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Exact and broken symmetries in a hydrodynamical description of chiral spin states
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Following the procedure recently proposed by Wiegmann, we improve his analysis and derive a
complete effective Lagrangian describing long-wavelength Buctuations around hypothetical three-
dimensional (3D) and 2D chiral states of Heisenberg spin systems. We study realizations of the
previously proposed high symmetry group of the continuous theory [SO(3,1)x SU(2) x U(1) in 3D
and SO(2, 1)x U, (1)x U, (1) in 2Dj and observe that, in general, Lorentz symmetry is broken already
in the bare Lagrangian, although it could be restored after a renormalization. In contrast to the
conjectures made by Wiegmann, an additional non-Abelian SU(2) gauge symmetry expected in 3D
(and its Abelian counterpart on 2D) are, in fact, destroyed due to a spontaneous parity violation in
chiral ground states.

I. INTRODUCTION

Recent progress in the theory of strongly correlated
fermion systems close to the Mott-Hubbard transition
posed a challenging problem of a new classification of
all possible spin states of a Mott insulator. Generalizing
the Shubnikov theory of magnetic space groups a new
scheme should include all spin disordered states with no
local spin order (S) = 0. Among them there should be
such states as spin nematics characterized by virtue of
the two-spin correlation function (S; S ) (Ref. 1) as well
as so-called scalar and tensor magnets having only three-
point functions (S,. S.S') nontrivial.

A possible classification of various spin states in the
framework of a hydrodynamical description was already
discussed by Andreev and Marchenko. However, such an
extension certainly does not exhaust all the possibilities.
Since 1987 numerous hypothetical spin states have been
proposed within a mean-Geld treatment of the Hubbard
or the t-J model. As a primary example this variety
includes a so-called resonance valence bond (RVB) state
first proposed by Anderson which was realized as a kind
of a quantum paramagnetic state.

Another remarkable example is a principally new spin
disordered state called the chiral spin state which is
generically coupled with the flux phase. This state was
originally discussed in the two-dimensional (2D) case and
later it was generalized onto the 3D one. ' ' It demon-
strates a spontaneous violation of both space parity and
time reversal symmetry. Instead of local spin ordering it
is ordered in terms of local chiralities defined as mixed
products of triples of adjacent spins. In a geometrical
interpretation this variable is a measure of a solid angle
subtended by all spins belonging to a given plaquette.
Obviously, a chirality becomes an informative character-
istic only for noncollinear spin structures.

Going further one can imagine an arbitrary inhomoge-
neous distribution of chiralities corresponding to various
"flux liquids. " It has been conjectured by Wiegmann that
an adequate representation of those states can be built

in terms of nonlocal variables corresponding to Wilson
loops in QCD. These can be realized as traces of opera-
tors of cyclic permutations of some "probe" spin a with
the spins belonging to an arbitrary contour I': '

(1+2o'S, ).

It was also supposed in Ref. 10 that the phases of av-
erages (1) can be understood as some Chem numbers of
the spin wave function 4(zq, ..., zN), where zI, are coor-
dinates of up spins:

W = ) e~p 4 (zl, ..., ZN) @(zl, ..., ZN)d Sk,
Zk t9Zk

(2)
where integrals have to be taken over a bulk of a 2D sys-
tem or a surface of a 3D one. To clarify this relationship,
one can use a description of spin configurations in terms
of a spinon representation of spin-one-half operators,

and spinon bilinears @, 4~ . It naturally arises in the
context of Hubbard transformed Heisenberg Hamiltoni-
ans bilinear in spin operators:

where the matrix of coupling constants J;~ can include
couplings between remote sites but it is assumed to de-
cay fast enough with distance ~i

—ji (we shall avoid a
discussion of infinitely long-ranged couplings here). By
virtue of the Hubbard transformation one can rewrite (4)
in the form
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w here A, is a Lagrange multiplier field which implements
the constraint (3). The variable A,i stands for a scalar

coupling of spinons on corresponding sites A,~
= 4,-

The Hamiltonian (5) is locally symmetrical under a U(1)
transformation

-+ exp(iP;)@, A,i m exp(iP, —iP, )b„
Then a value of local spin chirality can be identified with
a gauge invariant circulation of a phase of 4;i ("Hux")
around a plaquette

C~ ——Im
('~) gas

Presumably one could suppose that by finding out irre-
ducible representations of the "loop group" of cyclic spin
permutations one can enumerate all possible spin struc-
tures. However this problem is still far from a resolution.
The best that was until now done is an attempt to de-
scribe possible ground states in terms of distributions of
A,z. (modulo gauge transformations). Such an approach
enables a conventional mean-field treatment where 6;~
plays the role of the order parameter. Then a classifica-
tion of mean-field solutions of the t-J or related models
can proceed along the lines of the approach developed
by Gor'kov and Volovik who found a symmetry classifi-
cation of crystal groups for superconductors. Such an
attempt was undertaken in Ref. 12.

