy V, (u) is an
asymmetric function of the displacement (Fig. 1)

V, (u)= —'aou ——'u +—'u
Z o 3 4 (2)

(All quantities in this paper have been scaled to dimen-
sionless values to eliminate nonessential factors. The
scaling is the same as that employed by Krumhansl and
Gooding; it is explained in detail in Ref. 8, and the scal-
ing factors are given in Table II of that paper. ) For
ao= —',, V, (u) is a symmetric double-well potential with
degenerate minima at u=0 and —', and a maximum at
u =

—,'. For 0&ao & —,', it has a metastable minimum at
u =0, a maximum at u,„,and a stable minimum at u
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FIG. 1. The on-site potential function of Eq. (2). The dashed
curve is for ao= —and is symmetric about u = —'. The solid9 3

curve is for ao =0.1895, the value used for the simulations in
Ref. 8.

The model is the same as was used for the computer
simulations of Ref. 8; it is defined by the Hamiltonian

H=g —,'p +g Vi(u )+—,'g V2(u„, u +s) .

The first term here is the symmetric potential (the "P "
potential), but with the coordinate origin at the left-hand
minimum instead of at the maximum, as it is usually
written. The rest of Eq. (4) shows the perturbations add-
ed when a0 deviates from —'„' the only one which actually
breaks the symmetry about u =

—,
' is a linear term.

For the pair interaction potential energy we use

V2(u, u') =
—,'[k+a(u+u')](u —u') (5)

as was used in Ref. 8; the motivation for this choice is
discussed at length in that paper. Gooding and Morris
have developed a theory based on the same ideas for
symmetry-breaking transitions. The transition studied
here is asymmetric.

With both the on-site potential taken to be symmetric
(ao= —,') and the pair potential V2(u, u') in Eq. (5) taken
to be a harmonic interaction, i.e., a=0, then the model
defined by Eqs. (2) and (5) is the much-studied P model. "
In the displacive limit ( k ))—„, in our dimensionless

units), which justifies a continuum approximation, the
model is known to have a second-order transition for di-
mensions D ~ 2. If the symmetry of the on-site potential
is removed (0 &ao & —,), but the interparticle potential is

kept harmonic (a=O), then the computer simulations
showed that no phase transition occurs. Our MFT gives
insight into that result (cf. Sec. IV). An argument due to
Zener' provides guidance in modifying the model to ob-
tain a first-order transition. One mechanism for stabiliz-
ing a higher-energy structure at nonzero temperature is
for that structure to have a higher vibrational entropy,
thereby realizing a lower free energy. Higher vibrational
entropy results from having lower phonon frequencies in
the high-temperature phase, and this effect can be
achieved by introducing anharmonic interparticle forces
in the way indicated in Eq. (5).

The MD simulations have shown, and the theory
presented here also shows, that singularities appear in the
thermodynamic functions of this system at a critical tem-
perature T, . Because of the asymmetry of the on-site po-
tential, there is no breaking of symmetry, analogously to
the liquid-gas transition, and there is only one variant of
the low-temperature phase. There is only one kind of
domain wall, between ordered and disordered regions of
the system. A symmetry-breaking first-order transition,
as presented in, e.g. , Ref. 9, can also have "antiphase"
domain walls, separating different variants of the low-
temperature phase. The model used here may be the
minimal microscopic model for a lattice-dynamical system
possessing a first-order transition. However, phenomeno-

which are given by

u,„=—,'[1—Ql —4ao] & —,',
u;„=—,'[1++1—4ao]) —', .

For later comparisons, we note that the asymmetric
on-site potential in Eq. (2) can be written

V, ( u ) =—,
' [(u —

—,
'

)
—

—,
' ]

(4)
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logical Landau free-energy functions have previously
been constructed for non-symmetry-breaking first-order
structural transitions. '

III. MEAN-FIELD THEORY

Mean-field theory assumes that the particles move in-
dependently, so that the phase-space distribution func-
tion factors into single-particle functions, '

In classical statistical mechanics the momentum depen-
dence is the Maxwell-Boltzmann function, so the single-
particle distribution function has the form

simulations as our assumption, further simplify it by tak-
ing the shape of the distribution to be Gaussian, and as-
sume it to hold for all parameter values, then we can ex-
plain other features found in the simulations. Of course,
it would be preferable to have an a priori justification of
this assumption. In a subsequent paper' we will present
a di6'erent approach in which the distribution function is
a calculated result rather than an assumed input. The re-
sulting distributions are not exactly Gaussian, but the de-
viations are similar in magnitude to the deviations seen in
the simulations. This result then provides additional
justification for continuing with this simpler Gaussian an-
satz from which nearly all quantities can be obtained
analytically.

