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Strongly coupled ripplonic polarons in a magnetic field
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By means of a variational scheme of the Pekar type, a system of strongly coupled ripplonic polarons
on the outer surface of liquid-helium film under the influence of a magnetic field of arbitrary strength is
studied. Analytical expressions for the ground-state energy, the effective mass, the average number of
virtual ripplons around an electron, and the spatial extension of the electron are obtained as functions of
the magnetic-field strength and the electron-ripplon coupling constant and compared with previous

work.

I. INTRODUCTION

In a recent paper! (hereafter referred as I), we em-
ployed Larsen’s method of the harmonic-oscillator alge-
bra to treat, for weak coupling, a two-dimensional (2D)
ripplonic polaron on a liquid-helium surface when a mag-
netic field of arbitrary strength is applied normally to the
surface. The ground-state energy of the 2D polaron in
the presence of a magnetic field of arbitrary strength and
the polaron effective mass for the cases of a strong field
and a weak field were obtained.

It is well known that the coupling strength of the
electron-ripplon system can be changed by adjusting the
thickness of the film or by changing the substrate. On
the basis of I, the treatment is now extended to the case
in which the strength of the 2D electron-ripplon coupling
is strong. This problem has been treated by Jackson and
Peeters® with the Feynman path-integral formalism ex-
tended by Peeters and Devreese.? Their conclusion is
that for a certain magnetic field the strongly coupled po-
laron undergoes a transition from a self-trapped state to a
free Landau-type electron state, in which the Feynman
model mass becomes a bare electron mass. Recently, the
same problem was studied by Kato and Tokuda* with an
extended variational scheme of the Lee-Low-Pines
theory. Their conclusions for a strong-coupling range are
that in the weak-magnetic-field limit the polaron is in a
self-trapped state and in the strong-magnetic-field limit
the polaron is in a magnetically trapped state. But in
their paper, there is no range over the phase-transition-
like behavior. Some authors have pointed out that the
Feynman-Jensen inequality is not valid for the electron
action in a magnetic field.*> A recent paper by Devreese
and Brosens® provides the successful extension of the
Feynman-Jensen inequality to a polaron in a magnetic
field.

Among the investigations of a strongly coupled
electron-phonon system in a magnetic field, the variation-
al method of Pekar’s product ansatz for the state vector
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is one of the most effective. Porsch’ calculated the self-
energies and effective masses of strongly coupled optical
and piezoelectric polarons at arbitrary field strengths
within the Pekar ansatz. Evrard, Kartheuser, and De-
vreese® also investigated the strongly coupled electron-
phonon system in a weak magnetic field by the Landau-
Pekar-type method. Later, Tokuda and Kato¥’ studied
the problem of strongly coupled polarons in a magnetic
field within a variational scheme of the Pekar type.

In this paper, we will discuss the strongly coupled
electron-ripplon system under the influence of a magnetic
field by using a variational scheme of the Pekar type.’ °
Analytical expressions of the ground-state energy, the
effective mass of the strongly coupled polaron as well as
the average number of virtual ripplons around the elec-
tron, and the spatial extension of the electron are ob-
tained as functions of the magnetic-field strength and the
electron-ripplon coupling constant. The results show
that these quantities change continuously versus the
magnetic-field strength. Similar to the weakly coupled
case in I, there is no indication of phase-transition
behavior,? as expected, in our work.

II. FORMULATION

We consider a liquid-helium film of thickness d. Its
free surface is taken to be the xy plane so that the half
space is a vacuum when z>0 and the half space is the
substrate with dielectric constant € when z < —d. The
system is under the influence of an external magnetic field
B along the positive z direction. For an electron interact-
ing with the ripplon on the free surface, the Hamiltonian
of the coupled system is given by!2

2

2
1 1., 1 1.,
am (P GBY | o (B
+ S togaga+ S (VEage ®T+H.c.), (1)
k k

15 905 ©1993 The American Physical Society



15 906
with
p=2E (2a)
C
172
o= | |g'k +%k3 tanh(kd) | (2b)
Vi, =[2ma#’g’'ktanh(kd)/Smw, '/?, (2¢c)
_ (e&)? 2m )
O T d)
20—
egzeEext_{,_e__éE_.l_)__ , 2e)
4d*(e+1)
k.=(pg'/o)'*. @2n

All the notations are the same as given in I.
Like the electron-phonon system in a magnetic field,’
the Hamiltonian (1) can be rewritten as
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is the cyclotron frequency of the electron.

