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Charging effects and quantum crossover in granular superconductors
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The eKects of the charging energy in the superconducting transition of granular materials or
3osephson junction arrays are investigated using a pseudo-spin-one model. Within a mean-field
renormalization-group approach, we obtain the phase diagram as a function of temperature and
charging energy. In contrast to earlier treatments, we find no sign of a reentrant transition in
agreement with more recent studies. A crossover line is identified in the nonsuperconducting side
of the phase diagram and along which we expect to observe anomalies in the transport and ther-
modynamic properties. We also study a charge ordering phase, which can appear for large nearest
neighbor Coulomb interaction, and show that it leads to first-order transitions at low temperatures.
We argue that, in the presence of charge ordering, a nonmonotonic behavior with decreasing tem-
perature is possible with a maximum in the resistance just before entering the superconducting
phase.

I. INTRODUCTION

The recent discovery of high-temperature supercon-
ductors has renewed interest in granular materials. These
systems appear to have an intrinsic "granularity" which
is found even in single crystals. A clear manifestation of
this nonuniformity on the scale of the Ginsburg-Landau
coherence length is the two-step nature of the transition
to the superconducting state. As the temperature is
lowered, erst the superconducting ordered parameter is
developed in each grain at a temperature T 0, but be-
cause the thermal energy is higher than the Josephson
coupling between the grains EJ, the phases of the order
parameter are uncorrelated due to thermal Buctuations.
Only at a lower temperature T EJ will phase locking
take place, leading to long-range phase coherence and
zero resistivity. Besides its possible relevance for high-
temperature superconductors granular superconductors
have been an active Geld of research for many years.

One of the most important issues in the granular super-
co'nductor materials is the role of charging effects on the
phase coherence transition. As pointed out by Abeles,
when the grain charging energy E, e2/d, where d is
the grain diameter and e the electronic charge, is larger
than EJ long-range phase coherence is destroyed due
to zero point fluctuations of the phase of the supercon-
ducting order parameter. The onset of phase coherence
with increasing intergrain 3osephson coupling can then
be viewed as a zero-temperature phase transition. Also,
of great interest is the resulting phase diagram as a func-
tion of temperature and charging energy which can dis-
play reentrant transitions to the normal state upon cool-
ing the system to low temperatures. This possibility and
its experimental observation have been a matter of much
debate. More recently, an intriguing effect has been

discovered at the onset of superconductivity in granu-
lar systems where the resistivity rises steeply, attain-
ing a sharp maximum, before vanishing with decreasing
temperature.

In this paper we study a pseudo-spin-one Hamiltonian
for granular superconductors which takes into account
self-charging effects in the grains, the intergrain (short-
range) Coulomb interaction, and the Josephson coupling
between the phases of the Ginzburg-Landau order pa-
rameter of the grains. This model has been proposed
by de Gennes and studied in some detail especially in
relation to the issue of reentrant behavior. ' ' Within
a mean-field renormalization-group approach, we obtain
the phase diagram as a function of temperature and
charging energy but find no sign of a reentrant transition
in agreement with more recent studies. We also study the
quantum to classical crossover which takes place in the
nonsuperconducting side of the phase diagram and iden-
tify a crossover line along which we expect to observe
anomalies in the transport and thermodynamic prop-
erties with decreasing temperature. Finally, we study
a charge ordering phase, which can appear for a large
nearest-neighbor Coulomb interaction and show that it
leads to first-order transitions at low temperatures. Then
we argue that, in the presence of charge ordering, a non-
monotonic behavior with decreasing temperature is pos-
sible with a maximum in the resistance just before enter-
ing the superconducting phase, which could in principle
be observed experimentally.

II. PSEUDO-SPIN-ONE MODEL

The standard model for granular superconductors, in
the absence of disorder and dissipation, consists of a regu-
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lar array of superconducting grains coupled by Josephson
junctions described by the Hamiltonian Oguchi, ~=0, c=6

H = 2U) [S;]'+4V) S;S;
2 (2»)

E——) (S+S;+S;S+).'
(',.)

(2)

The first term describes intragrain Coulomb energy U )
0 for different charge states. These states, in differ-
ent grains, are coupled through the short-range nearest-
neighbor Coulomb interaction V ) 0. The factors 2 and 4
stand for the charge of the excitations which are Cooper
pairs. The last term is ultimately responsible for the
phase locking of the different grains. It is clear that even
at zero temperature this Hamiltonian may give rise to
phase transitions due, for example, to a competition be-
tween the self-charging term U and either the intragrain
charge interaction V or the Josephson coupling E. In
the former case this competition can lead to an instabil-
ity with the formation of charge dipoles for large V. In
the latter the competition gives rise to an off-diagonal
long-range-ordered state characterized by the order pa-
rarneter (S ). The fact that the above Hamiltonian takes
into account only charge Huctuations of An = +1 is not
expected to change the universality class of the zero-
temperature superconductor-insulator transition consid-
ered here.