The average of the on-site potential is
—p /2T

F, (p, u) = P, (u),
27r T

(7) (g V, (u, )l =N(( —,'u«u« —
—,'««+ —,'«t)

n

where T is the (dimensionless) temperature and P&(u) is
the single-particle displacement distribution function.
An immediate consequence is that the average kinetic en-
ergy is

+ —,'(ao —2u()+3u() )o +—', o ]

=N[ V, (uo)+ —,
' V)'(uo)o

+ ~~Vi ("o) 3o ], (13)

(N is the total particle number). For the single-particle
distribution function, we make an ansatz originally used
by Thomas, ' ' that this function is Gaussian with two
parameters,

where the prime denote derivatives, and the second line
just rewrites the previous expression in terms of the on-
site potential energy. To compute the average of the in-
teraction energy, we first express it in terms of single-
particle terms and "irreducible" pair terms, so that the
average of one pair interaction is

] —(u —uo) /2o
P, u= e

&2m-o
(9)

& V, (u, u )&=-,'k[&u'&+&u' &
—2&u u &]

+ —,'a[& u3 &+ &u3+s &
—&u'„u„+, &

The two parameters in this function are the average dis-
placement, which is related to the order parameter

&u &= f du uP, (u)=uo, (10)
Then, by use of Eq. (9), the averages of the single-particle
factors are

and its mean-square fluctuation

&(u —u ) & —= f du(u —u ) P, (u)=o. .

&
u'

&
=

& u ',+s &
=u,'+o,

&u' &=&u„'+s &=uo3+3uoa
(15)

& (u —u, )'& =3o', (12)

and averages of odd powers of the fluctuation are zero.
Some justification for adopting this ansatz is provided

by the computer-simulation results, ' which calculated
the single-particle probability distribution function for a
small number of diferent parameter sets. For all cases
the distributions were found to have a single maximum
and to be very symmetric about that maximum, even
close to the transition. A sensitive test of closeness to the
Gaussian form is provided by calculating the ratio of the
fourth moment to the square of the second moment. In
the worst case the distributions from the simulations give
values for this ratio which deviate by about 30% from
the Gaussian value of three, due to extra weight in the
wings. If we take this single maximum feature from the

We note, for future use, that o. must be positive. For a
Gaussian distribution, averages of other even powers of
the fluctuation are related to the mean-square fluctuation,
e.g. ,

&u u +s&=&u &&u„+s&=u', ,

&u'.u.+, &
= &u'. &&u.+, & =(uo+a)uo,

and similarly for &u„u„+s &. Thus,

1—g V2 (u „u,+«)l =N—,
' (2D)(k +2au«)u,

2

(16)

(17)

where we have used the fact that there are 2D nearest-
neighbor lattice vectors in a D-dimensional hypercubic
lattice. We add Eqs. (8), (13), and (17) to get the internal
energy per particle u =

& H & /N.
Next we calculate the entropy per particle from

(18)

From the assumed distribution function in Eqs. (6), (7),
and (9),

and because of the assumed factorization of the many-
particle distribution function in Eq. (6),
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——( —,'p „' ) —
—,
' 1n(2~T)

1 1

n

(up —
—,
' )[up(up ——', )+3cr ]=0,

( ~
~—2up+3up )o'+2Dko+3'cr = T .

