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A low-density polymorph of silica, n-cristobalite, has been observed to have a negative Poisson
ratio, i.e., when subjected to a uniaxial compression, this crystal contracts in the transverse direc-
tion. This behavior is uncommon. Other low-density polymorphs of silica, which have a similar
chemical environment, have been reported to have positive Poisson ratios. We have investigated the
elastic behavior of several silica phases: n-quartz, P-quartz and o;-cristobalite, with first-principles
quantum-mechanical calculations, and with interatomic potentials. Our calculations confirm a neg-
ative Poisson ratio in o.-cristobalite. We predict that o,-quartz will have a negative Poisson ratio at
high tensile strains, and that P-quartz will never assume a negative ratio. We compute the second-
order elastic constants of o.-quartz and o.-cristobalite using interatomic potentials and apply them
in discussing the anisotropy of Poisson ratios in these materials. We demonstrate that the rigidity
of the Si04 tetrahedral units is intimately related to the occurrence of negative Poisson ratios in
crystalline forms of silica.

I. INTRODUCTION

The response of a solid to a uniaxial stress is character-
ized by its Poisson ratio. It is determined by the coupling
between the stretching force and accompanying shear de-
formation. It is defined as the negative quotient of the
strain in the transverse direction to the strain applied in
the longitudinal direction. Most solids contract laterally
when subjected to a uniaxial tension; thereby giving a
positive Poisson ratio. Few examples of materials with
negative Poisson ratios are available in the literature.
While certain isotropic polymer foams have been seen
to have a negative Poisson ratio, for crystalline solids
it is a rarity. An example of cubic single-crystal pyrite
with a Poisson ratio of —

7 has been cited. However,
t

it was suggested that this case may have resulted from
"twinning" of the crystals. In a study of anisotropy of
elastic properties for hexagonal crystals, it was shown
that Poisson ratio for single-crystal cadmium is negative
in certain directions.

Given this background, it was surprising to find a
negative Poisson ratio in a common crystalline mate-
rial. In a recent experimental study, Weidner et al.
found o.-cristobalite to have a negative Poisson ratio. o.-
cristobalite is a low-density silica polymorph in which
silicon atoms are tetrahedrally coordinated. Other poly-
rnorphs like n and P-quartz h-ave a similar bonding en-
vironment. However, they have been reported to have a
positive Poisson ratio.

In this paper, we have calculated the Poisson ra-
tios of these crystalline solids for a loading along the
c axis. For our computations, we have employed first-
principles pseudopotentials developed in the Troullier-
Martins scheme. These reliable pseudopotentials have
given a highly accurate picture of electronic and struc-
tural properties of silica. We have also applied a two-
body potential developed from Hartree-Fock calculations
on Si04 clusters. This interatomic potential has been
tested thoroughly for crystalline silica. Surprisingly, it of-
ten gives an accurate description of structural and elastic
properties of silica. We have confirmed our pair potential
calculations with the fully quantum-mechanical calcula-
tions.

On the basis of our calculations, we find a negative
Poisson ratio for a-cristobalite at ambient conditions.
We predict that o.-quartz will also have a negative Pois-
son ratio at high tensile strains when subjected to a uni-
axial loading along the c axis. We also explain why P-
quartz can never exhibit this property for such a loading.
We study how the atomic arrangements in these materi-
als change with a uniaxial stress. We follow the motion
of the Si(Diaz)4 tetrahedra in n-cristobalite and demon-
strate that the rigidity of these tetrahedral units is the
cause of negative Poisson ratios in low-density crystalline
silica.

We have computed the elastic constants of o.-quartz
and o;-cristobalite in the pair potential framework. For
this purpose, the method of long waves is used. They
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agree with the experimental values within a few per-
cent. We have analyzed the anisotropy of the Poisson
ratios in o.-quartz and o.-cristobalite using these cal-
culations. This analysis shows that even at ambient
conditions, both these materials exhibit anisotropy and
have negative Poisson ratios for loading in certain di-
rections. However, the anisotropy is markedly higher for
o.-cristobalite. This causes a negative isotropic aggregate
Poisson ratio in this material.

