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Persistent current and voltage in a ring of Josephson junctions
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We study a ring of N Josephson junctions with gauge charges induced by external sources and in the
presence of a magnetic field. At zero temperature the system is mapped into a standard two-dimensional
classical XY model, thus shown to exhibit the Kosterlitz-Thouless transition between the superconduct-
ing and the insulating phases, which are characterized by the gauge-invariant phase and charge correla-
tion functions. In particular, the persistent current and voltage in the two phases are obtained, and the
duality relation between the strong-coupling limit and the weak-coupling limit is discussed.

I. INTRODUCTION

The Josephson-junction system is conveniently de-
scribed by the phases of the superconducting order pa-
rameters, which represent collective degrees of freedom.
In terms of these macroscopic variables, the Hamiltonian
of a Josephson junction takes the form of a particle on a
circular loop in a periodic potential, suggesting the possi-
bility of macroscopic quantum phenomena. ' In particu-
lar, externally induced gauge charge plays the role of
magnetic fiux, and leads to the persistent voltage across
the junction, which is the counterpart of the persistent
current in a mesoscopic metal loop. In the latter, the
persistent current is a manifestation of the Aharonov-
Bohm effect, which rejects the nonsimply-connected
(i.e. , circular) geometry of the system in the real space.
In contrast, the Josephson junction does not possess such
nontrivial geometry in the real space; here the interfer-
ence effect stems from the phase compactness, which
effectively makes the topology circular. It is also of in-
terest to note that the persistent voltage in the Josephson
junction may be regarded as a manifestation of the
Aharonov-Casher effect which is dual to the Aharonov-
Bohm effect resulting in the persistent current.

A simple Josephson-junction system of interest is the
Josephson-junction necklace, i.e., the ring of N Josephson
junctions with self-charging energies. It possesses two
nontrivial topologies: the circular geometry in the real
space in addition to the intrinsic one associated with the
phase compactness. Accordingly, the system in the pres-
ence of the external magnetic field and induced gauge
charge is expected to display both types of interference
effects, the Aharonov-Bohm oscillation with the magnetic
field and the Aharonov-Casher oscillation with the in-
duced charge. In particular, the weak-coupling limit
where the charging energy Ec is dominant over the
Josephson coupling energy Ez and the opposite strong-
coupling limit have been studied. In both limits the sys-
tem behaves like a single particle on a circular loop, sug-
gesting the duality between the two limits.

This paper presents detailed study of the Josephson-

junction necklace at zero temperature, with both the in-
duced charge and the magnetic field. At zero tempera-
ture the system is mapped into a standard two-
dimensional (2D) classical XY' model, regardless of the
charge and the J7eld. Therefore, it exhibits the
Kosterlitz-Thouless (KT) transition ' between the super-
conducting and the insulating phases, with a =Ec./EJ—
taking the role of the temperature. In particular, the crit-
ical value of a separating the two phases depends on nei-
ther the induced charge nor the magnetic field. We also
calculate the gauge-invariant phase and charge correla-
tion functions, which show the expected oscillations as
the induced charge or the magnetic field is varied. The
superconducting phase then displays algebraic order of
phases (and charges), while the insulating phase is
characterized by long-range order of charges (and phase
disorder). The corresponding persistent current and the
voltage carried by the system also display characteristic
behaviors: The persistent current shows the periodic os-
cillation in the superconducting phase, while it is vanish-
ingly small in the insulating phase. Conversely, the per-
sistent voltage is present in the insulating phase but
suppressed in the superconducting phase, decaying to
zero in the strong-coupling limit (a~O). Thus the duali-
ty between the two phases of the system, separated by the
KT transition, is made obvious.

