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Stability of bunched fluxons in magnetically coupled Josephson junctions
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The stability of bunched Quxon states in inductively coupled Josephson junctions is analyzed for
Quxons of both equal and opposite polarity. We demonstrate that unipolar Quxons may form stable
bunched states if the velocity is above a given threshold. The stability of these bunched states is
based on the existence of two characteristic velocities in the coupled system. The result of analytical
stability analysis is in excellent agreement with the results of numerical simulations.

Systems of coupled long Josephson junctions (LJJs)
present intriguing possibilities as tunable Huxon oscilla-
tors, since various coupling mechanisms have proven to
synchronize Huxon motion in the individual junctions.
In particular, coupling mechanisms that are distributed
along the spatial dimension of the junctions have
proven not only to produce phase locking of Huxon mo-
tion, but also effects like mode dependent characteris-
tic velocities ' and hyperradiance. These effects, ex-
plained by the usual sine-Gordon model for the LJJ, rise
from the fact that the distributed coupling mechanism
breaks the Lorentz invariance of the model and thereby
introduces new phenomena to the dynamics. In this
paper we will consider the inductive coupling between
two LJJs. ' The stability of bunched states of Hux-

ons is analyzed and it is found that the repulsive state
of bunched unipolar Huxons may be stable when mov-
ing at high speed. This result, confirmed by numerical
simulations, is closely connected to a splitting of the char-
acteristic velocity of the coupled system. We show how
this bunched state of unipolar Huxons will manifest itself
in real experiments and we discuss the properties of the
emitted power from this mode. The attractive state of a
Huxon and an antiHuxon is found to be stable regardless
of speed, as is well known. '

The equations of motion for the Held variables in the
two I.JJs are '

g 0'tt sin 0' ~4't "tl

where the phases P and g represent the quantum mechan-
ical phase difFerence over each of the junctions. The spa-
tial dimension is normalized. to the characteristic Joseph-
son length and the time dimension is normalized to the
inverse plasma frequency of the junctions. Tunneling of
quasiparticles is described by the dissipative terms 0;
and the external bias current, normalized to the critical
current of the junctions, is given by g, . The magnetic
coupling parameter, 4, is a coupling constant given by
the geometry of the system (0 ( A ( 1).4' The equa-
tions (2) describe a system of identical junctions. In re-
ality, this cannot be obtained and some difFerences will

be found in the characteristic lengths, times, and dissi-
pation parameters of the two junctions. However, the
purpose of the present paper is to demonstrate stability
of certain modes in the coupled system and it is there-
fore a convenient choice to consider identical parameters
for the two junctions. For a study of systems of different
characteristic parameters see Ref. 5.

The fundamental bunched soliton solution to the un-
perturbed system (i.e. , for n = g, = 0) is given bys

(v1+ o&) 41+ ob,

(2)

where Pl l = t7@l ), u is the velocity of the wave, and
(u) = /1 —u2. This traveling wave solution to Eq.

(2) can be sustained in the system for n g 0 when
= og2, where ~ = +1 denotes if the solution con-

sists of Huxons of equal (+1) or opposite (—1) polarity.
The above solution to the unperturbed system describes,
however, only the special case where the two solitons have
the same spatial coordinate. In general the solitons can
be represented with individual parameters and, in the
case when they are well separated in space, each soliton
can be expressed (to first order in A) by

pt'l = o.gt l = 4tan '[—exp(p(u)(z —ut))].

By writing the energy of the system as

H=
2 +2 &+1 —cos dx

+ 2 + 2 g +1 —cos dx+4 ~ ~dx

(4)

we can compare the energies of the different modes in
the system by inserting the difFerent solutions into the
energy expression. We hereby obtain the energy of the
bunched mode equation (2),

a, =1«1+~&&
I

( u
(5)1+os)

The energy of the mode of separated solitons is given (to
first order in A) bys
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p v
(1 + E)p~~ —ptg —2 sill —cos —= npg —gi —g2, (7)

V P(1 —4)v~~ —vga —2 sin —cos —= nvg —'l7i + gz.
2 2

As can be seen directly f'rom Eqs. (7) and (8) the p, and
the v fields evolve on di6'erent time scales, v being limited
by u, = Ql —A and p limited by u = pl+ b, . For
o' = 1 (q = rh ——g2) we can now analyze the stability
of the traveling bunched mode equation (2), by setting
p = 2$~sl and consider ~v~ && 1 in order to linearize
Eq. (8). In the following, we will assume 0 = 1 unless
otherwise specified. For a traveling steady state of two
bunched solitons we then obtain

p uo!
pgg

—2 sin —= — p,g
—2'g

Ql —u2+ E (9)

(8)

H, = 16'(u) + 80.4p(u) . rp(u)
(6)sinhrp u

where r is the spatial separation between the kinks. From
this expression, we clearly see that kinks of equal polar-
ity (cr = 1) will repel each other while kinks of opposite
polarity will attract each other. This interaction between
Quxons has been verified in Refs. 3, 9, and 11 for flux-
ons of opposite polarity. However, the simple energy ex-
pression Eq. (6) does not capture the complicated wave
nature of the problem. It appears, as we will see below,
that the bunched state of equal polarity fluxons (o = 1)
is in fact stable in the high velocity regime.