Unfortunately this consideration ignores the gauge
symmetry (6). To restore the gauge invariance one should
take into account all fluctuations of L,.~ which do not
change the energy of the system. Then one should con-
sider a manifold of degenerate mean-field states as a phys-
ical ground state where an expectation value (6;i) is ex-
actly zero.

It is evident that to describe physical states one has
to construct a complete long-wavelength hydrodynam-
ics for low-energy excitations around a given mean-Geld
state. For both cases of the homogeneous RVB and the
chiral state this problem was extensively discussed. A
general belief is that for both states the fluctuations
can be described by means of an Abelian gauge field
coupled with chargeless spin-one-half fermions (spinons).
This picture also enables a straightforward generaliza-
tion onto a doped case which includes spinless charge
carriers (holons). The space component of the gauge
field A;~ arises from a phase of the order parameter

~A,~ ~
exp(iA;~), while a Lagrange multiplier im-

posing a constraint (3) becomes a temporal component
13,14

Actually one can see that conventional derivations im-
plicitly assume that L varies slowly in space and time.
If so then one is allowed to perform an ordinary gradient
expansion in terms of only one long-wavelength variable
A~. This assumption seems to be correct in the sim-
plest case of a ground state corresponding to a constant
background 4;~ = A. However it already does not nec-
essarily take place for the background corresponding to
any periodic modulation of L,~. For instance, the sim-
plest homogeneous chiral state characterized by a Aux
m through each plaquette of a 2D or a 3D lattice can

be described as a distribution of 4;~ with a wave vector
Q = (2, 2) [or Q = (2, 2, 2)]. Moreover many other
mean-Geld solutions studied in Ref. 12 have the same
periodicity.

It was recently found by Wiegmann that a number
of relevant fields appearing in a hydrodynamics of chi-
ral states should be large enough. He also proposed a
new form of a complete long-wavelength theory of 2D
and 3D chiral states. The mostly striking feature of
those theories is a high symmetry group appearing in
a continuous limit from a lattice Hamiltonian. Namely,
it was stated in Ref. 10 that the symmetry group in
3D is SO(3,1)x SU(2) x U(l) while in 2D it lowers to
SO(2,1)x U, (1)x U, (1).

In the present paper we perform a more careful deriva-
tion of the effective Lagrangian sketched in Ref. 10 leav-
ing apart the question about the microscopic nature of
chiral states. It turns out that our results differ essen-
tially &om those of Ref. 10 and pose serious questions
about the possibility of realization of the physical phe-
nomenon of topological superconductivity discussed in
Ref. 10 in the case of doped antiferromagnets.

II. CONTINUOUS GAUGE THEORY OF
CHIRAL SPIN STATES

T'T2 ——T2T' (8)
In a 3D case a consistency requires that translations
along face diagonals of the cubic unit cell T;~ form an
SU(2) algebra

T;, = e,,g~", [r', 7'] = ze,,g~". (9)
In particular, Eq. (9) provides that the product of all
three T;~ corresponding to 2m rotation around the main
diagonal yields T12T23T31 —C3 1.

On the basis of commutation relations (8) and (9) it
was stated in Ref. 10 that the underlying structure cor-
responds to the so-called double space group. Such a
construction was originally proposed by Bethe who con-
sidered electronic states in a crystal in presence of a spin-
orbital interaction. Physically double groups can be un-
derstood. as remnants of the spinor nature of the elec-
tronic wave function in a continuous space. It preserves

It should be mentioned that, in general, Hamiltonian
(4) has an SU(2)-invariant "symplectic" structure cor-
responding to the symmetry between a spinor 4 and
a conjugated one e p4&. As a result it enables a con-
tinuous transformation of A;~ into another bilinear form
g,i:—e p4 @p which means a local "symplectic" SV(2)
symmetry of (4). However we shall not discuss this ad-
ditional symmetry because it has exclusively local ("on-
site") nature and has nothing with any properties of dis-
tributions of A,~ in space. On the other hand. any fi-
nite doping destroys this symmetry while a non-Abelian
symmetry of Ref. 10 observed in a continuum limit was
expected to persist under doping.