(25)

(26)

((u„—u ) ) —
—,'ln(2no )

=1+-,'1n(2m T)+-,'1n(2vrcr ) .
(19)

There are two solutions to these equations. The simpler
one is

(27)

The entropy is determined by the spread of the distribu-
tion function in the momentum and configuration spaces.
The free energy per particle, f= u —Ts, is

f=(—,'aouo —,'uo+ —'uo)+ —'(ao 2uo+3uo)cr+ —,'cr

+D (k +2au
p)

rc—2' T ln(2mcr )
—,' T ,' T l—n(2—n —T) .

o =
—,'[ —

( —,'Dk —
—,', )+Q( —'Dk ——') + 'T ]-

The other solution of Eq. (25) is

(28)

from Eq. (25), for all T. The corresponding solution for o.

is obtained by substituting Eq. (27) into Eq. (26); the
physical (positive) solution is'

(20) cr 3Qp( &
1/p) (29)

The equilibrium values of uo and o. minimize the free en-

ergy f. They are the solution of the following MFT equa-
tions:

df =(apso tip+Op)+(3uo —I+2Dcc)o =0,
BQp

T= —,'(ap —2up+3up)+D (k+2ctup)+ —,
'o. —

(21)

=0. (22)

The solutions of Eqs. (21) and (22) along with Eq. (20) for
the free energy constitute the MFT description of the sta-
tistical mechanics of this system.

As an introduction to the analysis of these equations,
we check the T=0 limit. Equation (22) shows that in the
limit T~O, the ratio T/o remains finite, so it must be
that o.—+0 also. This is the reasonable result that there
are no fluctuations about the equilibrium position at zero
teinperature. Equation (21) reduces to

Vi(t o)=—(aouo —ao+uo)=0 (23)

This condition states that at T=0 the average position is
one of the positions of mechanical equilibrium of the on-
site potential, which are the positions uo=0, and u
and u;„of Eq. (3). Then from Eq. (20), since the T~O
limit of both logarithmic terms is zero, the free energy is

f ( T=0 ) = —,
' a p u p

—
—,
' u p + —,

' u p
—=V, ( u p ) . (24)

Of the three possibilities for uo, the stable equilibrium
configuration is the absolute minimum of the on-site po-
tential, which is the position u;„[see Fig. 1 and Eq. (3)].

IV. NO INTERPARTICI. E ANHARMONICITY

In this section we analyze the solutions of the MFT
equations for the a=0 case. There are two subcases of
interest here: (a) ap =

—,', for which the on-site potential is
symmetric about u =

—,
' (dotted curve in Fig. 1), and (b)

ap ( 9 for which it is asymmetric (solid curve in Fig. 1).

We substitute this into Eq. (26) and obtain the T depen-
dence of the average displacement. After some manipu-
lations the result can be written

T=—', [—,
' —(up —

—,') ][(up —
—,') +Dk], (30)

which shows the symmetry about the line uo= —,'. This
equation can be rewritten as a quadratic equation in the
quantity (uo —

—,') and solved. Then we find a diFerent
character of the solution depending on the sign of
(Dk —9). The computer simulations were done for a
displacive system, i.e., for larger force constants k, so we
investigate that case first.

(a) Dk & —,'. In this case Eq. (30) can be inverted to

3[ 'Dk —T]—
(up —

—,') =
Q(Dk+-,')' —67 +(Dk —

—,')
(31)

This equation shows that the order parameter (uo —
—,')

vanishes continuously at the mean-field critical tempera-
ture

and gives the canonical mean-field value p= —,
' for the

order-parameter critical exponent. Figure 2 shows both
solutions for uo vs T for this case. The parameter values
used for the graph are the same as those used for the
simulations in Ref. 8. Next we substitute the values of uo
and cr for these two solutions into Eq. (20) for the free en-

ergy; the results are shown in Fig. 3. For T& T„ the
solution with the nonzero order parameter has the lower
free energy. It joins continuously to the other solution at
T„with continuous first-derivative (entropy) and discon-
tinuous second-derivative (specific heat).

There are no MD calculations for this situation (sym-
metric on-site potential, isotropic harmonic force con-
stants). However, there are simulations with anisotropic
harmoni. c force constants. For a system with uniaxial
anisotropy, the MFT transition temperature of Eq. (32)
changes to

A. ao= 9
=2 T, = —,', [k~~+(D —1)k ] . (33)

For this case, the two MFT equations are
Evaluated for the parameters of Ref. 20 this is

T,' '=0.032; from the simulations T,' '=0.0185. '
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FIG. 2. Average displacement vs temperature for the case of
the symmetric on-site potential and for a value of k in the
displacive range, showing a second-order transition. The solid
curve is the stable solution, Eq. (30). The dashed line is the un-

stable solution below T„and the only solution above T„Eq.
(27).

