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Correction to scaling for the self-avoiding walk in d = 2:
Results based on a cell renormalization group
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We propose a cell renormalization group for self-avoiding walks (SAW s) in the square lattice
based on a new center rule. The results for large cells are obtained by simulation. We calculate
the effective fractal dimension dt(b) for SAW s in cells of size b (3 ( b ( 22) at criticallity. Small
deviations of dy(b) from the asymptotic value indicate a correction-to-scaling exponent E = 1.

Since a few decades ago, many cluster-growth models
have been proposed to describe aggregates formed by ir-
reversible kinetic process. Among these, the self-avoiding
walk (SAW) is a prototype describing a polymerization
process in which excluded volume e8'ects play an essen-
tial role.

The main parameter used to describe the scaling prop-
erties of the walks is their fractal dimension, defined for
sufficiently large walks by N (R)"~, where N is the
number of steps and (R) is the root mean square of the
end-to-end distance of the walk. Alternatively, the expo-
nent v = 1/df is also used.

Using a kind of mean-field argument, Flory, and then
Fisher, suggested that df = d~ ——"3 in d dimensions,
from which we expect that d~ ——

3 1.334 in d = 2.
(The basic arguments are reproduced in Ref. 1.)

Later, Nienhuis, using analytical arguments, conjec-
tured that the above result is exact in d = 2. (It is not
exact in d = 3, as de Gennes has' demonstrated. )

Many Monte Carlo (MC) simulations 7 and position-
space renormalization groups (PSRG's) have repro-
duced with great or less accuracy Flory's value in d = 2.
Some of these methods, however, rely on extrapolation
of results for relatively small walks or cells. Because the
convergence is rather slow, the question naturally arises
about correction to scaling, which is characterized by the
leading exponent L given by

(R)' = N'"(1+ BN ~ y . ).
The value of 4 is still an open question. Nienhuis sug-
gests that L = 1.5 while Le Guillou and Zinn-Justin,
using the renormalization group, found 4 1.2. The
latter approach has been subject to some criticism for
they also found v = 0.77, instead of the Flory's value
vF ——0.75.

Conformal invariance, which often gives exact results
in d = 2, does not solve completely polymer models. By
studying the transfer matri~ spectrum, Saleur suggests
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The exact enumeration of SAW's on two-dimensional

lattices does not give satisfactory results for the expo-
nent L. Guttmann, using several series analysis meth-
ods, found no evidence of a universal nonanalytical (b, g
integer) correction, at least in the region A ( 1. For

the square lattice, his data are consistent with 4 = 1.
For the honeycomb and triangular lattices he obtained
4 = 0.95 and L 0.84, respectively, but 4 = 1 could
not be ruled out for both lattices. The value for the trian-
gular lattice agrees with %ang's result 4 = 0.85 +0.05
&om a numerical analysis of an extended 20-term series
and disagrees with other previous numerical analysis
that gives 4 —0.66 on the saxne lattice. These widely
varying estimates of L may be due to the rather small
length of the walks. It is not clear if the region of validity
of (1), with only one correction term, was reached.

The same statement holds for the Monte Carlo study
of Lyklerna and Kremer, who found 4 0.84 6 0.04
&om simulations of SAW's on the square lattice up to
length N = 48.

On the other hand, Rapaport, using an improved MC
technique that allowed generation of long walks (up to
2400 steps) on triangular and square lattices, argues that
his data are best fitted by 4 = 1. Hunter et aE. also
investigated Eq. (1) for intermediate chain lengths on
the square lattice and obtained the extrapolated value
4 = 1.0 + 0.1.

These results are in accord with the more recent nu-
merical analysis of Madras and Sokal, " which is based on
the simulation of fairly large walks (N ranging &om 200
to 10000). Although they did not address specifically
the question of correction to scaling, they arrive at val-
ues of v in agreement with Flory s value, using implicitly
A=1.

In the context of PSRG's the situation is still less
clear. This is due to the fact that the main versions
of PSRG's proposed so far do not appear to have reached
convergence.