The origin of the stability of the bunched 0 = 1 mode
can be found in the multiple characteristic velocity nature
of the coupled equations (1). Writing the equations for
the sum, p = P+ Q, and the difFerence, v = P —g, of the
two fields, we obtain,

v'1+ a = u ) ~u~ ) u. = v'1 —a

and unstable otherwise. From Eqs. (11) and (19) the
bias current density necessary for a stable bunched state
is found to be

1 & ~q~ & g. = 2v 2n7r 'gA-' —1. (19)

Since stable fluxon propagation in dc driven junctions is
only possible for ~g~ & 1 we can further obtain a minimal
value of the magnetic coupling parameter for which the
bunched state of unipolar fluxans can be stable. From
Eq. (19) we find that the coupling parameter must obey
the following condition in order to make the unipolar
bunched state possible:

4 ) A., = 8n'/(8n2+ vr'). (2o)

First we note that the exponential factor in Eq. (16) is
a phase factor which does not acct the stability analy-
sis. Equation (13) represents the eigenvalue problem for
the stability of the bunched pair. For A ) 0 we observe
a potential well in the equivalent Schrodinger problem,
where u ( 0 implies instability. A changes sign when u
exceeds 1 —4, and thus changes the potential well into a
barrier. The solutions are all extended waves and consti-
tute Cherenkov radiation. In this case all solutions to Eq.
(13) do not diverge and the bunched state is stable. De-
tailed analysis follows in a longer publication elsewhere.

We conclude that the bunched state of two unipolar
fluxons is stable in magnetically coupled long Josephson
junctions if the normalized velocity of the mode is in the
interval,

( = (z —ut)/Ql —u'+ A. (io)
Using the adiabatic perturbation technique, i2 Eqs. (7)
and (9) give the power balance velocity of the bunched
xIlode)

K=l—
1 —u2 —L

v = g($) exp( —s$), (16)

v 1 —u2+ A
e = iud

1 —u2 —L (17)

u = gl + O.A gl + (7rg/4n) z.
4o.

Having fixed the overall motion of the bunched soliton
pair by the power balance, we set a. = 0, gq

——g2 in
Eq. (8) and describe the internal motion of the bunched
solitons by an angular &equency ~, given by

8/Bt = (8$/Bt) 8/8( +is) . (»)
Using the identity cos P& l = 1 —2 sech (, we obtain the
following equation from Eq. (8):

A(gt —(r —2 sech (}(= 0 (is)
where

1 —u
1 —u2+ 4

The stability of the bunched mode of unipolar fluxons
has been verified by numerical simulations of the system
defined by Eq. (2) with periodic boundary conditions,

$(o, t) = $(L, t) + 2m, @(O,t) = Q(L, t) + 2mcr

where L is the length of the system. In order to simu-
late an infinite system size we have chosen L = 20 for all
our simulations. The bias current density, g = gz

——g2, is
identical for the two junctions (rr = 1). In Fig. 1 we show
a typical normalized current-voltage (I V) curve for th-e

system, where the normalized voltage V is given by the
fluxon velocity, u = VL/7r. The I Vcurve is here s-hown
for L = 0.2 and o. = 0.1. We initiated the system at high
bias current (q) with a soliton in each system separated
by dx = 0.05 in space. After a transient time of 1000 nor-
malized time units, we measured the voltage (V = (Pq))
across the junctions. In changing the bias current by
g = 0.001 we introduced a small disturbance in the P
Geld in order to break a perfect symmetry between the
two systems. In this way we made sure that any instabil-
ity of the current mode would present itself. As can be
seen from Fig. 1 the high bias situations show a solitan
speed with asymptote u = gl + A, inherent for the
bunched state equation (2) (o = 1).9'i3 In decreasing the
bias current we see that the bunched state continues to
exist until the velocity u, = v'1 —E is reached. At this
point there is a jump in the I-V curve implying splitting
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FIG. 1. The normalized fluxon velocity u as a function
of the normalized bias current density g. Parameters are
n = 0.1, A = 0.2, I = 20, and cr = 1. The dash-dotted line
indicates the asymptotic velocity u for the bunched travel-
ing wave solution equation (2) for rr = 1. The dashed lines
indicate the boundary for the stability of the bunched mode
as given by Eqs. (18) and (19). The inset shows the total
energy of the system as given by Eq. (4).