As expected, MFT overestimates the transition tempera-
ture.

(b) Dk( —,'. For sufficiently weak interparticle force
constants k, Eq. (30) predicts a multi-valued average dis-
placement vs temperature relation, shown in Fig. 4. In
this situation, the system jumps between the two solu-
tions [Eqs. (27) and (30)] at the temperature where the
free energies obtained from these two solutions become
equal. The transition temperature for the particular k
value used for the plot is T, =0.00452. . .. The vertical
line on the average displacement graph (Fig. 4) is drawn
at this temperature. Thus, this theory predicts a erst
order transition for sufticiently weak interparticle har-

06 I I I I I I I I I
[

I I I I I I I I I
(

I I I I I I I I I
i

I I I I I I I I I0.

c 0.04
0
c
E

FIG. 4. Average displacement vs temperature for the case of
the symmetric on-site potential and for a smaller value of k in

the order-disorder range, showing a first-order transition. The
solid curve is Eq. (30), and the dashed line is Eq. (27). The verti-
cal line shows the transition temperature, as determined from
equality of free energies of the two solutions. The arrows on the
curves show the two possible paths followed by up for increas-

ing T, starting from T=O. The same paths are followed in the
opposite direction for decreasing T.

monic force constants. At the force constant value where
the change from second-order to erst-order behavior
occurs, Dk =

—,', this theory predicts that the order-

parameter critical exponent changes to P= —', which is

the value for a tricritical point.
On more general grounds we expect a crossover from

displacive behavior for larger force constant values to
order-disorder behavior for smaller values. The major
distinguishing characteristic of order-disorder systems is
that the single-particle probability distribution is double
peaked in the low-temperature phase. Since the theory
of this paper is based on the assumption of a single-
peaked (Gaussian) distribution, this prediction of a first-
order transition should probably not be believed literally.
One should rather take this to mean that a major change
in behavior occurs for weak-coupling forces, and search
for another approach to that case with less restrictive as-
sumptions.

B. ap(—2

0.02

For this case of the asymmetric on-site potential ener-

gy, we return to Eqs. (21) and (22) (still with a=0). We
solve Eq. (21) for o'

apup up+up 1 Vi(up)

3(up ——') 3 up ——'
3 0

(34)

0.00
0.00 0.01 0.02 0.03

T (dimenstonless)
0.04

FIG. 3. The free energy vs temperature, from Eq. (20), corre-
sponding to the average displacement curves in Fig. 2. The
solid curve is for the stable solution and the dashed curve for
the solution which is unstable below T, and the only solution
above T, .

It is important to note here that Eq. (34) gives unphysical
(negative) values for o when u p is in the range
u ( u 0 ( 3 where u „is the location of the maximum

of V, (u) [Eq. (3)] and therefore of a zero of V'i(up). We
substitute this result for cr into Eq. (22) and obtain the re-

lation between temperature and average displacement.
After some manipulation this can be put in the form
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a
T= —— +(—' —ao) —(uo —

—,
'

)
1 1

3, 3 QQ

Q Q6 I I ~

I
~ ~ 1

I
I t I

I
I I I

Qo
X —,+2Dk+2(uo —

—,')
3 QQ

(35)

This way of writing the equation emphasizes that T(uo)
for this case is a rational function, in contrast to the case
ao =—'„where it is a polynomial [Eq. (30)]. Equation (35)
shows that an infinitesimal deviation of a 0 from 9

changes the analytic character of this function, so such a
change in parameter value is a singular perturbation.

Figure 5 shows this average displacement vs tempera-
ture relation, plotted with T on the abscissa as is cus-
tomary. The dashed part of the curve is unphysical both
because o. is negative for that range of uQ values and be-

. cause T is negative over part of the range. Note that the
high-temperature limiting value for the average displace-
ment uQ is —,'; this is the position of the maximum of the
on-site potential for the symmetric case (ao= —,'), but is

not an extremum for the asymmetric case (ac & —,'). The
infinite temperature limit is still sensitive to the double
well of the on-site potential, but not to the asymmetry of
the two wells.

