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Haldane gap in the quasi-one-dimensional nonlinear cr model
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This work studies the appearance of a Haldane gap in quasi-one-dimensional antiferromagnets
in the long-wavelength limit, via the nonlinear cr model. The mapping from the three-dimensional,
integer-spin Heisenberg model to the nonlinear cr model is explained, taking into account two anti-
ferromagnetic couplings: one along the chain axis (J) and one along the perpendicular planes (J~)
of a cubic lattice. An implicit equation for the Haldane gap is derived, as a function of temperature
and coupling ratio Jz/ J. Solutions to these equations show the existence of a critical coupling ratio
beyond which a gap exists only above a transition temperature T~. The cutofF dependence of these
results is discussed.

I. INTRODUCTION

It is by now well established ' that the excitation spec-
trum of the spin-1. antiferromagnetic Heisenberg model
has a mass gap (the Haldane gap) in one dimension,
whereas it is gapless in higher dimensions. Experi-
mentally, integer-spin chains are realized in quasi-one-
dimensional compounds in which the antiferromagnetic
coupling J along the chain direction is much higher
than the transverse coupling J~. The Haldane gap can
then be observed via neutron scattering or electron spin
resonance. It is the ratio B = J~/J which determines
the degree of "quasi one dimensionality" of the material.
For instance, R is estimated to be 0.02 in CsNiC13,
while it is certainly much lower ( 0.0006) in NENP
[Ni(C2HsN2)2NO2(C104)j. In CsNiCls one-dimensional
behavior (i.e., the existence of the gap) is oberved above a
critical temperature (the Neel temperature T1v) of about
5 K. On the other hand, one-dimensional behavior is
observed in NENP at temperatures as low as can be
reached. This suggests the existence of a critical ratio
B below which the system is one dimensional in charac-
ter, whatever the temperature.

This was argued in Ref. 7, wherein corrections to the
spin-wave spectrum were calculated in perturbation the-
ory for the anisotropic Heisenberg model in two dimen-
sions. More recently, Azzouz and Douqot have per-
formed a mean-Beld theory analysis on the Heisenberg
model on a square lattice:

H= J) S, S, +J~) Si S
(ij) (im)

wherein the first sum runs over nearest neighbor spins
along the chains, and the second sum runs over nearest
neighbors in the direction perpendicular to the chains.
They found a critical ratio given, in the large s approx-
imation, by B~ se ', where s is the value of the
integer spin.

In this work we will perform a similar analysis, but
within the three-dimensional nonlinear o model and at B-

nite temperature. The technique used has been described
in Ref. 9, wherein the temperature dependence of the gap
was calculated for the purely one-dimensional case.

The value we will find for B is very sensitive to the
cutoK prescription, but if we Bx the latter with the help
of the numerical result Ao 0.41J for the purely one-
dimensional Haldane gap at zero temperature, we find
the critical ratio R 0.026. However, we believe that
this estimate should be regarded with great caution. We
also illustrate the B dependence of the Neel tempera-
ture, of the zero-temperature gap, and the temperature
dependence of the gap for various values of B.

II. THE ANISOTROPIC NONLINEAR o. MODEL

wherein

1 1 2 2—(O,m) —v(cl, m)
2g v

Rv(8 r) —Rvv(Bvrvv) —),

v = 2Jasgl + 2R,
2G

and where a is the lattice spacing; the Beld rn is a unit
vector: rn = 1; this constraint alone makes the theory
nontrivial. Readers willing to accept Eqs. (2) and (3)
may proceed to the next section.

The mapping from the Heisenberg Hamiltonian to the
nonlinear o model has been done explicitly before in vari-
ous ways, ' but mostly in dimension 1. Here we wish to
show explicitly how the mapping is done in dimension 3,
with anisotropic couplings. We first need to write down

The aim of this section is to show how the Heisenberg
Hamiltonian (1) may be replaced, in dimension 3 and
in the continuum limit, by the anisotropic nonlinear a
model, with Lagrangian density
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the action for a single site, using spin coherent states. We
define a unit vector n such that S = Sn. Then the kinetic
term is well known to be the Wess-Zumino action

dt K=8
1 T

d~ dt n. (19 n x Bqn).
0

(4)

Here the time t runs from 0 to some finite period T
and w is an auxiliary coordinate introduced in order to
parametrize, along with t, the spherical cap delimited by
the curve n(t) from t = 0 to t = T. For more details,
the reader may consult Ref. 10. For our purpose, it is
sufIicient to know that the variation of the action upon
a small change bn is

where we defined the difference

b, n(r') = n(r'+ z) —n(r')

and similarly for b and b„. The definitions (7) imply

b, n(r + nw + Py) = —2a ) (—1)' +~~1,
~ q(r).