This paper is organized as follows: In Sec. II the
Josephson-junction necklace is introduced, and the map-
ping onto the 2D classical XF model via the standard
Feynman path integral ' is briefly reviewed. In particu-
lar, it is shown that the induced gauge charge as well as
the magnetic field has no effect here. Section III presents
the detailed calculations of the gauge-invariant correla-
tion functions. The phase correlation function is ob-
tained with the help of the dual transformation, '" while
the charge correlation function can be conveniently ob-
tained through the use of the results of the discrete
Gaussian model. ' Section IV is devoted to the persistent
current and voltage, which are closely related to the
correlation functions calculated. in Sec. III. Finally, a
summary and a discussion of the duality are given in Sec.
V.
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II. JOSEPHSON- JUNCTION NECKLACE

We consider N superconducting grains arranged into a
circle, each coupled with its two neighbors via the
Josephson junctions of strength EJ. On the kth grain
with self-capacitance C, a gauge charge Qk can be in-
duced externally, e.g. , by applying electric potential Vk
with respect to the ground, giving Qk =CVk. In addi-
tion, a transverse magnetic field is applied, generating the
vector potential along the circle. The Hamiltonian of
such a Josephson-junction necklace takes the form

N 1V'

H= g (2epk+Qk) EJ g—cos(Pr, —$k+t — k),
k=1 k=1

where pk and Pk are the number of Cooper pairs and the
phase of the superconducting order parameter (i.e., the
macroscopic wave function of the Cooper pairs), respec-
tively, on the kth grain. They are conjugate to each oth-
er. In Eq. (1) the intergranular capacitance has been as-
sumed negligible, and the transverse magnetic field gives
the bond angle Ak in terms of the line integral of the vec-
tor potential A:

2~ k+1
Ak —= f A.dl =2~f,

40 k

where f denotes the fiux per junction in units of the fiux
quantum @0——2Mc/2e. Note that the total fiux 4 scales

I

with ¹ 4=Nf@o. The first term in Eq. (1) represents
the charging energy of the system with the total charge
2epk+Qk on the kth grain, while the second term corre-
sponds to the Josephson energy with the gauge-invariant
phase difference QI,

—pk+, —Ak across the kth junc-
tion. '

For simplicity, we consider the system with uniform
induced charge Q, and write the above Hamiltonian in
the form

Ec
H = g (p„+q) —E g cos(P„—P„, 2~f—),

k k
(2)

where E& =—4e /C represents the charging energy scale,
and q =Q/2e represents the uniform induced charge in
units of 2e. It is obvious that the Hamiltonian (2) is
periodic both in q and in f with periods q = 1 and f = 1.
Henceforth, the range of q will be limited on the interval

We now consider the mapping of the system at zero
temperature ( T=P' =0—) onto the 2D classical XY mod-
el, which has been done for a Josephson-junction chain in
the absence of the induced charge and the magnetic
field. ' The generalization to the necklace with the field
and charge is straightforward, and will be described
briefly. Following Ref. 10, we introduce the imaginary
time v. running on the interval [O,P], and express the par-
tition function Z—:Tre ~ in terms of the Feynman path
integral:

N

Z= +f dP, +.g (P, +, ~e
'

~P; )exp icos(P; —P;, , 2nf)— .
ij i=1 j=1 l, J

where the w axis has been divided into X steps of length 5, the indices i and j represents the position on the 20 x-7
lattice of size N XN„and the complete sets of phase eigenstates ~P," ) have been inserted at each division. Here the
cutoff energy 6 should be chosen sufficiently larger than both Ec and EJ. In a real system, each grain will become no
more superconducting as the temperature is increased beyond TBcs, which is of the order of the zero-temperature BCS
gap. ' Therefore, the Hamiltonian in Eq. (2) is valid only for the energy scales Ec and EJ sufficiently smaller than the
gap, and it is natural to have the gap take the role of the cutoff b, . The matrix element in Eq. (3) can be evaluated by in-
serting the complete sets of momentum eigenstates, which leads to

(P; +, ~e
'

~P, ) = g exp[ V (S, ,+ +q)+iS + (P,—P + )),
Is

(4)

where S + is an integer variable representing the momentum eigenvalue at site r=(x,y)= (i,j) of—the x rlattice and-
V (S)= (Ec/2b, )S . No—te that without induced charge (q =0), Eq. (4) would be the Villain form of the cosine action
along the ~ direction. In fact the induced charge cancels out in the partition function, and accordingly has no effect on
the phase transition in the system. To see this, we expand the Josephson term in Eq. (3) as a Fourier series:

exp cos(P, —P;+, 2mf) = g exp[V—(S, +„)+iS + (P, P,+ 2mf)], — —

V (S).
where the Fourier component e is in general given by a Bessel function of imaginary argument. The partition func-
tion in Eq. (3) then takes the form