Figure 6 shows the free energy vs T for the two parts of
the order-parameter curve. The solution with lower free
energy comes from the top branch of the uQ vs T relation.
Both uQ on this branch and the free energy are smooth
functions, showing that no phase transition occurs. Mak-
ing the on-site potential asymmetric has removed the
transition that occurs for the symmetric double-well on-
site potential. The MD simulations are in agreement
with this result.

The way of writing the asymmetric on-site potential in
Eq. (4) as the symmetric potential plus perturbations
shows that one of the added terms is a linear function of
the displacements. An external field would add a similar

0.04

0
C
0)

E
0.02

LIJ

0.00

Q Q2 I I I I I I I I I I I I I I I

0.00 0.02 0.04 0.06 0.08 0.10
T (dimensionless)

FIG. 6. The free energy vs temperature for the solutions
shown in Fig. 5. The solid curve corresponds to the upper
branch of Fig. 5, and the dashed curve is a very narrow loop
corresponding to the lower branch. The two intercepts of the
dashed curve with the T=O axis are at the values V&(0)=0 and
V, (u,„)=0.00278 [see Eq. (24)].

linear term, and external fields destroy phase transitions.
That is evidently the reason why there is no phase transi-
tion in this case.

V. WITH INTKRPARTICLE ANHARMONICITY

In this section we present the situation of major in-
terest in this paper, which is the effect of anharmonicity
in the interparticle interactions. We analyze the solu-
tions of the full MFT equations, Eqs. (21) and (22), keep-
ing the terms proportional to the anharmonicity parame-
ter a.

The solution of Eq. (21) for the width function is

0.8 - ' V', (uo)
0 =

3 uo ——'(1 —2Da)
3

(36)

Q. 6

0
0.4

E

0.2—

0.0

where V', (uo) is the first derivative of the on-site poten-
tial in Eq. (2). Substituting Eq. (36) into Eq. (22), we ob-
tain the relation between temperature and average dis-
placement for this case,

Vi(~o)T= —1'
[uo —

—,
' (1—2Da) ]

2

X [ [ V", (uo)+2D (k+2auo) ][uo —
—,'(1 —2Da)]

—0.05 0.00 0.05
T (dimensionless)

0. 1 0 —V)(uo) J (37)

FIG. 5. Average displacement vs temperature for the asym-
metric on-site potential but no interparticle anharmonicity
(a=0), Eq. (35). The dashed part shows the unphysical region
where the width function o [Eq. (34)] is negative, and also
where Eq. (35) gives a negative T. The dotted line is the high-
temperature asymptote, uo= 3. The arrow shows the path fol-

lowed by uo for increasing T, starting from T=O.

The denominator in Eqs. (36) and (37) has a zero at

u (a)= —,'(1 2Da) . — (38)

This quantity is the high-temperature limit of the order
parameter, i.e., the horizontal asymptote in the uQ vs T
relation. This high-temperature limit decreases from the
value u „(a=0)=

—,', shown in Fig. 5, as a increases from
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zero. The V', (uo) factor in the numerator of Eqs. (36)
and (37) can be written

V', (uo) =uo(uo u, „)(uo u;„) (39)

where u, „and u;„are defined in Eq. (3). The two zeros
at uo =0 and uo =u,„are both less than —,

' (the third at
u;„ is larger than —', and so is not relevant here for a )0).
The zeros of V', (uo) are independent of a, so as a in-
creases, the zero of the denominator of Eq. (37) at
uo=u (a) moves downward through the zeros of the
numerator at uo =u,„and at 0. At these switches in the
ordering of the zeros of the numerator and denominator,
the shape of the uo vs T relation in Eq. (37) changes.
These switches occur at the a values where
u „(a) =u,„,which is

0.8

0.6—

ai

0
c Q. 4
Qi

E

0.2—

I
I

I I I I I I

0. 1 895
0.21 10

= 0.0580

a, i
= 3+1—4ao —1= 1

(40)
Q, Q I I I I I I I

—0.04 0.00 0.04
T (dimensionless)

0.08

and where u (a) =0, which is

1

2D
(41)

For the D and ao values used in the MD calculations,
a„=0.0594. . . , and a,2=0.25. The properties of the
solution change depending on the a value, so we present
three cases separately.