According to the definition of the chiral state proposed
in Ref. 10 the operators of elementary translations along
bonds of a 2D square (or 3D cubic) lattice anticommute
when applied to the spin wave function
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its double valuedness under the action of a Rnite group
of discrete rotations belonging to one of several crystal
point groups.

Remarkably the double valuedness of chiral state wave
functions proposed in Ref. 10 has an orbital nature and it
is indeed a specific feature of a corresponding distribution
of L,j.

However this exciting construction certainly deserves
a more firm elaboration. First, a straightforward analy-
sis of irreducible representations of the space group as-
sociated with a point double cubic group Og (see, for
instance, Ref. 17) reveals eight of those representa-
tions for the point I lying in the center of a Brillouin
zone. The total number of the basic functions 4 (k)
(n = 1, ..., 8; n = 1, ..., N ) (sum of dimensions of these
representations P N ) equals 18. For a momentum k
having a general position. in the Brillouin zone a station-
ary subgroup ("small" group of k) is trivial and one ob-
tains one 48-dimensional representation 4' (k). Those
functions could describe one-particle excitations in the
3D chiral flux phase in the same manner as corepre-
sentations of Fedorov space groups intended to describe
spin-one-half particles propagating in the Neel ordered
antiferromagnetic background.

At the same time in the 3D construction proposed in
Ref. 10 an eight-dimensional representation arises quite
naturally. The components of @ (k) (n = 1, ..., 8) corre-
spond to values of the wave function taken at eight sites
belonging to one unit cell. It was proposed in-Ref. 10 to
consider iIJ (k) as a reducible representation of a double
point group of a cubic lattice Oh. A correspondence be-

tween this treatment and a conventional representation
theory of double space groups remains to be clarified.

Nevertheless the representation used in Ref. 10 is quite
convenient. We shall primarily consider the case of a 3D
cubic lattice and then present results for a 2D square one.

In 3D any translation is represented by an 8 x 8 matrix
and can be written as a tensor product of three Pauli ma-
trices. Each of these matrices acts in a two-dimensional
subspace of two sites on the same link in a unit cell (see
Fig. 1), the translation &om one to the other site being
given by 0~. Within these prescriptions the translations
(8) and (9) and Ti2s (along a space diagonal) can be
represented by 8 x 8 matrices

Ty = o-'y = oy S 03 S 1&

T2 ——o.'2 ——1 S Oi S 0.3,
T3 ——o.3 ——cr3 S 1 S 0 q,

3
T~2 ——v = 02Soi S03,

1
T23 ——7- = 0-3 S 0-2 S o.y,

2
T3y ='T = oy S03S02&

T123 ~1~2o'3p ai '3 al 3 al ~ (10)

The first three operators were identi6ed in Ref. 10 with
anticommuting 3D n matrices appearing in the Dirac
Hamiltonian (IID = nk+ Pm). The matrix P = po can
be defined as p = asasas. Notice that the translation
along a space diagonal coincides with a definition of a 3D
parity operator ipspo ——pzp2Q3.

Mean-Beld Hamiltonian of the flux phase can be writ-
ten in the form

—~/2(I, (~/2
@ (k) I&NNI) T cosk +I+NNNI) Tic so( ;k+k)T qisc so( ki+k2+ks)+A Q(k),

where @(k) is an eight-component spinon wave function
and matrix elements of A have to be found together with
E~o~ from an extremum condition for the energy (it ac-
tually shows that this matrix fluctuates around zero if
one does not introduce diferent chemical potentials on
some sublattices artificially). In rather general condi-
tions the spectrum of the Hamiltonian (11) has so-called
cone ("Dirac" ) points. In the vicinity of these points the
spectrum of spinon excitations becomes that of a massive

relativistic fermion.
In what follows we shall restrict our analysis onto such

Hamiltonians. For example, choosing another [SO(6)-
symmetrical] basis of translation operatorsi we observe
that if (11) includes only nearest-neighbor, next-nearest-
neighbor (face diagonal), and next-next-nearest-neighbor
(space diagonal) couplings then the spectrum is given by
the formula

E = + ) IANNI2 cos2 k; + ) IA~NNI2 sin k; sin k~ + IA~NNNI2 sin ki sin k2 sin ks. (12)

The reduced Brillouin zone ( 2 ( k &
2 ) contains one

Dirac point at k = (—,—,—), so we obtain two degenerate
species of four-component spin-one-half Dirac fermions
4' (o. = 1, ..., 4;o, = 1, 2). They can be treated as two
components of some fictitious isospin SU(2) doublet. We
also see that face and space diagonal couplings open a
gap in the spinon spectrum.