Z= +f dP, Q g exp[iS (P, P; 2mf —)+V(S ~ +q—)],
r (rr') IS
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Z= g exp g [ V(SR —SR. +qRR )
Is j &R.R')

—i2nfRR (SR —SR )] ', (7)

with qRR =q5R, R+ and fRR —=f5R, R . &n the argu-
ment of the exponential function in Eq. (7), q appears
only in the terms with R'=R+x for which

V(SR —SR +qRR ) = Vy(SR —SR +qRR )

(EC /2~ )(SR SR' +'qRR' )

Therefore we split ofF'q-dependent terms, and express the
first term in the argument as

where f ~:f—5.. .+-„, q ~ =q5.. .+, and

V(S +q )= V (S„.)5.. .+-„+Vy(S ~ +q)5.. .+- .

For convenience, site r' has been always chosen to be ei-
ther right of or above site r.

The integral over phases in Eq. (6) can be performed as
usual to yield the zero-divergence condition for S„.,
which can be met by the dual transformation:
S =SR —SR with the dual lattice site R' being either
right of or below R. We thus obtain the partition func-
tion in the form

III. GAUGE-INVARIANT CORRELATION FUNCTIQNS

In this section, we compute the phase and charge
correlation functions, and investigate their behavior.
Such correlation functions have been obtained in the ab-
sence of the magnetic field and the induced charge. '

Here we pay attention to the gauge-invariant correlation
functions in the presence of the field and charge. Unlike
ordinary ("non-gauge-invariant") correlation functions,
they manifest the e6'ects of gauge-invariant quantities
such as the magnetic Aux and the induced charge. It is
again convenient to use the known results for the isotro-
pic 2D XY' model.

The phase correlation function defined by

g„(r—r')=&e ' ' ) (9)

with ( . ) denoting the ensemble average, may be writ-
ten in the form

g„(r—r')

ishes, and there is no frustration in the system. ' Al-
though the induced charge and the magnetic field do not
a6'ect the phase transition, they lead to the gauge-
invariant correlation functions, and generate the per-
sistent current and voltage, which will be the subject of
the next sections.

&c
V(SR —SR +qRR ) = V(SR —SR ) — qRR. (SR —SR.),

1

Z g exp g V(SR —SR +qRR —nqlRR. )
IsR j (RR )

(10)

where the q-dependent term obviously vanishes upon
summing over R and R'. Likewise, the (imaginary) f
dependent term in Eq. (7) also vanishes upon summing
over R and R'. ' This allows us to set q =f =0 in Eq.
(7), which then may be identified with the partition func-
tion of the 2D classical XY model with anisotropic cou-
pling, EJ/b, in the x direction and b, /Ec in the r direc-
tion. Such anisotropy may be removed by rescaling the ~
axis by the factor QEcEJ, ' which leads to the parti-
tion function of an isotropic 2D XP model

Z = +J dg, exp IC g cos(P, —()(,, )
r

with the eifective coupling given by IC:—QE&/Ec. Thus
we conclude that the system at zero temperature under-
goes the KT transition from the superconducting phase
to the insulating phase, driven by quantum fluctuations.
The critical value of a =Ec/Ey beyond which the system
is no more superconducting is given by u, =~ /4 if the
vortex core energy is sufficiently large.

The irrelevance of the induced charge as well as the
magnetic field to the superconductor-insulator transition
in the necklace can be understood in the following way:
The uniform bond angle 2qrf due to the magnetic field in
the necklace leads to the same uniform bond angle in the
x direction of the corresponding 2D x-~ lattice, while the
uniform induced charge q gives again uniform (imagi-
nary) bond angle. ' Therefore, the plaquette sum of the
(complex) bond angles on the x-r lattice obviously van-

where q)RR, is nonzero only if the path from r = (x,y) to
r'=(x', y') cuts the dual link (RR'):

V(SR SR'+'qRR' n 7RR')
& RR.')