Similar to the case of the electron-phonon strongly
coupled system in a magnetic field,® the wave function
|¥) of the Hamiltonian (3) can be written as the varia-
tional wave function of the Pekar type:

W) =x(r)py , (5)

where x(r) depends only on the electron and ¢,; describes

the state of the ripplon field of the liquid-helium surface:
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Here u and p, are variational parameters, |0) represents
the state with no ripplons, i.e., the vacuum state with
a,|0) =0, and U|0) is the coherent state.

U=exp |3 fray —fiac ], (8)
K

where f is to be determined variationally.

In order to obtain the effective mass with the ground-
state energy of the ripplonic polaron, we minimize the ex-
pectation value of the [# —u-(P—P,)] for the state vec-
tor |W),

S[{V|H—u-(P—Py|¥)]=0, 9)

where u is the Lagrange multiplier which will be
identified as the polaron velocity, as we shall see. P, is
the expectation value vector of the total momentum
operator for the state vector |¥). The total momentum
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operator of the system may be written as

P=p+§A+ S #ikay a, , (10a)
k

A=(—1By,1Bx) . (10b)

The unitary operator U transforms a; and a, into the
following:

UtafU=al +f¥, (11a)
Uta,U=a,+f, . (11b)
Now we can obtain the expectation value of

[#H —u-(P—P,)] for the wave function |¥),
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Minimizing (12) with respect to p, and f}* leads to

Viexp[ —k?/(4p)]
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and
po=mu . (14)

In the low-temperature limit 7—0 K, we have neglected
the recoil of ripplon in Eq. (13).

Because of the complicated dispersion relation (2b) and
the electron-ripplon-interaction amplitude (2¢), an analyt-
ical expression for the ground-state energy can only be
obtained in an approximation. Following Jackson and
Peeters,? we assume tanh(kd)~kd and consider a linear-
ized cut-off ripplon spectrum; that is, w; =sk with the
cut-off ripplon wave number k =k,, where s =(g'd)!/?
for k <k.. This has been shown"?* to be a good approx-
imation for d <100 A. Using the parameters f} and pgin
(13) and (14), we discover the expectation value of the en-
ergy up to the second order in u is

(V|H|V)=E +1im*u?, (15)
and for the momentum we obtain
(V|P|¥V)=P,=m*u, (16)

where E and m *, respectively, are the ground-state ener-
gy and the effective mass of the polaron in a magnetic
field. They are given by

2 2
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Thus, we can say that the Lagrange multiplier u is the
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polaron velocity from (15)-(18). Here the definition of
the effective mass is the same as Ref. 9 but different from
the effective cyclotron mass, which is defined by using the
cyclotron resonance frequency. °

The variational parameter u is determined by minimiz-
ing E. Thus, from the equation
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if we take the exponential function e ™*

second order in x, we find the parameter is

in (19) up to

p=[k2A*+4a)?]/4 , 1)
from which we finally obtain the ground-state energy,
E=1%0,+AE , (22)
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and the effective mass is
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The first term in (22) is the Landau-level energy of the
free electron in a magnetic field. The last term, AE, is the
energy shift due to the interaction among the electron,
magnetic field, and ripplon field. In (24), the parameter 7
has been defined as n=sk_ /w,.

Besides the ground-state energy and the effective mass,
we can also calculate the spatial extension of the electron
as follows:

2
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R =((‘I’|x2+y2|‘l’))1/2=(1/,u)1/2=

and the average number of virtual ripplons around the
electron as

N=(¥|3 aja,|¥)
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where the function ®(?) is the probability integral defined
as

-2 1=
®(t)= Yo foe dx .

III. RESULTS AND DISCUSSION

We have investigated the ground-state properties of the
2D strongly coupled polarons on the outer surface of the
liquid-helium film in a magnetic field within a variational
scheme of the Pekar type. Not only the analytical ex-
pressions of the ground-state energy and the effective
mass of the polaron, but also the spatial extension of the
electron and the mean number of ripplons in the cloud
around the electron are obtained as functions of the
strength of the magnetic field A? and the electron-ripplon
coupling constant a.

In the weak-field limit, A2—0, if we expand the terms
to second order in w,(A?), Egs. (22)-(26) become
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The first two terms in (27) give the ground-state energy of
the strongly coupled electron-ripplon system without a
magnetic field and the last term is due to the diamagnetic
motion of the electron in a potential well of the ripplon
cloud surrounding it. When A?=0, the results of Eqgs.
(27)-(30), as expected, agree with the results of our re-
cent work which studied the ground-state properties of
the strongly coupled polaron on the liquid-helium film in
the absence of magnetic field. !!

