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The reduction in transition temperature that occurs as oxygen is removed from YBa,Cu;0,_, is ac-
companied by a rapid decrease in the size of the heat-capacity anomaly at 7,. We treat the fluctuation
effects in the context of XY-like behavior and demonstrate that their dependence on the transition tem-
perature agrees in detail with a relationship between T, and the hole concentration proposed by
Schneider and Keller. Further, we show that this empirical relationship can be understood by combin-
ing scaling arguments with the nearly antiferromagnetic Fermi-liquid model of Monthoux and Pines.

Studies of reduced-oxygen-content YBa,Cu;0,_, have
shown a dramatic reduction of the heat-capacity anomaly
associated with the superconducting transition as oxygen
is removed.!™* A consistent explanation has so far not
been developed. Furthermore, fluctuations so dominate
the behavior of the heat capacity near T, that predictions
which treat the anomaly as a mean-field jump are likely
to be invalid.>® In this paper we present an analysis
based on XY critical fluctuations and two-scale factor
universality as proposed recently by Schneider and Kell-
er.” We show that the behavior of the critical amplitude
agrees quantitatively with the reported trends in extreme
type-II superconductors and suggests a connection to the
strong-coupling theory of Monthoux and Pines,®

We have measured the heat capacity of a series of
YBa,Cu;0,_, crystals prepared at Argonne National
Laboratory (Au doped) and at the University of Illinois
(no Au doping),”!° whose properties are listed in Table I.
All but one of the crystals, sample No. 1, were annealed
at Argonne National Laboratory in the same manner.
Crystal No. 1 was annealed at Sandia National Laborato-
ry under 1 kbar or O, pressure. Crystal No. 5 was not ex-
posed to Au at any stage in its preparation. Even when
the gold doped (3 at. % of the copper atoms substituted

by gold atoms) and the undoped crystals were annealed
simultaneously, the gold-free samples have transition
temperatures which are 2—-8 K higher. Note this is not in
contradiction to other measurements, which demonstrate
that gold impurities actually raise the transition tempera-
ture, because the oxygen contents could be different. In a
previous paper we argued that the heat capacity of these
samples reflects the intrinsic properties of the supercon-
ducting transition because of an absence of any systemat-
ic dependence of the transition width, shielding fraction,
or Meissner fraction on the transition temperature.*
Heat-capacity data, as measured by a previously re-
ported ac method on Au-doped samples, are shown in
Fig. 1. All curves have been normalized to unity at 100
K. It was noted previously* that the amplitude of the
heat-capacity anomaly in “fully oxygenated” gold-doped
samples is generally 25% to 40% smaller than that of ful-
ly oxygenated non-gold-doped samples. However, when
Au-doped samples are annealed in a 1-kbar atmosphere
of oxygen the heat-capacity anomaly is nearly the same
as that seen in non-Au-doped samples. Thus, the original
discrepancy is resolved by incorporating a sufficient
amount of oxygen into the gold-doped samples. As a fur-
ther check, the heat-capacity anomaly in a reduced-

TABLE 1. Parameters from a least-squares fit of the heat capacity as described in the text, Eq. (1).
All parameters except T, and ¢, which are in units of Kelvin, are in units of mJ g™ ! K.

Crystal
No. T, A D t B, B, B,

12 91.69 1.17 4.98 0.0034 169.4 204 —80
2 90.79 1.05 3.75 0.0025 167.9 205 —21
3 89.44 0.85 1.88 0.0024 166.8 188 —50
4 88.12 0.65 1.63 0.0042 164.9 185 —64
5° 81.38 0.48 1.16 0.011 152.0 175 —53
6 77.4 0.39 1.28 0.0039 144.2 171 —50
7 75.87 0.27 0.87 0.0077 141.7 169 —25
8 59.4 <0.2 <0.3 0.002 97.0 155 N/A

# Annealed in 1 kbar O,.

® Never in contact with gold.
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FIG. 1. Heat capacity divided by the temperature and the
value of C/T at 100 K of a series of samples. The data on the
highest-T, sample with the largest anomaly were reported by
Inderhees et al. in Ref. 12.

oxygen-content Au-free sample, No. 5, has been mea-
sured and shows a behavior consistent with the samples
with gold impurities having the same T, (Fig. 1).