V(SR —SR —n v1RR )
—n —(y —y'),

&RR )

where the irrelevant constant term has been omitted.
Therefore, we obtain

(q/K)(y —y')g 0(

or

where g„(r) is the correlation function in the absence of
the induced charge. ' Therefore the correlation function
in the necklace corresponding to the "equal-time" (y =0)
correlation function in Eq. (11) is simply given by

x &{ ' a(o, ,
g„(x)=g„(x)—' —x//{a) )e, cK CX

(12)

displaying the well-known algebraic decay for a )a, . '

The gauge-invariant phase correlation function in the
presence of the magnetic field is given by

IRR' R', R+x R'R —y R', R—x R', R+y

We note the (isotropic) Villain action V(S)= —S /2K,
and write
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G„(r—r')=—Re(exp ie
r

=cos n g Ak& g„(r—r'),
r

G„(x) =cos( 2' nfx )g„(x), (14)

and exhibits periodic behavior as a function of the mag-
netic Aux.

We next consider the charge correlation function. The
gauge-invariant form is given by

C (k —1)—:Re(e "" ' e '" ' )n

=Re[einq(k I~c„(k l)] (15)

where c„(k —l) is the (noninvariant) correlation function.
In the charge representation, c„(k —l) takes the form

~k —1

c„(k—l)=(e '=' ')

=1= z g exp ~ X V(SR —SR +ERR )

SR~ (RR )

Xexp[in(SR —
SR+~k &~„)] . (16)

Since we again have

where gz Ak& represents the sum of the bond angle over
the path I (r, r') from r to r', and in general depends on
the path I chosen. " In the necklace system, however,
we have 3, , =2qrf(5, , ,+„—5.. . „),and consequently,

g A„,=2qrf (x' —x),
r

which is path independent. The gauge-invariant correla-
tion function thus reads

to destroy phase order and to set up long-range order of
charges. This behavior is determined solely by g (x) and
c (x), and the induced charge as well as the magnetic
field does not play a role, which rejects the absence of
frustration in the system. However, the gauge-invariant
correlation functions, which naturally depend on the
(gauge-invariant) magnetic Ilux and induced charge, re-
veal additional features, showing characteristic oscilla-
tions. In particular, the duality in the system with the
corresponding persistent current and voltage is manifest-
ed as we shall see in the next section.

IV. PERSISTENT CURRENT AND VOLTAGE

In the external magnetic field, the energy of the neck-
lace becomes periodic in the magnetic Ilux f, and a per-
sistent current is induced in the system. Similarly, the
gauge charge applied externally makes the energy period-
ic in the charge q, thus generating a persistent voltage
with respect to the ground. The persistent current and
voltage, which are closely related to the correlation func-
tions obtained in Sec. III, also show characteristic
behaviors in the appropriate limits.

The current carried by the system is given by the
derivative of the energy with respect to f:

e BH 2eI = = — Eq ( sin( P„Pk + ) 2q—rf ) ), (1—8)
2' h' 8

which is simply the supercurrent through the Josephson
junctions. Thus the current in the system is given by the

~k ~k+1 k k+1imaginary part of (e " "+' ""+' ), the real part of
which reduces to the gauge-invariant phase correlation
function between nearest neighboring grains,
G„&(x = 1). This leads to the desired form of the
current:

V(SR —SR +gRR, ) —g V(SR —SR.),
(RR') (RR'&

2eEJI = g &
sin(2' f), (19)

we conclude that c„(x) is the same as c„(x), the correla-
tion function in the absence of the induced charge. The
latter has been shown to be given by'

n 2

c„(x)=exp — GD(x)

where GD(x) is the height correlation function in the
discrete Gaussian model. ' Thus c„(x) as well as c„(x)
decays algebraically with x for a & a„while it reaches a
finite value for a )a, . The gauge-invariant charge corre-
lation function in Eq. (15) now obtains the form

C„(x)=cos(nqx)c„(x), (17)

which displays oscillatory behavior as the induced charge
is varied.

The behaviors of the correlation functions display the
competition between phase ordering and charge ordering
in the system. For a&a„we have algebraic order of
phases, while charge order is suppressed. On the other
hand, for a &a„quantum fluctuations are large enough

where g&
=—g„,(x =1) is the phase correlation function

between nearest-neighboring grains. For a & a„g, re-
tains a finite value, while it becomes exponentially small
as a is increased beyond a, . The system carries a per-
sistent current which is periodic in f in the superconduct-
ing phase (a(a, ) as expected. On the other hand, the
persistent current is strongly suppressed in the insulating
phase.