It was first noticed in Ref. 10 that the operators (8) can
be identified with usual I' matrices while operators (9) are
isospin generators. Presumably, this phenomenon of an
occurrence of internal quantum numbers in a continuum
limit could have fruitful applications in a modeling of
continuous gauge field theories on a lattice (say, in Monte
Carlo studies).
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Now we intend to consider fluctuations around the
mean-field configuration. It is easy to see that variations
of L;~ can be expressed as a multiplication of T; by an
arbitrary matrix A which is a tensor product of matrices
diagonal in all three two-dimensional subspaces. The ba-
sis of those operators includes eight components (four in
2D):

(0, 0, 1) (0, 1, 1)

Oq ——1 (3 1 1, 02 ——0.3 S 0.3 |30.3,

03 —03 1 1, 04 ——1 (3 03 1,

05 ——1 1 o.3 06 —(73 03 1,
(0, 0, 0)

07' —03 1 (3 o3 08 —1 cr3 . 03. (13)

For example, an expansion of the variation A~ over the
basis (13) can be written in the form

(1,0, 0)

FIG. 1. Eight-site unit cell.

(1,1, 0)

Ai ——exp(iAi+ ir n2nsPO + 7 ninsPGps + T Aio2PGp2 +i7 ain2B2 + ir o.insBs + w n2ns Bp + PPpi), (14)

where a physical meaning of notations chosen for coeKcient functions will be clarified below.
Since fast variations of L,~ are already accounted by the use of the eight-component representation one can suppose

that all coefficient functions in (14) are varying slowly in space and time. Substituting (14) into a transformed
Hamiltonian,

H = ) @t(k) IANlNll ) a, A, exp(ik, ) + IANlNlNI ) e,,i,r "A;~ exp(ik, + ik, )

0( IANNNN ICXio'2(X3pA]2s exp(iki + ik2 + iks) @(k) + H.c. + 4 (k) A Ap@(k)

&(0) 2 &(0) 2 &(0)+)- l&NNI ~(AA))+) I NNNI ~(A At )+ I NNNNI ~(A A) )
NN NNN NNNNt(g

(15)

and expanding it up to erst-order terms one can see that for a hermiticity of the Hamiltonian all coeKcient functions
have to be real-valued. But then it appears that only part of the fields introduced in (14) corresponds to phase
fluctuations of A,~ and fluctuations of the real-valued Lagrange multiplier A, . The remainder describe Huctuations of
moduli IA,~ I

and acquire contributions from the second term in (5). After a rescaling of the fields by factors A~ l the
resulting Lagrangian of the effective continuous theory can be written in the form

L = 4( p„(ic9„+A„+v Bi, + ps A„+ps 7 B~) + 7 4 + its (+ + vy) + i[p„,pv]I'„v + i 7 [p„)pv]Gi, v

+~.('[~., ~-] '+..+' + h. , ~-] 'C.-)+ )++ ) .(B,*)'+).[(~')'+ (+*.)']
JNN

(
+ ):(~.,)'+).[('A.)'+ (~ )'+ (B;)'] + ).(B:)'+('A. )' (16)

This expression divers &om the result obtained in Ref.
10. First of all one can see that all 64 basic structures
(1)Ps& 7pt 7s'Yp) [lp 1 1v] s Ts TWs ) TV@& TWslpl T [1@1 7v] )
did appear in (16). Moreover the 28 ffelds which
get masses already in the bare Lagrangian are
(B~, A~, I"„„,~, 4'). The multiplet of the remainder 36

massless fields (Goldstone modes) (A„,sB„,G~„,m, P)
also divers &om the result of Ref. 10 where the set of
Goldstones included only 17 components (A~, B~,m)
&om a total 44.