The behavior of reduced-oxygen-content Y-Ba-Cu-O
differs markedly from that seen in most doped supercon-
ductors. Indeed, the heat-capacity anomaly can be re-
duced significantly faster than the transition temperature
upon the addition of magnetic impurities, when the Kon-
do temperature of the impurities is approximately the
same as the superconducting T,.. Even then the reduc-
tion is more gradual than that observed here.!'! Heavy-
fermion superconductors and highly anisotropic inter-
calated compounds are notable exceptions. A marked
reduction in the size of the heat capacity in these materi-
als can occur with only a slight reduction of T,.

The heat capacity of fully oxygenated samples can be
fit assuming either that the fluctuations are in the Gauss-
ian or critical regimes. However, analysis of the field
dependence of C,, the magnetization and fluctuation con-
ductivity are consistent only with a fully critical three-
dimensional (3D) XY-like behavior.'? Note that in the
“intermediate critical region”!® the superconducting
transition belongs to the same universality class as the
superfluid transition regardless of whether the order pa-
rameter has conventional s-wave or d-wave symmetry.14
The fluctuation heat capacity in this universality class ex-
hibits a nearly symmetrical logarithmic singularity at the
transition; that is, Cq <In|t| where t=(T—T,)/T,. The
symbol ¢ will be referred to as the reduced temperature.
The approximation of a logarithmic divergence also ad-
mits the possibility of a step discontinuity at T,,. Many of
the results reported, principally the T, dependence of the
amplitude of the fluctuations and the mean-field step, are
relatively insensitive to whether the fluctuation contribu-
tions are treated as being Gaussian or critical.

One, of course, never actually observes an infinite heat
capacity. This rounding can be best modeled by assum-
ing that there is a maximum correlation length due to de-
fects, and introducing an effective reduced temperature
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t* which determines the distance from the true critical
point.!> The actual reduced temperature is related to ¢*
by t*=+[t2+(2y)*]"/2. The two parameters T,(&,,,)
and ¢, are functions of the limiting size, §_,,. The fluc-
tuation contribution to the heat capacity is then «<In(z*).
If this were the sole effect of rounding, this definition lo-
cates the transition temperature at the rounded max-
imum in C,, which is at a lower temperature than the
true transition temperature. The remanent of the mean-
field step is also affected by inhomogeneities in the super-
conductor. The rounded mean-field step is arbitrarily
modeled by the function [1—tanh(z/z,)]/2. Note, the
same results are obtained even if the rounding of the
mean step is allowed to be independent of the rounding of
the fluctuation peak. In addition, because the fits are
confined to regions and the superconducting transition,
our neglect of the slope in the mean-field heat capacity
below the transition is also not important.

The superconducting contribution is a small fraction of
C, in the vicinity of T,. The largest contribution to the
heat capacity near the transition is from the phonon de-
grees of freedom. This will be assumed to be smooth at
the transition temperature, and can easily be approximat-
ed by a second-order polynomial in the reduced tempera-
ture for temperatures near the superconducting transi-
tion. The normal electronic specific heat is a linear func-
tion of temperature and is thus accounted for by the poly-
nomial during the fit.