II. POISSON RATIO OF CRYSTALLINE SILICA

Since a solid usually attempts to conserve volume,
compression along an axis is expected to result in an
expansion in the transverse direction. This gives a posi-
tive value of Poisson ratio; an empirical rule that is sat-
isfied by most known materials. The requirement that
the strain energy for an elastic isotropic solid be non-
negative only leads to the restriction —1 & cr & 2.. the
lower and upper limits indicate conservation of shape and
size, respectively. A negative value of Poisson ratio is not
forbidden by thermodynamic considerations.

Weidner, Yeganeh-Haeri, and Parise measured single-
crystal elastic moduli of o.-cristobalite. They reported a
Poisson ratio (Voigt-Reuss-Hill average ) of —0.163 for
o.-cristobalite calculated using the following relationship:

38 —2G
2(3B+ G)

(2)

where 8, G, and o.
g stand for the bulk modulus, shear

modulus, and the isotropic average Poisson ratio, respec-
tively.

Considering the rarity of crystalline materials with a
negative ratio, this result is surprising. Moreover, o.-
cristobalite has the same chemical environment as other
low-density forms of crystalline silica such as n- and P-
quartz. These latter crystals are reported to have a
positive Poisson ratio at ambient pressure. An exper-
imental determination of a negative Poisson ratio is difIi-
cult and could be spurious. A theoretical determination
can provide a strong corroboration of the experimental
observation; however, few such calculations have been
performed. Since o g is negative for o.-cristobalite, the
Poisson ratio has to be negative for loading in certain di-
rections. By calculating o.i3 as defined in Eq. 1, we can
study the efFect of loading along the c axis. To study
complete anisotropy (loading in arbitrary directions) of
elastic properties, the second-order elastic constants have
to be computed.

A generalized definition for the Poisson ratio (o,~) in
a material is the negative ratio of transverse strain in
the i direction resulting from an applied strain in the j
direction. For a crystalline material with a tetragonal or
a hexagonal unit cell defined by the lattice parameters a
and c, the Poisson ratio for a uniaxial loading along the
c axis is given by

Ea/a E ln(a)
Dc/c A ln(c)

III. COMPUTATION OF ELASTIC PROPERTIES

We have carried out a detailed analysis of the elas-
tic behavior of crystalline silica using two theoretical
approaches. One approach is based on O,b initio pseu-
dopotentials and is fully quantum mechanical. We have
applied "soft" pseudopotentials constructed within the
local density approximation (LDA). These pseudopoten-
tials have been shown to have a wide range of applica-
bility and transferability. These calculations are highly
accurate in terms of structural properties, but they are
computationally intensive.

The details of our quantum-mechanical calculations
have been presented in detail elsewhere. The essential
features are as follows. Our pseudopotentials were gen-
erated self-consistently within the LDA using the method
of Troullier and Martins. This method produces "soft"
pseudopotentials, i.e. , potentials which allow a rapid con-
vergence in terms of a plane wave basis. The oxygen
potential was generated from the atomic 2s 2p ground
state configuration with a radial cutofI' of 1.45 a.u. for
both the 8 and p components of the potential. The oxy-
gen d component was neglected owing to its high energy
relative to the atomic 28 and 2p valence states. For sil-
icon, s, p, and d components of the potential were in-
cluded. The radial cutofI' for all three components was
taken to be 1.80 a.u. As is commonly done, we take one
component of the potential to be "local" and project out
the remaining components. Here the local potential was
the p component for both silicon and oxygen.

The one-electron Schrodinger equation was solved us-
ing a fast iterative diagonalization method. One advan-
tage of this method is that it does not require a calcu-
lation of the full Hamiltonian matrix. Rather only HQ
is calculated. This procedure leads to a dramatic reduc-
tion in storage and a considerable reduction in computa-
tional time. Plane waves up to an energy cutofI' of 64 Ry
were included in the basis set. Typically, a few thousand
(5000—10000) plane waves were used in the basis. In our
calculations, we used one special k-point to evaluate the
total energy.

Our other approach is based on classical interatomic
potentials. The pair potential that we have used in this
study was developed using Hartree-Fock self-consistent
calculations on Si04 clusters. Earlier studies have in-
dicated that this interatomic potential works well for
structural and elastic properties of silica structures.
However, one might not expect this approach to work
for details of the elastic properties of silica, especially for
open structures where angular forces might be important.