We next consider the potential of a grain to the
ground. It is related to the time derivative of the phase
(the "velocity" ) via the Josephson relation, and accord-
ingly, given by the derivative of the energy with respect
toq:

(20)

which is simply the voltage on a capacitor C due to
charge 2e (pk +q). It is straightforward to calculate (pq )
in Eq. (20), which is related to the correlation function in
the ~ direction:
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&Pk ) = —i«»n(dkj Pk, j+1))

K
2

where g (y =+1)=g„ i(x =O,y =+1) is the phase
correlation function between nearest neighbors along the
r direction. Using Eq. (11) and K=tz ', we obtain the
voltage in the form

Ec g)
V = q

— —sinh(q&a) (21)
2e

for —
—,
' (q (—,'. (Note that V as well as H is periodic in

q. ) In the insulating phase, the correlation function g, is

small, and the system develops persistent voltage. In the
superconducting phase, on the other hand, g& is finite,
suppressing the voltage. As e is decreased to zero, phase
order reaches its maximum (g, —+I), leaving no voltage
in the system.

In summary, the system in the presence of the magnet-
ic field and gauge charge displays the characteristic
current and voltage, which are periodic in the magnetic
Aux and in the gauge charge, respectively. While the su-
perconducting phase is manifested by persistent currents
with the voltage strongly suppressed, persistent voltage is
developed with negligible currents in the insulating
phase.

V. CONCLUSIONS

The Josephson-junction necklace is simple enough to
allow analytical investigation. Yet it exhibits not only a
phase transition driven by quantum Auctuations but also
additional interesting features associated with the two
nontrivial topologies present. In particular, the system in
the presence of the external magnetic field and induced
gauge charge displays both types of interference e6'ects,
the Aharonov-Bohm oscillation with the magnetic field
and the Aharonov-Casher oscillation with the induced
charge.

We have presented detailed study of the Josephson-
junction necklace at zero temperature, with both the in-
duced charge and the magnetic field. The system has
been shown to map into a two-dimensional XYmodel, re-
gardless of the charge and the field. Thus a
superconductor-insulator transition of the Kosterlitz-
Thouless type has been concluded, which depends on nei-

ther the induced charge nor the magnetic field. We have
also calculated the gauge-invariant phase and charge
correlation functions, which not only characterize the su-
perconducting and insulating phases but also display the
Aharonov-Bohm and the Aharonov-Casher oscillations
as the magnetic field or the induced charge is varied. The
corresponding current and the voltage carried by the sys-
tem are found to display characteristic behaviors: The
persistent current shows the periodic oscillation in the su-
perconducting phase, while it is vanishingly small in the
insulating phase. Conversely, the persistent voltage is
present in the insulating phase but suppressed in the su-
perconducting phase.

The current and the voltage in the system have simple
limiting behaviors in the strong-coupling limit (a~O)
and in the weak-coupling limit (a~ac). In the weak-
coupling limit where the charging energy is dominant
over the Josephson coupling energy, we have the per-
sistent voltage V=(Ec/2e)q without a persistent
current, manifesting the insulating phase. This linear
behavior with respect to q reAects that the system reduces
to a free particle on a circular loop. In the opposite
strong-coupling limit, the voltage decays to zero, while
the persistent current is given by I =(2e/A')EJsin(2rrf).
Recall that f has been defined to be the number of Ilux
quanta per junction, and scales like X '. For large N,
therefore, the current takes the form I =(2eE&/h)2trf,
which again reAects that the system behaves like a free
particle. Thus, the two limits can be mapped into each
other, since in both limits the necklace of sufficiently
many junctions reduces to a free particle on a circular
loop. This behavior, which stems from the two nontrivial
topologies of the necklace, suggests the duality present in
the system. In particular, the insulating phase carrying
persistent voltage apparently maps into the supercon-
ducting phase carrying a persistent current, with the
correspondence q~2rr f.
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