A. 0&a&a, &
or u„(a)) u
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I

I I I I I \
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FIG. 7. Average displacement vs temperature, Eq. {37), for
the asymmetric on-site potential and for a=0.045, which is less
than a, . The dashed part shows the unphysical region where
the width function o [Eq. (36)] is negative, and where Eq. (37)
gives a negative T. The dotted line is the high-temperature
asymptote u „(a),Eq. (38). The arrow shows the path followed
by uo for increasing T, starting from T=O.

Figures 7 and 8 show the graph of the average u0 vs T
relation, i.e., Eq. (37), with T plotted as the independent
variable. The dashed parts of the graphs show where ei-
ther the width function o. [Eq. (36)] is negative or T [Eq.

FIG. 8. Average displacement vs temperature, Eq. {37), for
the asymmetric on-site potential and for a=0.058, which is in
the range a, &a &a, &. The dashed part shows the unphysical
region where the width function rr [Eq. (36)] is negative, and
where Eq. (37) gives a negative T. The dotted line is the high-
temperature asymptote u (a), Eq. (38). The arrow shows T„
and the vertical line above T, shows the discontinuity in the
average displacement. The arrows on the curves show the path
followed by uo for increasing T, starting from T=O.

(37)] is negative so the solution is unphysical. Since we
know from the T=O calculation at the end of Sec. III
that the solution with lower free energy evolves out of
u;„as T increases from zero, the top branch of the curve
is the important one. Comparison of Fig. 7 with the
a=O solution in Fig. 5 shows that the top branch be-
comes steeper as n increases. At a certain critical value
u, the top branch of the u0 vs T relation develops an
infinite slope, showing the existence of a second-order
transition at this single n value; then for larger a values
(Fig. 8) the top branch folds back and becomes mul-
tivalued, which means that a first-order transition has
developed.

The critical value u„where the transition first devel-

ops, is the value for which the equations

=0 =0 (42)
du0

'
dZg0

have a common solution for u0 in the range
u (a) &uo &u;„. These are simultaneous equations
involving sixth-order polynomials, which along with Eq.
(37) determine a, and the values of T and uo where the
transition initially occurs. We have not obtained an ana-
lytic solution of these equations, but if we assign to D, a0,
and k the values used in the simulations (given in the
figures), then numerically we find a, =0.0537. . . , and
T, (a, ) =0.0502. . . .

This scenario of a minimum value for a being required
to have a first-order transition qualitatively agrees with
the computer simulations; see Fig. 8 of Ref. 8. The criti-
cal a found in the simulations (converted to the dimen-
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sionless values used here) is a,' '=0. 124, and the cor-
responding critical temperature is T,' '(a, ) =0.031.
Since MFT neglects fluctuations, these relations among
the MFT values and the simulation results are reason-
able.

For u & a, there is a discontinuous jump in the average
displacement (see Fig. 8) as the temperature increases.
Figure 9 shows the free energy per particle, obtained by
substituting the solutions for uo(T) and o (T) into Eq.
(20), for a =0.058. Just to the left of the maximum of the
solid curve in Fig. 9(a), there is a small "glitch" on the
graph. When this part is expanded in Fig. 9(b), we see
that it is a loop, analogous to the loop obtained in the
free energy of the van der Waals gas. This loop is de-

PP61 1 1) I I I
[

I I I [111[ I I I

rived from the part of the top branch of the up vs T rela-
tion that folds back. The discontinuous jurnp in the aver-
age displacement (Fig. 8) occurs at the temperature of the
intersection point of this loop. Note that above the criti-
cal temperature the average displacement continues to
decrease toward u„(a). This means that uo is not the
order parameter in the sense defined by Landau, i.e., a
quantity which is identically zero in the high-temperature
phase. This situation is again similar to the van der
Waals gas.

In Fig. 9(a), the dashed loop on the left is the free ener-

gy corresponding to the lower branch of the up vs T rela-
tion in Fig. 8, similar t'o the situation for a=O in Fig. 6.
At each temperature, these values are higher than those
from the top branch of the up vs T relation, so it is not
the equilibrium solution. The jump in the average dis-
placement occurs between two points on one branch (the
upper branch) of Eq. (37).