A. Uniaxial loading along the c axis

Determining the Poisson ratio of these polymorphs is
complicated by their large unit cells and the number of
degrees of freedom that the atoms have. For example, o.-

cristobalite has a tetragonal unit cell which is completely
defined by the lattice constants a and c, and by the in-
ternal coordinates u, x, y, and z. We used the following
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methodology based on Eq. (1). For a fixed value of c, we
let the lattice parameter a and internal coordinates relax
to find a minimum energy structure. We then changed
the values of c and let the a parameter and the internal
coordinates relax to find the minimum energy structure
for the new value of c. This gives us in(a) as a function
of ln(c).

Owing to computational intensity of this calculation,
we optimized geometries using pseudopotential calcula-
tions at four values of c for each polymorph. For these
calculations, we employed a minimization routine based
on a method given by Davidon et aL Figure l(a) il-
lustrates the optimization of the structure for a given c.
The variation of ln(a) with ln(c) is shown in Fig. 1(b).

In our pair potential calculations, we examined about
50 values of lattice parameter c. Here we optimized
the geometries using the routine AMOEBA, the details of
which can be found in Ref. 19. We plotted ln(a) as a
function of In(c) for this uniaxial compression. Over the
large range of c that we examined (corresponding to —10
to +5%%uo strain), the variation is no longer linear. We Bt
a third order polynomial to the data. The negative of
the slope of this curve gives us the Poisson ratio at the
corresponding value of c.

In Fig. 2, we have shown the variation of the Pois-
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FIG. 1. Computing the Poisson ratio for a loading along
the c axis: (a) The variation of the total energy of
o-cristobalite as a function of the lattice parameter a at
c = 7.23 A. . This gives the minimum energy structure at the
given value of c for a uniaxial loading. (b) The variation of
the lattice parameter a as a function of c on a logarithmic
scale. The slope of the best Btting straight line is the Poisson
ratio of n-cristobalite at zero pressure.
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FIG. 2. The variation of the Poisson ratios of o'-quartz and
o-cristobalite as a function of the uniaxial strain along the c
axis. This figure is based on our pair potential calculations.
Note that a positive strain occurs for a material under ten8ion.

B. Second-order elastic constants

As seen above, the computation of the Poisson ratio
0 i3 is relatively straightforward. To get a complete pic-

son ratio as a function of the engineering strain along
the c axis defined as e, = (c —co)/co. It is interest-
ing to see that if o.-cristobalite is compressed beyond
e, = —0.04 (which corresponds to a compressive stress of
about 2.5 GPa) the Poisson ratio assumes positive values.
As the material is compressed along the c axis, the Pois-
son ratio becomes more and more positive. We predict
at high compressive strains the ratio to saturate near a
value of 0.3 as compared to the value of 0.5 for an in-
compressible solid. Our pair potential and pseudopoten-
tial calculations give values —0.17 and —0.2, respectively,
for the Poisson ratio (o'is) at the unstrained geometry.
The isotropic average value (o s) reported froin recent
experiments is —0.163.

For o.-quartz at ambient pressure, the pair potentials
and pseudopotentials give Poisson ratio (ais) of 0.2 and
0.1, respectively. The reported isotropic average value
(o s) is 0.08. The variation of the Poisson ratio for a-
quartz as a function of strain shows similar trends as
n-cristobalite (Fig. 2). The Poisson ratio decreases and
for large tensile strain exhibits a negative ratio. The ma-
jor difFerence between o.-quartz and o.-cristobalite is that
the ratio becomes negative for o.-cristobalite at ambient
pressure whereas for o.-quartz the ratio remains positive.
On the basis of this work, we predict that the Poisson
ratio for o.-quartz will be negative at high tensile strains
as it is for o.-cristobalite at ambient pressure.

For P-quartz, we applied the pair potential over a wide
range of strain, —0.15 ( ~ ( 0.15. Unlike o.-quartz and
a-cristobalite, P-quartz is found to have a constant Pois-
son ratio (eris) of 0.4. Our pseudopotential calculations
for ambient pressure give a Poisson ratio of 0.4, confirm-
ing our pair potential calculations. It is surprising to see
that despite the similarities between the low-density sil-
ica polymorphs, P-quartz shows a significantly difFerent
elastic behavior when compared to the other two poly-
morphs.
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TABLE I. Single-crystal elastic constants (in GPa) of
o.-quartz and o.-cristobalite.