III. MEAN-FIELD RENORMAI IZATION GROUP

The mean-field renormalization group has been exten-
sively applied to a variety of problems both classical
and quantum, ' with and without disorder. This
method represents an improvement over the mean-field
and. the Oguchi pair approximation since fI.uctuations
are included at a higher level. This gives rise, for exam-
ple, to critical exponents which assume non-mean-field

H = 2) U;~n;n~ —E) cos(P; —P~),
2t2 (ij)

where U,~ is the charging energy due to Coulomb inter-
action and E ) 0 is the Josephson energy. Here n; is
the excess of Cooper pairs in the ith grain and P, is the
phase of the order parameter. In the pseudo-spin-one
approximation ' ' to the above Hamiltonian one iden-
tifies the pair number operator n; with the z component
S;. of a spin-one operator. The second term in Eq. (1)
when expressed in terms of exp(+P, ) can then be rewrit-
ten as raising and lowering operators S,+. . If we make the
additional approximation of short-range Coulomb inter-
action, this results in the Hamiltonian
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FIG. 1. Critical temperature T for the phase-locking tran-
sition as obtained by the mean-field renormalization group
(MFRG) and a self-consistent two-site cell (Oguchi) approxi-
mation.

values and to a vanishing critical temperature for the
two-dimensional Heisemberg model, in agreement with
the well-known Mermin-Wagner theorem. We shall em-
ploy this method here to investigate the superconducting
transition described by the Hamiltonian of Eq. (2). The
main reason for doing this is to help settle the issue of
the existence (or not) of a reentrant transition at low
temperatures.

As mentioned before for large values of U we expect to
find the system in a well-defined (neutral) charge state
and consequently with no phase coherence. The order pa-
rameter describing the phase coherent state, expected to
occur when the Josephson coupling becomes sufficiently
large compared to U, is the transverse magnetization
(S ). The mean-field renormalization group relies on a
scaling relation between quantities calculated using two
diB'erent finite systems (or cells) with appropriate bound-
ary conditions. Within its simplest version, one considers
two cells containing one and two spins each with corre-
sponding mean fields 6' and 6 acting at the boundaries of
the cells. For each cell we need to calculate the derivative
of the order parameter (S ) for vanishing mean field. For
the spin-one model of Eq. (2) we obtain for the one-spin
cell

0(S*)' e
06' 2

= —c(e" —1)/(2+e )

where we have defined the dimensionless parameters v =
V/U, e = E/U, and t = Ic~T/U and c is the number of
nearest heighbors. Due to the mean-field-like character of
the approach that we discuss here, we expect the results
to be more likely to hold in three dimensions, i.e. , t" = 6.
For the two-spin cell we obtain

e 2e" "—
(c —1)

4Zp ~2 ———4v2

4 (1+v)
t

4+ee. ~ (—2
—4+4 v+d

+
(2+ ~ + 4v) (—e+ 4v+ d)

2 4e 2~ (16 —32e —5e2 —32v —24ev+ 128v )+
+ ~ +4v) 64+ 16e+4e2+ es+ 16e v —256v +64ev2

(—4 —e+ 4v —d)

(
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where

2 2 —4 (1—v) 2 —(4 —4 v —d)
4 — + 4+ + + 4(1+ ) +
2t g 2t t

—(4 —4 v+d)
2 t

and d = ~2@8 + ez —16v + 8vz
We now impose the scaling relation

~(~*)' ~(~*)
Bb' Ob

(Eb (Eb
oc exp( —U/k~T) .

EU/.
The exponential dependence is an artifact of the mean-
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FIG. 2. Order parameter transverse susceptibility as func-
tion of temperature for a value of E/U in the insulating phase
of Fig. 1.

where the primed quantities are calculated in the smaller
cell. This equation results from the assumption that
the order parameter and the mean field scale in the
same way and it provides recursion relations for the
couplings or their ratio (U/V) in terms of the tern-
perature, the interaction V, and the number of near-
est neighbors, c. The unstable fixed point, as usual in
the renormalization-group procedure, is associated with
the critical point at which the critical exponents are ob-
tained. The phase boundary obtained from this recursion
relation, for V/U = 0 and V/U g 0, is shown in Fig. 1
together with the result obtained using the Oguchi pair
approximation which can be regarded here as a self-
consistent solution of a two-site cell approximation. As
expected, for the same V, the T = 0 value of the criti-
cal ratio (E/U), for the appearance of the phase-locked
state is larger for the mean-field renormalization-group
calculation than for the Oguchi method due to a bet-
ter treatment of fluctuations. Notice that as V increases
a larger value of E is required to establish off-diagonal
long-range order. Also no sign of reentrant behavior is
found in our results. We point out that in the calculation
above we assumed no charge ordering which, as will be
discussed in Sec. V, only holds for V/U ( v„where
v, = 1/c.