We obtain that at special values of bare couplings
(JNN = JNNN = JNNNN) the mass terms in (16) turn out
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to be Lorentz invariant and then the whole Lagrangian
does demonstrate this SO(3,1) invariance. We believe
that the radiative corrections to (16) renormalize masses
towards a symmetrical point and the long-wavelength
theory is always Lorentz invariant.

Now we shall discuss other (internal) symmetries.
A complete perturbative analysis of the effective La-
grangians (16) and (24) could be as hard as a study of
the theory of strongly interacting hadrons. Instead one
can draw important conclusions from a consideration of
anomalies which constitute the basis of nonperturbative
phenomena.

In the Lagrangian (16) we accounted m as a separate
field. It corresponds to a harmonics of the Lagrange mul-
tiplier A; which is constant within one eight-site unit cell.
According to the mean-field spinon spectrum (12) this
component acquires a nonzero vacuum expectation value
(m) = (3~ANNN~ + ~ANNNN~ ) ~ . It leads to a noncon-
servation of an axial "isospin" current J„:

D„J„=i(m) iIJps7. @

which means that, in fact, the Lagrangian (16) is not in-
variant under the axial "isospin" transformations gauged
by sB„.Thus the expected "isospin" SU(2) symmetry
appears to be incompatible with a gapful spinon spec-
trum and, consequently, the radiative corrections to (16)
can provide B~ with a mass.

A simple analysis of the one-loop corrections shows
that being not protected by a gauge symmetry B~ be-
comes massive together with other bare Goldstone fields
G„andP while A„remains massless. Thus the only ex-
act internal symmetry is an original U(1) corresponding
to phase transformations (6).

Remarkably at m = 0 the theory (16) does obey the
"isospin" axial SU(2) syinmetry gauged by B~ and the
highest possible symmetry group SO(3,1)x SU(2) x U(1)
occurs. It is indeed nontrivial. Although on the classical
level the current J„is conserved, the gauge symmetries
can nevertheless be broken by anomalies. According to
general theory massless Dirac fermions coupled with a
vector Abelian field A„and an axial SU(2) field B„
exhibit the following anomalous current divergencies:

D„'J„=e„pp—Tr78„( B Op B + i B„5Bi5B ),P 4 P~ P

1 5D„J„=—~„gpss„A„DpBp,4' (19)

J„= e„~pptB„A„OpAp+ TrO„( B„Bp Bp + — B~ Bp Bp)], (20)

where Tr stands for a trace over "isospin" indices. The
vector U(1) current J~ is always conserved while both the
axial U(1) current J„anda vector "isospin" current J„
are not. But in addition the rhs of (18) is identically
equal to zero for a special case of an SU(2) group and
the corresponding axial "isospin" symmetry turns out to
be &ee of anomalies.

So only in the case of gapless spinons rn = 0 could one
obtain a large internal symmetry group SU~(2) x U(l) in-
cluding axial ' isospin" transformations which retain un-
der renormalization. Otherwise the only relevant gauge
symmetry is a conventional U(1) and only the corre-
sponding gauge field A~ is massless. We suppose that
namely the latter is the case because the very fact of
parity violation in the 3D chiral state means that a chi-
ral invariance between "left"

2
'@ and "right"

fermions is absent.
One more remark is that the spinon gap arises due

to next-nearest-neighbor couplings which are themselves
necessary to obtain complete field multiplets and to get a
covariant Lagrangian (16). In addition we stress that the
set of terms obtained in (16) exhausts all possibilities and
cannot be enlarged by an inclusion of new spin couplings
J;~ which preserve the "relativistic" SO(3,1) symmetry
of the bare spinon spectrum and the Dirac point at Q =

Performing an analogous procedure in 2D we define
the planar translations as

T1 = ~1 = 01 (3 03)
T2 = o'2 = 1(301)

Ti2 = p = Zo.'ici2 = 0 i I3 02.

Suspecting a spin symmetry group SU(2) or its subgroup
U(l) we shall also define v' matrices as

= oi (31,
2 = 03 (3 01)

3——CT2 01. (22)

Oi ——1(3 1,
02 ——o.3 g) 1,
03 ——1 ( o.3,

O4 = 03 (3 03) (23)

again manifesting a possible internal "isospin" symme-
try group SU(2) and a (2+1)-dimensional Lorentz group
SO(2, 1) additional to an intrinsic "charge" U, (1) group
of phase transformations (6).

Now a unit cell includes four sites of a square lattice and
the number of diferent operator structures which could
appear in a continuous theory (as well as the number of
fields) is equal to 16.