0.04
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O
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E
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0.00

(a)

D=2
ao = 0.1895
k = 0 2110
A = 0.05800

B. a, &&a&a,&or u,„&u (a) &0

For this range of a values, where the high-temperature
limiting value of the order parameter u „(a) is less than

u,„, the u0 vs T relation takes on the shape shown in

Fig. 10 (which is for the value a=0. 1). In this case, the

upper branch folds back completely to the T=O axis,
whereas the lower branch is monotonically increasing.
At T=0, the equilibrium solution for up starts at u;„on
the upper branch, just as in the previous subsection, and
then it jumps to the lower branch at the temperature
where the free energies of these two branches become
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FICx. 9. (a) The free energy for a=0.058, corresponding to
the average displacement graph in Fig. 8. The solid curve cor-
responds to the upper branch of Fig. 8, and the dashed curve is
a very narrow loop corresponding to the lower branch. (b) A
magnification of part of (a) to the left of the maximum of the
solid curve showing the van der Waals loop. TU and TL mark
the temperature extremes of the loop.

FIG-. 10. Average displacement vs temperature, Eq. (37), for
the asyrnrnetric on-site potential, and for a=0. 1, which is in the
range a, &

&a&a,&. The dotted part shows the unphysical re-

gion where the width function o [Eq. (36)] is negative, and

where Eq. (37) gives a negative T. The dotted line is the high-

temperature asymptote u„(a), Eq. (38). The arrow shows T„
and the vertical line below the arrow shows the discontinuity in

the average displacement. The arrows on the curves show the

path followed by u o for increasing T, starting from T=0.



16 242 W C KERR AND M J RAVE

1.0 I I I I

48

1. The free energy for this situation is shown in Fig.equa . e ree en
11. The part arising from the upper branc o e u 0
T relation folds s arpy ac . ' ' '

nld h 1 back. The equilibrium solution
starts out ont the lower part of this branc, an t en

s to the other branch at the temperature where
t e two rane
branch of the free-energy graph in this case,case as there was

There are two further con-in the previous subsection. There
he behavior in the previous subsection: (i) thetrasts to t e e avio

order parameter jumps between the two i, er
branches o t e uo vsf h T relation and (ii) above the critical
temperature the average displacement increases toward
u (a).

C. a&a, 2 or 0&u„(a)
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FIG. 11. The free energy for a=0. 1, co p g. 1 corres onding to the
own in Fi . 10. The solid curve

corresponds to the upper branch of Fig. 10, and the das e
curve to the lower rane .b h T marks the highest temperature
of the curve shown with the solid line.

When a is made larger than a,2=1/2D, then u (a),
the hi h-temperature asymptote of the average displace-
ment, becomes negative IEq. ( )]. p
te ig-

1
' f r an a value in this range is shown in Fig. 12.

At the transition, the average displacemen jump
position in t e s a e wh t bl well of the on-site potential to a po-

e on-site' '
n on the left of its metastalble minimum. The on-si esition on t e e,~ o i

osition (see Fig.otential energy can be large a)t such a posi ipo en ia
1), but the average of the interaction po en

'
otential energy,

E . (17) is reduced and can become negative for
sufficiently large and negative u0, becausecause of the factor
(k+2auo). We note that in this situation t e jump in
the average ise displacement aga(n occurs between two

oints on the same branch of the uo vs re a ion,poin
that uo decreases towards u „(a) aboveve the transition, as
in Sec. V A above.

In Ref. 8 an exact stability analysis at T=O s owe
that for su cien yffi

'
tl large e the lowest-energy

configuration as eh th lattice divided into two inter-

—0.2
-004 -002 000 002 004 006 0.08
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FIG. 12. Average displacement vs tempe, q.em erature, Eq. (37), for
a=0.30. The dashed part shows the unphysical region where
the width function cr q.[E (36)] is negative, and where Eq. (37)

h dotted line is the high-temperaturegives a negative T. T e o e
( a ) E . (38). The arrow shows T„and the verti-

th1 b 1 the arrow shows the discontinue y in e
the ath followeddisplacement. The arrows on the curves show t e pa

by uo for increasing T, starting from T=O.

penetrating sublattices wit pp
'

h o osite displacements of
unequal magnitude on t e two sublattices. Suc a

nfi uration cannot be described y pb our s atially uni-con gura
f Gaussian ansatz in Eq. (9) for the po

' '
position robabili-orm aus

'

a and k used in thet d tribution. For the values o, a0, an uis
the two-sublattice solution becommes the

h'
gyr solution at a=O.

of n is then the upper limit of applicability or e
lation of MFT in Sec. III.

