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Magnons in two-dimensional spin glasses: The high-field limit
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The linearized magnetic excitations (magnons) in a two-dimensional +J Heisenberg spin glass are in-

vestigated in the limit where the field is assumed to be strong enough to set up complete alignment of the
ground state. The density of states, the localization indices, and the dynamic structure factor at zero
temperature are computed by numerical simulation techniques. A comparison is made between the nu-
merical results for the density of states and the dynamic structure factor and the predictions of the
coherent-exchange approximation. Numerical results at zero field are also presented.

I. INTRODUCTION

In a recent paper, ' we investigated a three-dimensional
+J Heisenberg spin glass in a strong field using numerical
techniques and the coherent-exchange approximation
(CEA), a variation of the coherent-potential approxima-
tion. The CEA semiquantitatively reproduced the nu-
merical data for the magnon density of states and the dy-
namic structure factor for a cubic lattice. We also investi-
gated a one-dimensional version of the model which can
be connected formally to the electronic disorder prob-
lem. Here the CEA quantitatively accounted for the nu-
merical data in the low-energy regime and the exact cal-
culations done for the electronic disorder problem in the
weak disorder limit.

In this paper, we study the high-field behavior of the
magnons in a two-dimensional +J Heisenberg spin glass
using numerical simulation techniques and the CEA. The
field is assumed to be sufFiciently large to align the ground
state completely, in contrast to zero field, where the spin
glass is known to have a noncollinear frustrated ground
state, which makes the problem very hard to cope with
using conventional methods. In the high-field limit, the
spin-glass system is intermediate in complexity between
the spin glass in zero field and the ideal ferromagnet. The
investigations reported in this paper are suggested by the
work of Shender who used the effective-medium theory
to calculate the low-lying collective excitations of the
spin glass in the high-field limit. In this paper, we calcu-
late the magnon density of states and the localization in-
dices (or inverse localization lengths), and the dynamic
structure factor at zero temperature for the entire spec-
trum using numerical methods and compare with the pre-
dictions of the CEA—which reduces to the effective-
medium theory at low energies.

The Heisenberg spin-glass Hamiltonian is written

HQSJ' gJ;1S;—SJ, —
j (i j)

where H is the applied field (in units of gptt), and ( ) im-

plies that summation is over the nearest neighbors. The

exchange interactions J;. are independent random vari-
ables with a distribution

The magnon density of states, the localization indices,
and the zero-temperature dynamic structure factor in the
high-field limit are all defined in Ref. 1. Here, they are
presented for a square lattice for c =0.05, 0.1, 0.2, 0.3,
0.4, and 0.5 (the results for c )0.5 are obtained from the
data for c &0.5 by reflection about E =H). In all cases,
J =S =1, so that the magnon bandwidth when c =0 and
1 is equal to 8. Thus, the magnon energy can take any
value between H —8 and H + 8 for a random distribution
of the bonds.

II. RESULTS

Here the numerical and the CEA calculations of the
density of states, the localization indices, and the zero-
temperature dynamic structure factor are presented. Fig-
ure 1(a) is a histogram of the magnon density of states for
various c values. The data are obtained from 5
configurations of a 24X24 array with periodic boundary
conditions. As the concentration increases, the density of
states shifts towards the lower edge of the spectrum.
That is, the magnons are distributed between H and
H+8 when c =0 and between H —8 and H when c =1,
and they are symmetrically (in the thermodynamic limit)
distributed about H when c =0.5. For c &0.5, there are
two main peaks at E H=0 and E —H=4 (energy i—s
also measured in units of J); however, the peak at high
energy increases as the concentration decreases, while the
low-energy peak is not affected by changing the bond
concentration. When c =0, the peak at E —H =4 be-
comes the logarithmic singularity of the two-dimensional
ferromagnet.

The CEA results for the density of states are shown in
Fig. 1(b). For a square lattice, we tonk the site Green's
function to have the approximate form
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(Go(E)) = —1/[8mJ, (E)]

XlnI [E H——8J, (E)]/(E —H) j, (3)

where J,(E) is the coherent-exchange integral character-
izing the random medium and is determined self-
consistently (see Ref. 1). One is forced to use an approxi-
mate expression for the Green's function in order not to
accumulate numerical errors when J, is determined self-
consistently. The density-of-states plots clearly predict
the shift towards the lower edge of the spectrum as the
concentration increased as we11 as the peak at E —H =0.
The absence of the peak at E —H =4, which is present in

jc = 05

the numerical data for c ~0.2, is a consequence of our
having used an approximate Careen's function corre-
sponding to a Cat density of states, 0~I. —0 « 8, when
c =0. For c =0.5, the distribution is symmetric about
the point E =H. The CEA also predicts long tails at
both ends of the density of states; however, the tail in the
high-energy side of the spectrum is inconsistent with the
data.

Figure 2 shows the localization indices L for various
values of c for single configurations of 24X24 arrays.
For finite number of spins N, the 1., ' [as defined in Eq.
(5) of Ref. 1] is a measure of the number of sites on which
the mode has significant amplitude. Thus I. -X indi-
cates the extended states. For c =0.05, the modes where
E —H & 0 are localized, while the other modes are nearly
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FIG. l. (a) Histograms of the magnon density of states for the
high-field limit for various concentrations. Data are obtained
from five configurations of a 24X24 array. All the histograms
have the same area. (b) Density of states obtained from the
coherent-exchange approximation for various values of e. All
curves have the unit area, imaginary part of the energy c =0.5.
The curves are to be compared with the corresponding histo-
grams shown in (a). Energy is measured in units of J (=S= 1).
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FIG. 2 Localization indices I. for various concentrations
obtained from a single configuration of a 24X24 array. Simi1ar
results are obtained with other configurations. J=S=1, and
energy is measured in units of J. Vertical scales in all panels are
between 0 and 0.4.
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localized —a result that is consistent with the findings of
Ref. 4. The localized modes also appear at the top of the
band as the disorder increases.