The PSRG has been formulated using several rules
(or weight functions) to specify the condition of travers-
ing the cell, such as the corner rule of de Queiroz and
Chaves, the edge-center rule of Redner and Reynolds,
or the center rule of Chao.

In this paper we present a PSRG that allows us to find
monotonic values of critical exponents and parameters as
the cell size varies.

We define a nb x nb cell in a square lattice as made
by n& vertical and n& horizontal lines [see Fig. 1(a)]. We
further choose nb odd so that the geometrical center of
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The nontrivial point K* of (2) clefines the critical fugacity
K, (b) and from it we get A(b) = zK )K' and dy(b) =
ln A/ lnb. From their definitions, A measures the average
number of steps of the SAW's that span the length scale
b at criticality [A = (N(b))] and dy(b) is the efFective
fractal dimension of these walks at the same scale.

For b = 2 the recursion relation (2) can be worked out
analytically, giving

) K 4K 2 4 4 5 2

3 9 27 81 243

K7 K8 KS
729 2187 6561

K'/4

IC'/4

K'/4

(b)

K'/4

The (nontrivial) fixed point of this relation is K* = 1.05
and thus df ——1.550.

In order to find the coeKcients d 's in (2) for larger b, a
simulation was developed. Let e be the probability that
an allowed walk of n steps cross the cell from the origin
to an external site. The c 's can be found by generating
a large number M of walks of n steps and by counting
the fraction that crosses the cell.

Given that to reach an external site at the nth step
the n —1 previous steps must not have left the cell and
must not have ended because of the SAW constraint, we
can write

FIG. l. (a) An nt, x nz cell in a square lattice is defined by
ng vertical and nq horizontal lines. Here ng ——5 and b = 3.
Internal (external) sites are represented by black (open) dots.
Site ~ is the center of the cell. (b) The renormalized cell.

n Cn

n —1

h

m=1
[1 —(c-+ e-)l

the cell is a lattice site. Upon renormalization (cell-to-
bond transformation) the cell is mapped into four bonds,
as shown in Fig. 1(b). The rescaling factor is b = '2+

In order to take advantage of the symmetry of the lat-
tice we do not use the corner rule: The walk starts in
the central point of the cell (the origin) and is terminated
whenever it reaches, for the first time, an external site
or is surrounded by its own previous steps. Our weight
function is obtained from the subset of those walks which
span the length scale 6 from the origin in any direction,
reaching any external site of the cell.

The advantage of our center-rule scheme is that due to
the symmetry, the walk is allowed to twist inside the cell,
starting in one quadrant and leaving the cell in another
one. In contrast, previous prescriptions only consider
walks that traverse the cell along one given direction,
introducing a bias in the weight function.

To each step is associated a fugacity K and a weight
equal to the inverse of the number of allowed steps from
a given site. For instance, the erst step can be given in
any four directions and has accordingly a weight of 1/4.
A walk contributes with the product of weight and fugac-
ities of each of its constituent steps. The renormalized
fugacity K' is given by the sum of all possible n-step
walks starting at the origin and reaching any external
site:

K' = ) d„K".
n)b

TABLE I. Fractal dimension dy(b) and critical fugacity
K, (b) for several values of the scaling parameter b.

b

3

5
6
7
8
9
10
11
12
13
17
18
19
20
21
22

df (b)
1.507
1.483
1.466
1.454
1.445
1.438
1.432
1.428
1.422
1.419
1.413
1.403
1.400
1.397
1.394
1.386
1.384

K, (b)
1.0700
1.0830
1.0920
1.0990
1.1040
1.1070
1.1100
1.1142
1.1150
1.1170
1.1180
1.1226
1.1235
1.1242
1.1248
1.1253
1.1260

where e is the fraction of walks that ends at mth step
due to the SAW constraint.

For b = 2 we reproduce Eq. (3) with great accuracy.
For 6 in the range 17—22, a total number of walks as
large as 5 x 10 was generated. Table I displays df
for several values of b. Also shown is the fixed point
K* = K, (b). Note f'rom Table I that dy is a mono-
tonic function of b. This represents an improvement over
previous treatments, but the convergence (in dy) is still
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rather slow, an indication that we are not in the asymp-
totic regime; corrections to scaling are then expected to
show up.