The four diagonal operators can be represented in the
form
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An e8'ective Lagrangian for four-component spinons
(n = 1, 2; a = 1, 2) coupled with all possible fiuc-

tuations of 4;~ and A, has the form

L = @[p„(t'B„+A„+~B„)+ m + ~4]@

+ ).(B,')'+(C")' +
JNN ( i 2 ) ~NNN

1 [(Bo)'+m'I.

(24)

We obtain that an "isospin" group is, in fact, broken
up to U, (1) in agreement with the statement made in
Ref. 10. Again an exact Lorentz symmetry occurs at
JNN ——JNNN. However the set of massless fields includes
C and B„'instead of B„andm as proposed in Ref. 10.

Again we find a spinon gap m to be nonzero as a man-
ifestation of 2D parity violation. Then calculating one-
loop corrections one readily obtains a mass term for the
field @, but B„'are massless due to the remnant U, (1).

Note that in the odd-dimensional case there is not any
current nonconservation but instead the Lagrangian can
be noninvariant itself with respect to "large" gauge trans-
formations. It is, in fact, an appearance of Chem-Simons
terms after integrating over fermions

8L = —e„„),[A„BAg + Tr (B„B„Bp+ s B„B„Bp)].4' ""

III. DISCUSSION

Thus one can see that a complete hydrodynamical
description of spin disordered chiral states with a sim-
plest intrinsic periodicity with the wave vector
( z, . . . , 2 ) reveals a whole zoo of relevant degrees of free-
dom. Moreover these variables are arranged into multi-
plets of Lorentz as well as some internal symmetry group
which appears in the continuum limit. This fact has to
be assigned to the complex nature of the order parameter
L;~ describing chiral states. It can be compared with an
appearance of new branches of spin waves in multisub-
lat tice anti ferromagnets.

We notice that one can encounter a somewhat similar
situation in the theory of He (both A and B phases).
This system has a large symmetry group of the order pa-

These terms provide both A„and B'„' with gauge invari-
ant masses, so there are no physical gapless excitations
in the 2D chiral state. However due to the topological
nature of the Chem-Simons terms an instantaneous long-
range Bohm-Aharonov interaction persists. It is then
responsible for a well-known phenomenon of a transmu-
tation of spinon statistics.

rameter and exhibits a rich spectrum of bosonic collective
modes which includes an Abelian as well as non-Abelian
SU(2) gauge fields and also gravity.

Of course, an occurrence of a relativistic symmetry in
an effective theory of low-energy antiferromagnetic exci-
tations can be expected on general grounds. However in
contrast to the case of the He hydrodynamics the inter-
nal symmetries of the 3D Lagrangian (16) exist only in
the limit of zero spinon mass (spin gap). The reason is
that the extra gauge Geld 8& is coupled with the ax-
ial current which does not conserve even on the classical
level once a spin gap opens. Other massless fields present
in the classical Lagrangian (16) are not associated with
any gauge symmetry and receive their masses from radia-
tive corrections. As a result, these fields mediate some
short-range spinon interactions which add to the primar-
ily important long-range interaction via the vector field
A~ gauging phase transformations (6). Nevertheless mas-
sive fields can manifest themselves in internal structure of
soliton excitations if these are present in the field theory
(16)

In the 2D case described by the Lagrangian (24)
all excitations become gapful due to the generated
Chem-Simons terms (25), although the instantaneous
long-range Bohm-Aharonov interaction responsible for
semionic statistics of spinons persists. As an eKect of
an additional Abelian gauge symmetry provided by the
complex vector Geld B„+= B„+iB„onecan expect that
the spectrum of the theory (24) contains vortex excita-
tions carrying two diferent topological charges equal to
magnetic cruxes of A~ and B„+.Physically these vortices
correspond to difFerent types of circular domain walls.

In conclusion, our results do not confirm a conjecture
made in Ref. 10 that massless excitations include an ad-
ditional vector SU(2) gauge field in 3D [U(1) in 2D] re-
quired for a scenario of topological superconductivity. It
makes questionable a realization of this intriguing mech-
anism of superconductivity in the context of hypothetical
chiral states of doped antiferromagnets. However it does
not rule out the general possibility of finding this phe-
nomenon in some other condensed matter system which
can be electively described in terms of unbroken local
gauge symmetries additional to the conventional "RVB
gauge symmetry" (6).
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