With these basic elements it is now possible to fit all
the heat-capacity data near the superconducting transi-
tion. We have performed a seven parameter fit of the

data using
D t
— i |1—tanh | —

—Aln(t*). (N

Ciot=Bo+B,t+B,t’+

The seven free parameters are 4, By, B, B,, D, t,, and
T,. C,, has been assigned a value of 190 mJg 'K ™! at
100 K. In order to be consistent with a logarithmic fit A4,
the amplitude of the fluctuations, is taken to have the
same value above and below the transition temperature
(A=A"=A"). A standard iterative nonlinear fitting
program was used to determine the parameters that mini-
mize the sum of the squares of the residuals. An example
of a typical fit is shown in the inset of Fig. 2. The values
of the best fit parameters for all the samples are contained
in Table I, including a single crystal'® of Yb,Ba,CugO
(sample No. 6). Only limits can be set on the parameters
for sample No. 8. The most striking trend is that both
the amplitude of the fluctuation contribution A4 and the
step D decrease dramatically as the transition tempera-
ture is lowered. The step D initially falls only slightly fas-
ter than A. This implies that the shape of the heat-
capacity anomaly remains relatively constant, so that ap-
proximating the fluctuation contributions by a logarithm
remains as valid for lower-T, samples as it is for fully ox-
ygenated ones. This is also supported by similarities in
the field-dependent heat capacity.*!* For all the samples

examined there is no systematic dependence of ¢, on T;
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FIG. 2. A comparison between the measured and predicted
ratio of the amplitude of the logarithmic term to its maximum
value (taken to be that of sample No. 1). The solid line
represents the prediction of the Schneider and Keller ansatz
[Eq. (5)] given constant anisotropy and the dashed line, the re-
sult of the Monthoux-Pines T, [Eq. (6)]. Sample No. 8 gives
A/A,=0.18 at T, /T**. The diamond is sample No. 5 and
the square is sample No. 6. Inset: An example of a typical fit
(sample No. 4). The lower curves represent the smooth back-
ground and the step in the heat capacity associated with transi-
tion while the line through the data points is calculated with pa-
rameters presented in Table I.

thus, the reduction of 4 is not due to increased rounding.
In any case the fitting procedure should correct for the
effects of rounding.

Recently, Schneider and Keller’ argued that many
properties of extreme type-II superconductors follow
from an unusual relationship between the transition tem-
perature and Ay ,,, the zero-temperature London
penetration depth for fields along the ¢ axis. A similar
connection was first pointed out by Uemura et al.!” An
optimal composition for these materials is assumed to ex-
ist at which point 7, has its largest value 7."** and the
penetration depth, its smallest value, which we denote
nonetheless as Ag%,. The transition temperature for
nonoptimal compositions can be written as

T 2 2

c

max
TC

max
0,ab

max

1 0,ab

2

()

7\'0, ab }"0, ab

From this assumption a direct calculation of A4 is made
possible by exploiting two-scale-factor universality.'®
The key element is a long-overlooked relationship among
T,, Ag,qp> and the transverse, or phase, coherence length
g({ «» Which, for type-II superconductors in the intermedi-
ate XY critical regime, is given by

T,=(6.24X107 AK)EL /A3 4 - 3)

A further result of hyperscaling is a relationship between

the amplitude of the fluctuation heat capacity below T,

and the phase coherence length, which can be written
19

as

1
A~ =mkyR} mc(goT,a,,P] , @)
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where R;=~0.8 for the 3D XY model. If we ignore
changes in the effective mass ratio with doping, §0T, o 18
proportional to §0T, abs and Aq ,, and é‘({ . can be eliminated
from Egs. (2)—(4) to give

q-

A max
In Fig. 2, we have plotted the predictions of Eq. (5) along
with the measured values A4 (T,)/ A(92 K) for the first
seven samples listed in Table I. Including the effects of
anisotropy changes, the same procedure predicts a faster
reduction in A4 by a factor of (mg, /m ) (m, /Mgy ) max-

Because of the large lattice background inherent in the
high-temperature superconductors, the uncertainty in the
values of A is quite large. One measure is to vary 4 so as
to double the sum of the squares of the residuals while al-
lowing all other parameters to vary. However, the pa-
rameters are strongly covariant, and this procedure pre-
dicts an uncertainty of 25% for sample No. 3 and up to
100% for samples with lower T,. The conventional
fitting routine returns very small standard errors, less
than expected from the apparent scatter in the data.
Thus we cannot objectively distinguish between the two
models that are shown on Fig. 2.

