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Coupled dynamics of fast spins and slow interactions: An alternative perspective on replicas
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It is shown that an Ising spin system in which both spins and interactions evolve in time according to
dynamical laws suggested by neural processes, but with widely separated timescales, leads to a thermo-
dynamic equilibrium corresponding to a system of averaged replicas, where the replica number can take
any real value determined by the ratio of characteristic temperatures. The resultant phase structure has
interesting features which are explored.

In this paper we show that a simple model of coupled
dynamics of fast spins and slow interactions, stimulated
by considerations of simultaneous learning and retrieval
in recurrent neural networks, leads naturally to an
effective statistical mechanics characterized by a parti-
tion function which is an average over a replicated sys-
tem. This latter is reminiscent of the replica trick used to
consider disordered systems, such as spin glasses, but
with the important difference that the number of replicas
has a physica/ meaning as the ratio of two characteristic
temperatures and can be varied throughout the whole
range of real values. We further demonstrate that the
model has interesting phase consequences as a function of
varying this ratio, and external stimuli, and that it can be
extended to a range of other models.

As the basic archetypal model we consider a system of
Ising spins cr; E [

—1, 1 j, i E- [1, . . . , N j, interacting via
continuous-valued symmetric exchange interactions J;,
which themselves evolve in response to the states of the
spins.

The spins are taken to have a stochastic field-alignment
dynamics which is fast compared with the evolution rate
of the interactions J;, such that on the timescale of J, .

dynamics, the spins are effectively in equilibrium accord-
ing to a Boltzmann distribution,

P (~ )
( [ tr, j ) cc exp [ I3H

t J )
( [cr; j

—)],
where

H(~ )
( [tT; j ) = —g J; cr;cr.

i&j

and the subscript [J;.j indicates that the [J; j are to be
considered as quenched variables. In practice, several
specific types of dynamics which obey detailed balance
lead to the equilibrium distribution (1), such as a Markov
process with single-spin-Hip Glauber dynamics. ' The
quantity P is an inverse temperature characterizing the
stochastic gain.

For the J; dynamics we choose the form,

d 1 1
J,, = (tT, oj)(~ )

——PJ,j+ rj;J(t) (t (J),
(3)

where ( . . )(J )
refers to a thermodynamic average

tj
over the distribution (1) with the effectively instantaneous

[J, j, and ri,j(t) is a stochastic Gaussian white noise of
zero mean and correlation

lij(t)nkl(t ) ~ 2+~ 5(ij) (kt)~(t

The first term on the right-hand side of (3) is inspired by
the Hebbian process in neural tissue in which synaptic
efficacies are believed to grow locally in response to the
simultaneous activity of presynaptic and postsynaptic
neurons. The second term acts to limit the magnitude of
Jj; P is the characteristic inverse temperature of the in-
teraction system. (A related interaction dynamics
without the noise term, equivalent to P= ~, was intro-
duced by Shinomoto. ) Generalizing spin systems by con-
sidering the interactions to be slowly time dependent was
also proposed by Horner. There are, however, impor-
tant differences with our approach: we define explicit sto-
chastic dynamical laws for the interactions and arrive at
a direct physical interpretation for the replica dimension
n of a corresponding spin-glass model in terms of param-
eters controlling the two dynamical processes. Further-
more, our dynamical laws provide a clear link to neural
network theory.

Substituting for (cr;o )in terms of the d. istribution (1)
enables us to rewrite (3) as

N~ Jj= — &([Jj.j )+ N g;j(t),

where the effective Hamiltonian &( [J; j ) is given by

&( [J, j ) = ——inZ&( [J;, j ) + pN Q J;j, —1 1

i &j

where Z&( [J; j ) is the partition function associated with
(&):

Z&([J;.j )= Tr exp[ I3H(J )([cr; j)] . —
tj

~e now recognize (4) as having the form of a I.angevin
equation, so that the equilibrium distribution of the in-
teraction system is given by a Boltzmann form. Hence-
forth, we concentrate on this equilibrium state which we
can characterize by a partition function Za and an associ-
ated free energy I'&..

0163-1829/93/48(21)/16116(3)/$06. 00 48 16 116 1993 The American Physical Society



48 BRIEF REPORTS 16 117

Z = dJ" Z J" "exp ——pX J"
i&j i &j

(6)

f g,. ,jdJ;, &@([o;j; [J;,j) &( )e
—p&(I J,, I }

Xli &j &J

where the bar refers to an average over the asymptotic
I J; j dynamics.

The form (6) with n ~0 is immediately reminiscent of
the effective partition function which results from the ap-
plication of the replica trick to replace lnZ by
lim„~(1/n)(Z" —1) in dealing with a quenched average
for the infinite-ranged spin glass, while n =1 relates to
the corresponding annealed average, although we note
that in the present model the timescales for spin and in-
teraction dynamics remain completely disparate. These
observations correlate with the identification of n with
P!P, which implies that n ~0 corresponds to a situation
in which the interaction dynamics is dominated by the
stochastic term rl; (t), rather than by the behavior of the
spins, while for n = 1 the two characteristic temperatures
are the same. For n ~ ao, the inhuence of the spins on
the interaction dynamics dominates. In fact, any real n is
possible by tuning the ratio between the two P's. In the
formulation presented in this paper n is always non-
negative, but negative values are possible if the Hebbian
rule of (3) is replaced by an anti-Hebbian form with
&cr;o & replaced by —&o;o & (the case of negative n is
being studied by Mezard and co-workers ).