The critical line close to the zero-temperature fixed
point in Fig. 1 rises in temperature as

Geld nature of the renormalization-group approach and
appears for any dimension. In fact for d = 3 we would
expect to find a power law dependence for the critical
line, i.e. , (E/U) —(E/U), oc Ti/~, where P = vz is the
crossover exponent. Here, v is the correlation length and
z is the dynamical critical exponent. The critical expo-
nents v and z are associated with the T = 0 fixed point
at (E/U), Sin. ce this transition is expected to be in the
universality class of the 0+1 classical XY model, ' we
have z = 1 and v = 0.67 and 1/2 for d = 2 and 3,
respectively. We should point out that our mean-field
renormalization-group calculation yields a lower critical
dimension d~

——1.95 for the finite-temperature supercon-
ducting instability which is close to the known result for
models with continuous symmetry. The existence of a
lower critical dimension within the mean-field renormal-
ization group shows its significant improved nature com-
pared to the usual mean-Geld methods.

IV. QUANTUM CROSSOVER

As can be seen from the phase diagram in Fig. 1
for (E/U) ( (E/U), superconductivity in a macroscopic
scale is inhibited due to charging effects. We may, how-
ever, expect to find, even in this noncritical part of the
phase diagram but sufIiciently close to the critical point,
signs of the incipient long-range superconducting insta-
bility. This should occur as anomalies in the transport
properties, such as minima in the resistivity or in thermo-
dynamic quantities. Where are such anomalies expected
to occur? In a tentative attempt to clarify this point
Fazekas et ol. and Fazio and Giaquinfa have calcu-
lated the transverse and longitudinal correlation func-
tions respectively for a pair of spins in the noncritical
region. They found in the phase diagram of Fig. 1 a
line of extrema for these quantities which intercept the
critical line for (E/U) ) (E/U), at a finite tempera-
ture. However, in their calculations they have completely
neglected the effect of fluctuations of the surrounding
medium. Also, if this effect is to be associated with a
quantum crossover temperature T*, one would expect
from general scaling arguments, close to the T = 0 super-
cond. uctor insulator transiton, that this temperature
should approach zero as T' [(&),—&]'".

The fluctuations ignored in the treatment of Refs. 10
and 13 can be taken into account by considering the or-
der parameter "transverse susceptibility" y (T) which
is related to the "transverse" pair correlation function
averaged over the whole system. Although this quantity
is not directly related to the magnetic susceptibility, it
measures the phase correlations in the whole system.
We have calculated this quantity as a function of tem-
perature in the noncritical region using a two-spin cell
approximation and the result is indicated in Fig. 2. We
note that at the critical line y (T) diverges as expected.
An important feature to be noted is the existence of an
inflexion point of the transverse susceptibility at T = T*
which changes with E/U. The points in which it oc-
curs define a line in the noncritical region of the phase
diagram which is shown in Fig. 3. As expected from gen-
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FIG. 3. Schematic phase diagram showing the location of
the quantum to classical crossover as determined from the
transverse susceptibility.

eral scaling arguments this crossover line T*(E/U) has
the same exponential dependence found for the critical
line for (E/U) & (E/U) . The physical meaning of the
crossover line becomes clear if we recall the competition
between charge and phase Buctuations which gives rise
to the T = 0 phase transition. For T & T* the system
is in a region of rather well-defined charge states losing
phase coherence. As the temperature is increased for
(E/U) & (E/U), it enters a regime of strong charge fluc-
tuations allowing for an enhancement of phase coherence
which above the threshold value (E/U) leads to genuine
long-range phase coherence. Although the crossover line
shown in Fig. 3 suffers from the deficiencies inherent to
mean-field. -like calculations, there are two points worth
stressing: (i) Anomalies in physical quantities, such as
minima in the resistivity, in the noncritical region of the
phase diagram, i.e. , for (E/U) & (E/U)„are expected
to occur along the crossover line. (ii) This crossover line
is governed by the same exponent of the critical line as a
consequence of scaling.