To obtain the extrapolated value K, (oo), we assume
the finite-size scaling form
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K, (b) = K, (oo) —Ab" (5) 1.4
With the accepted value of the connectivity p

2.638 for the square lattice, we expect that K, (oo)
1.137 (note that there is a factor 3 relating the fu-

gacity here and that of Ref. 8). In Fig. 2 we plot K, (b)
against b "" with Flory's value dF = 4/3. It extrapo-
lates to K, (oo) = 1.134 + 0.004 in good agreement with
the value quoted above (here and throughout this paper,
the quoted errors are those associated with linear regres-
sion .

We test the following form for dy(b) to leading order:

dg(b) = df + B'b (6)

(P)2 ~ N2v~fg(N) (7)

Expression (7) describes how the mean square end-to-
end distance grows locally with increasing N. The de-
viation of v,ff(N) from the asymptotic exponent v must
depend on the correction-to-scaling exponent 4 in (1).
Taking the logarithmic derivative of expressions (1) and
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FIG. 2. Plot of K, (b) as given in Table I vs b "~, with
dF = 4/3. For large enough b, a straight line is obtained,
in agreement with Gnite-size scaling. It extrapolates to
K, (oo) = 1.134 + 0.004.

The data in Table I show a change of behavior around
b 15. For b ) b, law (6) is obeyed and a best 6t gives
D' = 1.31 + 0.16. In Fig. 3 we plot d~(b) against b

it extrapolates to 1.336 + 0.007, in good agreement with
Flory's value.

Equation (6) states how the effective fractal dimension
dy(b) of spanning SAW's scales with b. We now relate
v ff (b) = [dy (b)] with the effective exponent v ff (N) of
an N-step SAW. The latter is defined by

1.35
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~lFIG. 3. Plot of df(b) as given in Table I vs b, with
4' = 1.31. For large enough 6, a straight line that extrapo-
lates to 1.336+ 0.007 is obtained.

(7) with respect to N and identifying both, leads us to

ABN
veff(N) = vF

2
+ 0 ~ ~ (8)

On the other hand, from (6), [df(b)] ~ scales as

veff (b) = vF —vFB b (9)

4'=df (10)

Our numerical result is consistent with 4' = df ——d~,
thus with A = 1; i.e. , the leading correction to scaling is
analytic, in accord with Guttman and with recent MC
simulations.

It should be stressed that A = 1 is not incompati-
ble with Nienhuis or with Le Guillou and Zinn-3ustin.
They were basically concerned with nonanalytical correc-
tions coming from the nonanalytic part of the free energy.
As they obtained 4 & 1, an analytic correction-to-scaling
exponent L = 1, coming from the regular part of the free
energy, would be the leading correction.

Regarding Saleur's result from the transfer matrix
method in connection with conformal invariance, again
finite-size efI'ects may explain why his A is so small.

In our PSRG, in contrast to others, the walks al-
ways start at the center of the cell, so that no bias is
introduced on the ensemble of contributing SAW's for
the renormalized fugacity. For this reason, we were able
to obtain the monotonic critical parameters K, (b) and
critical exponent dy(b). From the analysis of their con-
vergence it was possible to extract the leading correction
to scaling. This was achieved using cells of intermediate
size, that is, with spanning chains of intermediate length.

Another advantage of the RG technique is that it pro-

using vF = (dP) and v,ff(b) = [dy(b)]
Identifying expressions (8) and (9) when N and b are

related by K 6"&, we finally get
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vides directly the effective exponent (9), while from MC
simulations v, tr is extracted from (I) for an ensemble of
SAW's of steps N and N', vrhere N' —N = 1, 2, . . . is
arbitrarily chosen. In the PSRG, the contribution to (9)

for each length scale 6 comes already from a set of chains
with a length distribution having an average value A(b).
That also explains vrhy the analytical correction mani-
fests in our data.
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