I'IG. 2. The lower limit in bias current, g, as a function
of the coupling strength A. Parameters are L = 20 and cr = 1.
The markers indicate the results of numerical simulations;
a = O. l; 0: o, = 0.05. The solid lines represent the analytical
expression Eq. (19). The insets show the comparison between
the numerical data (markers) and the analytical expression
for the critical velocity equation (18).

Hs —H, = 8A/1+ (7ril/4n)2. (21)

We have tested the criterion for the stability of the
bunched mode for many diferent parameter sets. In Fig.
2 we have shown the switching points in bias current for
two dlrrerent dissipation parameters and for varying cou-
pling strength. The results of the numerical simulations
are shown as markers and the analytical results Eqs. (19)
and (20) are shown as solid curves. The markers (&)
represent simulations with n = 0.1 and the markers (0)
represent o. = 0.05. As is evident from this figure, the
analytical expression fits the numerical data excellently.
The only deviation between the numerical data and the
analytical expression is for low 4 and high o.. This devia-
tion is quite understandable within the &amework of the

of the solitons &om the bunched mode to the separated
mode. The separated solitons have a shape roughly given
by Eq. (3) and do therefore have a smaller velocity for
the given bias current. Increasing the bias current &om
below g, the solitons stay separated as predicted by the
system energy equation (6), that shows that the energy
of the bunched state is always larger than the energy
of the separated state when o = 1. This fact is con-
firmed by calculating the total energy equation (4) from
the numerical solutions. We have shown the energy in
the inset of Fig. 1, where the energy of the bunched state
clearly is higher for all values of the bias current where
the bunched state exists as a stable object. Even at the
transition point, g„ the energy of the bunched state is
higher than that of the separated state. From Eqs. (5)
and (6) this difFerence in energy can be estimated to be
(first order in A)

adiabatic perturbation technique, since we have used
the unperturbed solution equation (2) to calculate the
power balance between g and o. in order to arrive at Eq.
(20). For high bias values the real kink solution is not
well described by Eq. (2) and consequently, the analyti-
cal result does not agree completely with the numerical
data. However, looking at the insets of Fig. 2 we see
that the velocity criteria for the existence of the bunched
state is verified completely even for small values of L
(high values of rl).

In conclusion, we have found a criteria for the stability
of bunched. unipolar fluxon modes in magnetically cou-
pled 3osephson junctions. These states, unstable when
moving at low velocities, have been found to be stable
above the characteristic velocity, u, = gl —4 even)

though the energy of the bunched state has been shown
to be larger than the energy of the state of separated flux-
ons. The origin of the stability of these states has been
understood as a result of a mismatch between the trans-
lational velocity of the mode and the velocity at which
a small deviation from the bunched state can propagate.
It is important to realize that this mechanism for bunch-
ing is diferent from other binding mechanisms encoun-
tered in the sine-Gordon system. Bunching of attractive
fluxons is based solely on the energy ', and bunching of
Buxons belonging to the same system is due to details in
the &iction forces.

The stability of bunched unipolar fluxons is also impor-
tant for the study of propagation of Bux Bows in magnet-
ically coupled long Josephson junctions. This has pre-
viously been studied analytically for the repulsive inter-
action between the fluxons, but not for the bunched
mode as described in this paper.



STABILITY OF BUNCHED FLUXONS IN MAGNETICALLY. . . 16 163

We note that the stability of the attractive mode (cr =
—1) can be found to be stable for all relevant velocities
(0 ( ~u] ( gl —A) by use of the above stability analysis.
This is consistent with the energy consideration, since the
at tractive bunched state is always a lower energy state
than that of the separated state [see Eqs. (5) and (6)].
However, a simple energy argument cannot be used to
prove the stability of the o. = 1 mode, since no good
ansatz for the kink profiles is known when the fiuxons
are close, but not identical.

Let us Anally comment on the possible output eff'ect
emitted from the bunched modes. In Ref. 11 it was
demonstrated that the attractive bunched mode (o
—1) can exhibit hyperradiance, i.e. , the bunched state

can emit more than four times the power than a single
fluxon state can at a given frequency (velocity). This
result is based on the fact that the o. = —1 state has
its asymptotic velocity decreased &om that of the single
soliton state. Since the o = 1 state shows a larger asymp-
totic velocity compared to that of the single soliton state,
we then conclude that the bunched unipolar Quxon Inode
cannot exhibit hyperradiance —in fact, it may not even
be able to show superradiance.
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