The MFT solutions, Eqs. (36) and (37), predict the uo
vs le aT relation changes shape again a

n k . The cubicwhich depends on the values of ao, D, and
olynomial in the curly brackets in Eq. (37) has a single

real root up to t is va ue an
ure T de-d

' . The mean-field critical temperature, e-beyon it. e me
us thecreases to zero as u

'
increases to this value. us,

the Gaussian ansatzMFT equations themselves indicate e
fails at an e value which is about twice as large as given

by the exact analysis.

D. Summary of this section

In the previous subsections we s owowed that sufficiently
e inter article interactionsstrong anharmonicity in t e

'

p
fi - d r transition to occur in this system. e

further showed that increases in the strengt o
anharmonicity cause changes in pthe sha e of the average

re relation at certain "cross-displacernent vs temperature
of Tes. In Fi . 13 we show the dependence oover" values. n ig.

h h rmonicity strength over t e w o e ra
irnulations.values, along with the results from the MD sirnu a

There is a horizonta s i o1 h ft f the MFT results relative to
the simulations, i.e., eth critical value of n according to
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the discontinuity associated with the transition seems
rather small. However, it must be the effect driving the
transition.

We conclude this section with a more speculative con-
nection between the MD results and this MFT. The most
extensive simulations in Ref. 8 were done for an a value
in the intermediate range, and they exhibited hysteresis.
In fact, a transition was obtained only on heating the sys-
tem and was never seen on cooling. Subsequent simula-
tions using a constant temperature method ' (in contrast
to the constant energy method of Ref. 8) have the same
hysteresis in the intermediate o; range; they do not have
it, or have it over a much smaller temperature interval in
the small n range. This effect can be understood from the
results for the free energy in Figs. 9(b) and 14. In the
small n range the free energy has a "van der Waals" loop
in it, and the temperatures at the ends of that loop
[marked TU and TL on Fig. 9(b)] are the (mean-field) sta-
bility limits of the system. A system in the low-
temperature phase can be heated no higher than TU, nor
one starting in the high-temperature phase cooled no
lower than TI before a transition takes place. The range
on the T axis in Fig. 9(b) show that these temperatures
are, in fact, rather close together. In contrast since there
is no closed loop in the free-energy curves for the inter-
mediate a range (Fig. 11), there is a stability limit at TU
only on heating the system. A system being cooled from
the high-temperature phase can be taken all the way
down to T=O with the average displacement following
the lower branch in Fig. 10 into the metastable minimum
of the on-site potential. This is the qualitative behavior
shown by the simulations.

features of the model are (i) it has a one-component order
parameter, placing it in the Ising universality class; (ii)
each particle moves in an asymmetric on-site potential;
and (iii) anharmonicity is included in the interparticle in-
teraction. The asymmetry of the on-site potential pre-
cludes a symmetry-breaking transition; in fact, if only
features (i) and (ii) are present, no transition occurs. The
third feature, i.e., the anharmonicity of the interactions,
makes the lattice vibrational frequencies dependent on
the structure. This dependence provides a mechanism
which increases the entropy of the high-energy structure
relative to the low-energy structure, and thereby achieves
a lower free energy at higher temperatures. Thus, this
model demonstrates a transition which it totally entropy
driven, and for which symmetry breaking plays no role.

The theory is based on the mean-field assumption that
the particles move independently of each other, and fur-
ther assumes that the single-particle probability distribu-
tion is Gaussian. The results show that there is a
minimum strength of interparticle anharmonicity neces-
sary to have a transition, and further shows that there are
several different intervals of anharmonicity strength
within which the average displacement vs temperature
relation has different shape. This theory and the comput-
er simulations on the model qualitatively agree in the pa-
rameter regions where they overlap, and the theory has
shown existence of other parameter regions not covered
in the original simulations. The theory provides an ex-
planation for the hysteresis seen in the simulations.
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