o.-quartz
Experiment Theory

o.-cristobalite
Experiment Theory

Caa
C44
C66

Cz3
Ci4

87.103
108.552
59.215
38.339
10.425
12.894
-17.206

71,5
99.1
42.4
30.9
9.7
15.5
-13.1

59.4
42.4
67.2
25.7
3.8
-4.4

51.5
35.3
59.0
17.5
6.0
-3.1

Reference 14.
Reference 4.

ture of the elastic properties of a material, it is necessary
to compute its second-order elastic constants. Here we

apply the pair potential approach for this purpose. (It
is possible to compute the second-order elastic constants
of a solid from ab initio pseudopotentials. However, ow-
ing to the required accuracy, these calculations are very
intensive. )

For the pair potential approach, we applied the method
of long waves to compute the elastic constants of o.-

quartz and o.-cristobalite. This method is based on the
following principle: when lattice vibrations with wave-
lengths much larger than the interatomic spacings inter-
act with matter, its microscopic nature (other than the
symmetry properties) may be neglected. Since a phonon
wave vector g is associated with lattice vibrations of
wavelength A = 2n/~ q ~, the vibrational modes of the
crystal for q —+ 0 must be associated with its continuum
properties (e.g. , elastic constants). To apply this princi-
ple, we compute the dynamical matrix, and its first and
second derivatives for q=O, and use them in determining
the elastic stiffness matrix (C). For the non-Coulombic
part of the potential, this does not pose a problem. How-
ever, the Coulomb part of the interatomic potential has
a very long range and we applied the Ewald method for
computing lattice sums.

The advantage of this technique is that given an opti-
mized structure at any pressure, we can compute all the
second-order elastic constants in one run. The results
of our computations are in good agreement with the ex-
perimental values ' of the single-crystal elastic moduli
(Table I). The compliance matrix (S) may be computed
as the inverse of the stiffness (C) matrix.

compare it with o.-quartz. For this purpose, we will use
the elastic compliances from our pair potential calcula-
tions.

If the orientation of the crystal is changed, the compli-
ances {S;~)transform to (S,'.). References 21 and 22 de-
scribe the coordinate transformations of the elastic prop-
erties of crystals in depth. In particular, we consider
S$3 S23 and S33 w hen the crystals of n-quartz and
cristobalite are rotated about their x axes by angle (
(Fig. 3). The new axes are denoted by primes as well
(x' = x, y', z'). These compliances transform as follows:

S12 + c Si3 —ScSy42 2

S,', = (8'+ c')S»+ c'8'(S» + S» —S,4)
+sc(C —8 )Sy4

Sss 8 Sx& + c Sss + c 8 (2S&s + S44) + 2csS&4, (3)

where 8 = sin( and c = cos(. (In n-cristobalite, Sg4 ——0
and the equations simplify. )

For a loading along the j axis, the generalized Poisson
ratio is given by

(4)

where i is a transverse direction under consideration.
We consider a loading along the z' axis. Let the Pois-

son ratio in a transverse direction (in the x'y' plane)
making an azimuthal angle P with the x' = x axis be
denoted by os((, P). In particular, o'((&0) = o'&s(() and
o'((, —) = crzs((). Kittinger, Tichy, and Bertagnolli
define an "effective Poisson ratio" crs(() as

crs((, P)dP .

They further give a simpler expression for o.-quartz,
which also holds for o.-cristobalite:

IV. ANISOTROPY OF POISSON RATIO

In the previous section, we discussed the Poisson ratio
of low-density silica polymorphs for a uniaxial loading
along the c axis. The problem is much more complicated
if the elastic response for loading in an arbitrary direc-
tion is to be studied. Towards this end, the second-order
elastic compliances {S,z) have to be used. Kittinger,
Tichy, and Bertagnolli have shown that o,-quartz has
an "effective" negative Poisson ratio in certain directions.
Here, we will discuss o.-cristobalite along similar lines and

X = X

FIG. 3. Rotation of the crystal about the x axis by an angle
P denotes an angle made by a transverse direction in the

x'y' plane mith the x' = x axis.
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FIG. 4. The variation of uniaxial and biaxial Poisson ratios for a uniaxial loading along the c axis as the crystals are rotated
about the z axis by an angle (. In defining crI3 (dotted) and o~3 (dashed), x' = z and y' are the transverse directions. cr3
(solid) is an "effective" Poisson ratio (Ref. 20) for the transverse x'y' plane. The theoretical plots are based on the results of
our pair potential calculations. For the experimental curves, the data from Refs. 4 and 14 were used. To be consistent with
Ref. 20 we have adjusted the sign of S&4 for n-quartz.