The zero-temperature dynamic structure factors for
single configurations of 24X24 arrays are shown in Fig.
3(a). The dynamic structures are calculated using Eq. (8)
of Ref. 1 with +=0.5 in the exponential cutoff factor for
the wave vectors Q=(n/8)(n, n) with n =2, 4, 6, and 8.
The peaks in the dynamic structure factors broaden and
move to the lower edge of the spectrum as the negative
bond concentration is increased. The broadening of the
peaks reflects the fact that Q is not a good quantum num-
ber for systems with no translational invariance. For

small concentrations (c (0.4), a tail develops on the
low-energy side which evolves eventually into a satellite
peak at higher concentrations. For c =0.5 the peaks are
symmetric (in the thermodynamic limit) about E =H and

Q (n =2) is peaked at E =H. This is explained in Ref. 1

as a "kinematic eff'ect. " Since the total spin QSJ com-
mutes with the exchange part of the Hamiltonian [Eq.
(1)], the dynamic structure factor for Q=0 consists of a 5
function centered at E =H. For Q-O, the 6 function
broadens to a narrow peak.

The CEA results for the dynamic structure factor [Fig.
3(b)] are in better agreement than those for the density of
the states. In the calculation of the dynamic structure
factors we have used Eq. (17) of Ref. 1 with the imagi-
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FIG. 3. (a) Dynamic structure factors for various values of c
for the high-field limit. The curves from right to left correspond
to Q= (~/8)(n, n) where n = 8, 6, 4, and 2. Data are from a sin-
gle configuration of a 24X24 array. (b) Dynamic structure fac-
tors obtained from the coherent-exchange approximation for
various values of c. The curves from right to left correspond to
Q=(m/8)(n, n) where n =8, 6, 4, and 2. All the curves have the
same area, and energy is measured in units of J ( =S = 1).

FIG. 4. (a) Histograms of the magnon density of states in
zero field for various concentrations. Data are obtained from
five configurations of a 24X24 array. All the histograms have
the same area. (b) Dynamic structure factors for various values
of c in zero field. The curves from right to left correspond to
Q=(m I8)(n, n) where n = 8, 6, 4, and 2. Data are from a single
configuration of a 24X24 array. All the curves have the same
area. Energy is measured in units ofJ ( =S = 1).
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nary part of the energy equal to the cutoff value, 0.5
(=ct), and the g values given above. The CEA success-
fully predicts the peak positions, the broadening of the
peaks, and the shifts to the low-energy side of the spec-
trum. It also predicts tails which are developing into
satellites as the disorder increases. For c =0.5, the peaks
are symmetric about the point E =H.

III. SUMMARY AND DISCUSSIGN

In the high-field limit, we studied the two-dimensional
spin glass both numerica11y and analytically. The CEA
predicted qualitatively some features of the numerical
data, e.g. , the shift in the density of states towards the
lower edge of the spectrum as the concentration increases
and the positions and the widths of the peaks in the dy-
namic structure factors as well as the shift towards the
low-energy side of the spectrum with the increasing dis-
order. The agreement between theory and data for the
dynamic structure factor is very good. The CEA results
for the density of states in three dimensions are in better
agreement with the numerical data than those in two di-
mensions. This is because the approximate three-
dimensional Green's function we used adds less error to
the calculation of the coherent-exchange integral than
that introduced by our approximate two-dimensional
Green's function.

As the localization indices shown in Fig. 2 indicate, the
modes with E —H )0 are weakly localized. Such a
feature is predicted by the CEA method when E =H—
the effective-medium limit of Ref. 4. For E =H, the
coherent-exchange integral takes the form

A, = V /y=[2ReJ, (E =H)Q]/[ImJ, (E =H)Q ]

=2~1 —2c /[Q+I —(1—2c) ] . (5)

Thus, for 0&c &0.5 and 0.5&c &1, the magnons have
finite mean free paths which diverge as Q~O. For c =0,
1, the mean free paths are all infinite, whereas for c =0.5,
the mean free paths at small Q are zero, since
ReJ, (E =H) =0.

The zero-field results for the density of states and the
zero-temperature dynamic structure factor are shown in
Figs. 4(a) and 4(b) over the same parameter ranges as in
Figs. 1(a) and 3(a). The ground state is obtained from
simulated quenching. The histograms [Fig. 4(a)] indi-
cate that for c =0.05, there is a peak at E =4 (which is a
logarithmic singularity when c =0) which broadens as
the concentration increases. With increasing c, the
modes shift to E =4 from both the high- and low-energy
sides. The dynamic structure factor data (Fig. 4(b)] show
that the peaks broaden and shift towards low energies
with increasing concentration of —J bonds. Note that
the peaks at E =0 for Q=m. /8(2, 2) are an artifact of the
simulation method (see Ref. 1).

In summary, the CEA gives qualitatively nearly as
good an account of the behavior of the density of states
and the zero-temperature dynamic structure factor of a
spin glass in high fields in two dimensions as it did for the
same quantities in three dimensions. However, it cannot
be applied to a zero-field spin glass, whose ground state is
frustrated. In the future, one looks to the development of
a theory for the spin glass in zero field that works as well
as the CEA does in the high-field limit.

J,(E =H)=1 —2c —i+1—(1—2c) (4) ACKNGWLEDGMENTS

For small wave vectors, the peaks in the dynamic struc-
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of the group velocity V to the linewidth y, i.e.,
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