Overall, the parabolic ansatz of Eq. (2) and the hyper-
scaling results provide a remarkably consistent picture
for the reduction in the fluctuation amplitude, associating
it with a significant increase in the coherence volume as
T, is lowered. As a further check on the applicability of
hyperscaling, we eliminate the transverse coherence
length between Eqgs. (3) and (4), and use experimentally
determined values of Aq ,, =1480 A and m_/m,, =25 to
predict A =1.3 mJg 'K™! for 92-K samples.?® This
is in excellent agreement with the value of
A=1.2 mJg 'K ! determined by fitting the heat capa-
city of sample No. 1.

The relationship expressed in Eq. (2) is quite unexpect-
ed from conventional theories of superconductivity.
However, we will demonstrate that it follows from
the nearly antiferromagnetic Fermi-liquid model of
Monthoux and Pines,® when some simple scaling assump-
tions are made. In this model, a phenomenological sus-
ceptibility x(Q) is constructed to correctly explain NMR
Knight shift and relaxation data. A constant g measures
the coupling between spin degrees of freedom and the
quasiparticles, yielding an expression for T, through the
Eliashberg equations.”’ An expression relating T, to g
has been derived, reminiscent of the related BCS equa-
tion, which can be written as 7. =T exp(—1/A), where
A=0.32N(0)g, T is a magnetic energy, and N (0) is the
tunneling density of states at the Fermi surface. In
analyzing reduced oxygen samples, Monthoux and
Pines made the remarkable observation that
g (Q =0, T.) appears to be constant. We assume that
for this quasi-2D system, the density of states is simply
proportional to the quasiparticle density n, so that we can
write

T,
(6)

1/271-3

(5)

=eXx
rmax PR n[1+Fa(n)]

max

M [ 1+ F&(7 )] ]“2
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Here, we have assumed that Y(Q =0,T.,) is proportional
to N(0)/(1+F§), that we can express the pseudo-Fermi-
liquid parameter F§(n)=fn /n_,,, and that A_,, is the
coupling constant at T;"®*. In their strong-coupling cal-
culation, Monthoux and Pines obtain A_,,=0.72. In
Fig. 3 we plot the ansatz equation (2), expressed in terms
of the quasiparticle density ratio n /n,,, along with the
curve calculated from Eq. (6) with f=—0.45. The
agreement is quite remarkable. As a further test, we have
combined the critical-temperature ratio from Eq. (6) with
Eq. (3) to calculate the heat-capacity ratio as in Eq. (5).
This is plotted on Fig. 2 (dashed line). We caution that
the uncertainty in the experimental data precludes any
decision as to which curve is in better agreement with the
experiment. As a final test, we calculate the suscepti-
bility at T,. The experimental ratio®® is (T, =60 K)/
x(T,=90 K)=0.25; the model gives 0.27.

In summary, we have shown that the Schneider-Keller
ansatz, combined with hyperscaling results, provides a
detailed explanation for the strong decrease in the fluc-
tuation amplitude observed in this cuprate superconduc-
tor. Because a consistent fit indicates that the fluctuation
term is the largest contribution to the heat-capacity
anomaly, it can be said that this ansatz gives a descrip-
tion of the reduction of the heat-capacity anomaly with a
reduction of the oxygen content. Further, we have
demonstrated that the Monthoux-Pines model is capable
of reproducing the dependence of T, on the quasiparticle
density if the pseudo-Ferm-liquid parameter F§ increases
from —O0.4 at the optimal concentration through —0.16
for T.=60 K to zero for the concentration at which T,
vanishes.
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FIG. 3. A comparison of the functional form of the depen-
dence of the transition temperature on the carrier density as
predicted by the Monthoux-Pines model and the approximation
by Schneider and Keller.
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