In Fig. 4, we have shown the variation of o&3, o.23,
and o.s with the polar angle $ between the y and y' axes.
For this figure, we have used the elastic compliances from
our pair potential calculations and from experiments. '

The theoretical variation is in good agreement with the
experimental one. It is interesting that even n-quartz has
negative biaxial and uniaxial Poisson ratios for load-
ing along certain directions. Elastic anisotropy is even
stronger in the case of n-cristobalite. Although the uni-
axial value o.

&3 takes small positive values over a certain
range of (, tres and the biaxial ratio os remain mostly
negative. From Eq. (4) it is clear that this is caused by
the anomalous sign of Si3. Since the uniaxial and biax-
ial Poisson ratios are predominantly negative in case of
n-cristobalite, this material has a negative isotropic ag-
gregate value of Poisson ratio. However, this does not
happen in the case of n-quartz.

V. DISCUSSION AND RESULTS

The microscopic origin of the negative Poisson ratio
is subtle. An unanticipated conclusion is that angular
forces per se are not required for reproducing the neg-
ative Poisson ratio behavior in silica. Pairwise forces

alone, as determined from classical interatomic poten-
tials, can reproduce the Poisson ratio in these materials.
Given this situation, we examined the nearest-neighbor
interatomic distances between Si-0 and O-O. (We expect
on physical grounds that the Si-Si distance should not be
relevant. ) We found no significant differences, or trends
for the Si-0 bonds for these polymorphs. The Si-0 bond
lengths vary by no more than 0.02 A over a wide range of
stresses. However, the 0-0 distances show an interest-
ing trend (Fig. 5). For uniaxial tension, the four unique
0-0 distances in n-quartz and n-cristobalite both tend
to saturate to constant values. However, this is not the
case with P-quartz. Constant Si-0 and O-O distances
are synonymous with rigid Si04 tetrahedra as this fixes
the 0-Si-0 angles. This relationship between the Si-0
and 0-0 distances and the tetrahedral angles may ac-
count for the surprising accuracy of pair potentials for
silica.

To verify that the rigidity of the tetrahedral Si04 units
plays a crucial role in the occurrence of negative Poisson
ratio in n-quartz and n-cristobalite, we adopted the fol-
lowing approach. In both these materials, there are four
distinct 0-0 distances. We found expressions for these
distances in terms of the four internal coordinates and
the lattice parameters a and c.

For n-cristobalite,
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The values of the Si-0 and 0-0 distances in naturally
occurring crystals of these polymorphs are listed in Table
II. We fixed the 0-0 distances and the unique Si-0 dis-
tance in o.-cristobalite to those in its naturally occurring
crystal. For o,-quartz, we fixed the four 0-0 distances
and Bs; 0 1. At diferent values of the c parameter, we
solved for u, x, y, z, and a with the above constraint. For
this purpose, we used the Newton-Raphson method. (In
the case of o.-quartz, we found that As -Q 2 remains con-
stant when the other Si-0 distance and the 0-0 distances
are constrained. )

This model calculation is equivalent to compressing
these materials along the c axis while maintaining the
rigidity of the tetrahedra. We plotted In(a) as a function
of ln(c), and computed the Poisson ratios. We found
that in these artificially constrained structures of rigid
tetrahedra, the Poisson ratios of both o.-quartz and o.-

cristobalite are —0.6 and —0.5, respectively. This con-
firms the role of rigid tetrahedra in imparting negative
Poisson ratios to these polymorphs

In the case of P-quartz, we have a unique Si-0 distance
and three distinct 0-0 distances as follows:

Uniaxial Stress (GPa)

2
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2+O-O, 1

2
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For o.-quartz,

2+Si-0,1

2
@Si-0,2

2

(u —x —y) +3(u —x+y) +c z

Q
(u —x + 2y —1) + 3(u + x —y)

, (1+c/ ——z/
)

2

RQ Q
——3a (x —y) + 4c

~

——z

1 (1 l z(1
Roo2 ——a —+3/ ——x

/

+4c
/

——z
/4 &2 ) «)