The model discussed above is range-free (infinite-
ranged) and can, therefore, be analyzed in the thermo-
dynamic limit N —+ 00 by the replica mean-field theory as
devised for the Sherrington-Kirkpatrick (SK) spin
glass. ' ' This can be developed precisely for integer
n ' and analytically continued. In the usual manner
there enters a spin-glass order parameter,

F&
= ——P '1nZ&,

where n =P/P. We may use Z& as a generating function-
al to produce thermodynamic averages of state variables
N( [cr; j; [J,~ j ) in the combined system by adding suitable
infinitesimal source terms to the spin Hamiltonian (2):

H (~ )
( [cr; j )~H

(I )
( [ a; j ) +A,CI( [a, j; [J,"j ),

dF~
lim =

& @([ cr; j; [J;~ j ) & (z ),

&( [J;) j )~&( {J, j ) —g J, Ic, "

in (2) and (5), respectively. These external fields may be
viewed as generating fields in the sense of (7); for exam-
ple,

BF—,', =&, &, „'„=p[&,&&, &-&,&&, &]
I 1 J

+P[&o,a, &
—&cr, &&o, &],

BF
are

cJ

"r) F =P[J,Jki JijJki] . —
ij kl

For neural network models, a natural first choice for
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while Z& is proportional to exp[NextrF( [qr j )]. In the
replica-symmetric region (or ansatz) one assumes q r =q.

We will choose as the independent variables n and P,
taking J—= (p„) 'r =1, and briefiy discuss the phase pic-
ture of our model (fuller details may be found else-
where' ). The systein exhibits a paramagnetic (q=0) to
spin-glass (q &0) transition at a critical P, (n). For n 2
this transition is second order at P, = 1, down to the SK
spin-glass limit, n —+0, but for n )2 the coupled dynam-
ics leads to a qualitative, as well as quantitative, change
to first order. The transition temperature and the corre-
sponding value of the order parameter q are shown in
Fig. 1 as a function of n. Replica symmetry is stable
above a critical value n, (P), at which there is a de
Almeida-Thouless (AT) transition (cf. Kondor"). As ex-
pected from spin-glass studies, n, (P) goes to zero as Pl 1

but rises for larger P, having a maximum of order 0.3 at P
of order 2. Thus, for n & n, (max) =0.3 there is no insta-
bility against small replica-symmetry-breaking Quctua-
tions, while for smaller n there is reentrance in this stabil-
ity. The onset of local-replica-symmetric (RS) instability
for various temperatures is shown in Fig. 2.

Several simple Inodifications of the above model are
possible. One consists of adding external fields to the
spin dynamics and/or to the interaction dynamics, by
making the substitutions,

H(~ ) ([o; j )~H(J
)
([o, j ) gg—, o, ,

qr =& ',~; &(g )
(y&&),

where the superscripts are replica labels. q~ is given by
the extremum of
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FICx. 1. The P—+SG transition for various n, at JO=O, J=1.
For n )2 the transition is first order, but is second order else-
where. The inverse spin temperature P at the transition is
shown on the left; the corresponding value of q (in the SCx

phase) is indicated on the right.
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FIG. 2. The AT line as a function of the inverse spin temper-
ature P for J0=0, J= l.

the external fields would be 8; =h g; and K,.

E:g;gj,—g;HI —1, 1}, where the g, are quenched ran-
dom variables corresponding to an imposed pattern.
Without loss of generality all the g; can be taken as +1,
via the gauge transformation cr; ~o.;g;, J;.~J; g;g .
Henceforth, we shall make this choice. The spin-
perturbation field h induces a finite magnetization
characterized by a new order parameter

m =(cr, ),
which is independent of n in the replica-symmetric as-
sumption (which turns out to be stable with respect to
variation in this parameter). As in the case of the spin
glass, there is now a critical surface in (h, n, P) space
characterizing the onset of replica-symmetry breaking.
In introducing the interaction perturbation field K we
find that K/p is the analog of the mean exchange Jo in
the SK spin-glass model, J—:(/3np) ' being the analog
of the variance. If large enough, this field leads to a spon-
taneous "ferromagnetic" order. Again we find further
examples of both second- and first-order transitions (de-
tails can be found in Ref 10). For the paramagnetic (P;
m =0, q =0) to ferromagnetic (F; m&0, q&0) case, the
transition is second order at the SK value PJo = 1, so long
as (PJ ) + 3n —2. Only when (PJ ) (3n —2 do the in-
teraction dynamics influence the transition, changing it
to first order at a lower temperature. Regarding the fer-
romagnetic to spin-glass (SG; m =0, qWO) transition,
this exhibits both second-order (lower Jo) and first-order
(higher Jo) sections separated by a tricritical point for n

less than a critical value of the order of 3.3. This tricriti-
cal point exhibits reentrance as a function of n.

A di6'erent type of generalization is to consider the
whole system as of lower connectivity with only pairs of
connected sites being available for interaction upgrade.
For example, the system could be on a lattice, in which
case the corresponding coupled partition function will
have the usual greater complication of a finite-
dimensional system, or randomly connected with each
bond present with a probability C/N, in which case there
results an analog of the Viana-Bray' spin glass. In each
of these cases the explicit factors involving N in the I J; I
dynamics (3) should be removed (their presence or ab-
sence being determined by the need for statistical
relevance and physical scaling).

Yet another generalization is to higher-order interac-
tions; for example, to p-spin ones:

H(~)(Icr;I)= — g J;;o; cr; . . o;

with corresponding interaction dynamics,

+ —71, , (t),1

or to more complex spin types.
Thus we see that a coupled dynamics of fast spins and

slow interactions, in which the evolution of interactions
is defined by the chosen stochastic laws, present the repli-
ca method from a novel perspective, providing a direct
interpretation of the replica dimension n in terms of pa-
rameters controlling dynamical processes and leads to
new phase transition characters. As a model for neural
learning, the example presented here is, however, only a
first step, with h and K as introduced corresponding to
only a single pattern. Its adaptation to treat many pat-
terns is the next challenge.
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