The quantum to classical crossover in granular super-
conductors has also been studied by Doniach, but we
would like to emphasize the difference between his ap-
proach and ours. While he is studying the crossover in
the critical region of the phase diagram above the transi-
tion line we are stressing efFects which occur for (E/U) &
(E/U)„ that is, the noncritical region of the phase dia-
gram. This region sometimes is more amenable to exper-
imental observation particularly in the case where critical
behavior is accompanied by an extreme critical slowing
down which takes the system out of equilibrium close to
the critical line. Notice that by varying the pressure
in a granular material one can in principle alter the ratio
(E/U) Then pressur. e measurements, under the assump-
tion that nothing else is changing, would allow one to
trace the crossover line by accompanying how anomalies
in the physical quantities shift with applied pressure.

parameter. Let us consider now how a larger V will affect
the superconducting transition. For this purpose we shall
neglect the 3osephson coupling for a while, taking E = 0.
Using a spin language it is clear that while U tries to es-
tablish a singlet (neutral) ground state, the interaction
V favors the existence of local moments (charge disbal-
ance) to take advantage of the lowering of energy due to
long-range antiferromagnetic order (charge instability).
For the system of superconducting grains this competi-
tion gives. rise at T = 0 to a phase transition associated
with the appearance of an insulating charge ordered state
for large V. In fact, the possibility of an antiferromag-
netic ordering of charges was considered some time ago
by Fazekas who showed that this instability occurs for
V/U ) v„where v, = 1/c, within the mean field.

To study the efFects of V/U ) v, on the phase diagram
of Fig. 1 we need to introduce two order parameters: the
transverse magnetization m „= (S ), which describes
the long-range phase coherence, and the staggered mag-
netization m, = (S'), which represents the antiferromag-
netic charge ordering. Within a mean-field (one-site cell)
approximation this amounts to replacing Eq. (2) by

-.= (S*),
my —(S++S ).

We have solved these equations numerically and ob-
tained a phase diagram as indicated in Fig. 4. The im-
portant features to be noted are the first-order nature
of the superconducting transitions at low temperatures,
which appear as a discontinuity in the staggered order
parameter (S ), and the existence of three thermody-
namically different phases. The first-order character of
the superconductor-insulator transition at T = 0, which
we find here for large short-range Coulomb repulsion,
i.e. , V/U & v„ is in fact quite similar to the result of
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and the phase boundary is obtained as usual from the
solution of the self-consistent equations

V. CHAR. CE OR.DER.INC

We have concentrated so far on the effects of phase
fluctuations treating the intergrain coupling V as a small

FIG. 4. Phase diagram obtained by mean-field approxima-
tion for V/U = 0.18 and c = 6. The dot-dashed line indicates
first-order transitions and the dashed line a path described by
a sample with a temperature-dependent Josephson coupling
E(T).
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Fisher and Grinstein for long-range Coulomb interac-
tions where this transition results second or first order de-
pending on the parameters. Even more interesting is the
topology of the phase diagram of Fig. 4, with supercon-
ducting, charge ordering, and normal phases. If we take
into account the temperature dependence of the Joseph-
son tunneling amplitude E between the grains, which is
a decreasing function of temperature, we find that this
topology allows for the possibility that a granular mate-
rial in the V/U ) v, regime can become a charge ordered
insulator before becoming superconducting for decreas-
ing temperature as the system moves through the path
indicated in Fig. 4. Since in the charge ordered phase the
system should be an insulator, the experimental signa-
ture of this effect could show up as nonmonotonic behav-
ior of the resistivity with decreasing temperature which
would reach a maximum just before becoming supercon-
ducting. In fact, an anomalous peak in the resistivity
of some granular systems has already been observed just
before the superconducting transition. Note that only
for a restricted range of parameters near the tricritical
point in Fig. 4 would this effect be expected, which then
is consistent with the rather unusual observation of this
phenomena. Of course, a satisfactory comparison of this
result with experiment would require incorporating into
the model several relevant complications as, for example,
disorder and dissipation. We expect, however, that
carefully prepared materials could show some signature
of this effect.

VI. CONCLUSIONS

We have studied a pseudo-spin-one model of granu-
lar superconductors that takes into account the compe-
tition between charge fluctuations and phase locking in

these materials. The phase diagram for the phase-locking
transition has been obtained within a mean-field renor-
malization group and compared with previous calcula-
tions. No reentrant behavior has been found within this
method in agreement with recent studies. We have also
shown the existence of a crossover line in the noncritical
region of the phase diagram and along which we expect
to find anomalies in the transport and thermodynamic
properties. This line could in principle be accessed ex-
perimentally by applying external pressure in the sys-
tem. Finally we considered the effects of charge ordering
in the phase diagram within a mean approximation and
shown that it leads to three different phases and to Grst-
order transitions at low temperatures. We have found
that for a range of intergrain and Josephson coupling
interactions the granular superconductor may enter an
insulating charge ordered phase before becoming super-
conducting with decreasing temperature. We suggested
that this could lead to a nonmonotonic behavior of the re-
sistivity with decreasing temperature with a maximum in
the resistance of the material just before becoming super-
conducting. This could in principle be observed experi-
mentally as similar anomalous peaks have already been
observed in some granular superconductors.
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