FIG. 5. The variation of the nearest-neighbor 0-0 dis-
tances in n-cristobalite as a function of the uniaxial stress.
We have shown only a few illustrative data points from our
pair potential calculations. A silica fragment is shown here to
illustrate the connection between the 0-Si-0 angles and the
Si-0 and 0-0 distances. The dark and light circles are silicon
and oxygen atoms, respectively.
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If we impose the constraints of constant Si-0 and 0-0
distances in P-quartz at various values of c, this system
of equations becomes overdetermined. This means that
it is not possible to maintain the rigidity of Si04 units
in P-quartz while maintaining its symmetry. As a result,
P-quartz will never exhibit a negative Poisson ratio when
a uniaxial stress is applied along the c axis.

The motion of the tetrahedra in o.-cristobalite is illus-
trated explicitly in Fig. 6. (A discussion of all these
polymorphs is given elsewhere. ) In this figure, we have
indicated the motions of atoms, as determined from our
pair potential calculations, in the unit cells of this poly-
morph as it is subjected to a uniaxial tension. As the
c axis is extended the Si04 units in o.-cristobalite ro-
tate "outward" by increasing the Si-0-Si bridging an-
gle. From our quantum-mechanical calculations as well
as from other computations, this angle between the
units is known to be soft. The rotation of the tetrahe-
dral Si04 units allows the a lattice parameter to increase

TABLE II. Si-0 and 0-0 distances in the naturally occur-
ring crystals of low-density silica polymorphs.

s-o (A) o o (A)

2 2

Ro o, = —(1 —3y)'+ 3(1 —2x+ y)'
4 9

BO-0,4
——3a y + 4c z2 2 2 2

o.-quartz
p-quartz
o,-cristobalite

1.611, 1.608 2.607, 2.610, 2.643, 2.653
1.616 2.499, 2.669, 2.743
1.592 2.582) 2.590, 2.630, 2.640
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FIG. 6. The motion of atoms in as it is subjected to a
uniaxial tension. Note that the displayed geometry is the one
at ambient pressure and the motions of the atoms are relative
to the center of the corresponding unit cells. We have also
shown the variation of the intertetrahedral angles. The dark
and light circles are silicon and oxygen atoms, respectively.
The lattice parameters a and c are labeled here.

along with the volume of the unit cell, and a negative
Poisson ratio occurs. This behavior does not follow for
high compressive strains as the Si04 unit eventually dis-
torts as indicated by the variation in the O-O distances
in Fig. 5. o.-cristobalite and o.-quartz under tension are
similar in that the O-O distances in both these mate-
rials saturate to constant values. If sufhcient distance
occurs between the tetrahedral units, then the strain can
be accommodated by a reduction in the intertetrahedral
distances while preserving the Si04 units. This situation
is necessary for a negative Poisson ratio.

VI. CONCLUSION

In this paper, we have investigated the response of
three polymorphs of silica under a uniaxial stress along

the c axis of these crystals. This response is characterized
by their Poisson ratios. In Q.-quartz and o.-cristobalite,
we find that the Poisson ratio oi3 varies as a function of
the applied stress. In particular, it exhibits a negative
value at ambient pressure for o,-cristobalite, a result con-
sistent with recent experimental ending. We also predict
that at high values of tensile stress, o.-quartz will exhibit
a negative Poisson ratio for a loading along the c axis.
In the case of P-quartz, the Poisson ratio o'is is seen to
have a constant value over a wide range of strain. On ge-
ometrical grounds, we conclude that for a loading along
the c axis, it is not possible to maintain the symmetry of
P qu-artz and the rigidity of the Si04 tetrahedra simul-
taneously. This is the reason why this polymorph never
exhibits a negative Poisson ratio for a loading along the
c axis. We conclude that the sign of the Poisson ratio in
these low-density polymorphs of silica is a result of the
rigidity of the Si04 units that are the building blocks of
these materials.

We have applied the elastic constants from our pair po-
tential calculations to study the directional dependence
of Poisson ratios in these crystals. Even at ambient con-
ditions, o,-quartz shows a negative Poisson ratio for load-
ing in certain directions. This is even more apparent in
case of Q.-cristobalite. Thus in both these materials, the
Poisson ratio shows a strong anisotropic behavior. How-
ever, the isotropic average value is positive for the former,
whereas it is negative for the latter.
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