On the other hand, in the strong magnetic-field limit,
that is, A>— o, we can find from Eqgs. (22)-(24),

E:%‘ﬁwc-—aﬁwo , 31)
and
. _ 2a
m¥*/m=1+—. (32)
n

The first term in (31) is the Landau-level energy of the
electron in a magnetic field, while the last term is the
ground-state-energy shift due to the electron-ripplon in-
teraction and it shows that the ground-state-energy shift
approaches the limit —afiw, in the strong-magnetic-field
limit. The effective mass is proportional to the electron-
ripplon coupling constant but has nothing to do with the
field.

It is noted that the limiting expressions of the ground-
state energy (27) and (31) are essentially equivalent to
those obtained in Refs. 2 and 4. We also find that the
main term in (32), 2a/772, is just the same as the model
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mass of the strongly coupled electron-ripplon system in a
magnetic field obtained by Jackson and Peeters.? In or-
der to provide the figured presentation of the analytical
expressions, we calculate numerically the ground-state-
energy shifts and the effective masses of the system in a
wide range of the magnetic-field strength and large
electron-ripplon coupling constants in the following.
From Eq. (23), we have obtained the ground-state-energy
shift AE =AE(a,A) which is the function of the
electron-ripplon coupling constant a and the strength of
the magnetic field. First, we plot values of the energy
shift versus the electron-ripplon coupling constant a with
several different values of the magnetic field,
A%2=0,1,4,10, as shown in Fig. 1. Then we plot the energy
shift as functions of the magnetic field with several
different electron-ripplon coupling constants,
a=1,5,10,20, as shown in Fig. 2. We observe that the
value of the energy shift increases continuously with the
increasing value of the electron-rippling coupling con-
stant (Fig. 1) and with the increasing value of the magnet-
ic field (Fig. 2). The result of phase-transition behavior at
a certain value of the magnetic-field strength? is not ob-
served in our calculation. Taking afiw, as the unit of the
energy shift, we also find that the larger the A2, the less
the dependence of the energy shift AE on a, and that the
energy shift is almost invariable along with a in the
strong-magnetic-field limit. As shown in Eq. (31), the
limit of the trapping energy of the ripplonic polaron in
the strong-magnetic field is afiw,. This is in agreement
with the results obtained by Jackson and Peeters’ and

1.0

—AE (Units of ahwg)

0 | ] j
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FIG. 1. The energy shift as a function of the electron-ripplon
coupling constant for several different values of the magnetic
field: A2=0,1,4,10.
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FIG. 2. The energy shift as a function of the magnetic field
with several different electron-ripplon coupling constants:
a=1,5,10,20.
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FIG. 3. Effective-mass ratio as a function of the electron-
ripplon coupling constant. Two values of the magnetic field are
considered: A2=0.1and A2=10. (As in Ref. 2, =~2.5X1073))
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Kato and Tokuda.* But in a weak field, the ground-
state-energy shift (with afio, as the unit) changes with
the electron-ripplon coupling constant. For example,
when A2=0.1, —AE /afiw,~0.18 or 0.79 for a=1 or 20,
respectively. This is different from the weak-coupling
case in which the energy shift (with afw, as the unit)
does not change with the electron-ripplon coupling con-
stant. !

In Fig. 3, we also calculate the two effective-mass ra-
tios, !! which are the ratios of the polaron effective masses
to the free-electron mass and take them as functions of
the electron-ripplon coupling constant when the values of
the magnetic field are A2=0.1 and A’=10. We can see
the effective-mass ratio increases monotonically in magni-
tude with the increase of the value of the electron-ripplon
coupling constant within a magnetic field. We can also
see from these curves that the polaron’s effective mass is
mainly determined by the electron-ripplon coupling con-
stant but slightly determined by the strength of the mag-
netic field.

The results from Figs. 1-3 show clearly that both the
ground-state-energy shift and the effective mass of the
strongly coupled ripplonic polaron within a magnetic
field change continuously versus the magnetic-field
strength, which is similar to the weak-coupling case in I.
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The phenomenon that the polaronic electron undergoes a
phase transition from a self-trapped state to a quasifree
state at a certain magnetic-field value? is not expected in
our present model. This is the same as the result of the
strongly coupled electron-LO-phonon system within a
magnetic field, which was obtained by Tokuda and
Kato.’®

We hope that in the near future, experimental fact will
be able to answer the question of whether there exists a
phase-transition-like behavior in the strongly coupled
system of electron-ripplon within a magnetic field.

Finally, we should note that the results obtained in this
paper only suit the strongly coupled electron-ripplon sys-
tem but do not apply to the weak-coupling (a—0) range.
Those interested in weakly coupled ripplonic polarons in
a magnetic field may refer to Refs. 1, 2, and 4.
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