Applying the identity

) ( 1)~(*+i)

m=0, 1

we may write the kinetic term as

dt bn (n x (9)n). (5) K = 2"as) lqqq(r) . [m(r) x Btm(r)], (12)

Next, we add interactions between spins on a cubic
lattice I', with nearest neighbor vectors (w, y, z). Antic-
ipating short-range antiferromagnetic order, we scale the
unit cell by a factor of 2 in every direction, thus obtaining
a bigger lattice I' whose points are labeled r (unprimed)
and whose unit cell contains eight sites of I":

r' = c(.~ + py + pz,

wherein each of n, P, and p runs from 0 to 1. The unit
cell of I' contains eight spins which may be described by
eight different vector fields, as follows:

K=a "s dr 1111 mx Bqm.

The Heisenberg Hamiltonian may be expressed as H =
V~ + V& + V„where, for instance,

V, = —s J, ) n(r') . n(r' + z). (14)

where d is the dimension of space, which we keep variable
even though our notation is three dimensional, in order
to make this derivation more general. In the continuum,
this becomes

S(r') = s (—1) +~+ n(r'),

n(r') = rn(r) + a) ( 1)' +~~+"~—1;~q(r).
i,j,A:

(7a)

(7b)
Up to an irrelevant constant, this is equal to

-'s J, ) [b,n(r')] .

Again each of n, P, p and i, j, k runs kom 0 to 1; we
have introduced seven deviation fields lijI„ the primed
sum meaning that the term i = j = k = 0 is omitted,
the latter being rather represented by the slowly varying
field rn. We have included a factor of a in the definition
of lijA, in order to stress that deviations from short-range
antiferromagnetic order are assumed to be small.

Now we must express the kinetic term and the Heisen-
berg Hamiltonian in terms of these new fields, at lowest
nontrivial order in a, and then integrate out the deviation
fields 1;jI, to obtain an effective continuum action for rn.
Let us begin with the kinetic term K, which is obtained
by summing over spins the action (4). Assuming that n
is slowly varying, we use Eq. (5) to write

We have similar expressions for V & wherein J and b

are replaced by J „and b „. We then use Eq. (10),
along with

b, n(r + nx. + py + z)
= 2a(9,m(r) + 2a) (—1)' +~~1;~q(r),

to find

V, =2 a s J, ) (2) 1;s+2(oos 1),m+(B,m) j,
r&F ij

K = s ) ) (—1) +~b, n(r') [n(r') x (9qn(r')]
r&1 cx,P

(r' = r + n~+ py),

along with similar expressions for V and V„.
In the continuum, we may therefore write the following

Lagrangian density:

1: = a s1sss (m x Bsm) —a s J (2) 1o, + 21soo 8 m+ (8 m) )~)2

—a "8 Jy 2 1,.1. + 2lp10 . Booxn+ Bym. —a "s J~ 2 l,. 1+ 2lppl . tom+ Ozm . 18
)e7 )a7
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1 1
IIl X tIXl)4asJ +Jy+J

1
11PP = —

2 0~m,

(19a)

We now proceed to the functional integration of the
fields l,~I, . Since the action is quadratic in these fields,
this amounts to substituting in the Lagrangian the ex-
pression of these fields obtained from the equations of
motion. The latter are

&p'
T
Lp'

BA2
Q2

p
(24)

Then the reduced gap b obeys the following equation:

is much larger than the temperature T or the gap L.
Let Lp be the Haldane gap at zero temperature in the
one-dimensional limit (R ~ 0), and let us introduce the
reduced variables and parameters

l,~A,
——0 otherwise.

1
1P1P = —219&m,

1
lpp1 —

2 Oz IXl (19b)

(19c)

—G/ —
/

=0,(t)

(b + r) ln(b + r) —b lnb —r

+8t' G
V'b'+ r &

)
(25)

Substitution of these equations into the above La-
grangian density yields exactly Eqs. (2) and (3), with
J, = J, J = J& ——BJ, and d = 3. Note that in the
isotropic case (J = J), the Lagrangian obtained in di-
mension d is

G(y) = —,'y' dz gz2 —1 [coth(yz/2) —I]

. 1= y ) —K, (ny)

where we have defined the special function

(26)

—(oj,~) —U) (o;~)
1 1 2 2

2g v

with

2ad —1
v = 2Jas~d, g = (21)

The above derivation is valid for any dimension greater
than 1. In dimension 1 a complication occurs since there
is only one deviation field 1, whose equation of motion is
instead

(Ki is the modified Bessel function of order 1). The
remainder of this section will be devoted to the proof of
Eq. (25).

A large part of this section parallels the calculations
presented in Ref. 9. We start with the 0-model La-
grangian (2) expressed in terms of a rescaled variable
y = xn/~g:

~ = —((~ ~)' —(~.V)' —&(~ V)' — (~' —1/g))2

1= —2t9 m+ m x Otm.= —1 1

4aJs (22)

Substitution into the Lagrangian yields, in addition to
the action (20), a topological Hopf term, responsible
for the difference in behavior between integer- and half-
integer-spin chains. The above derivation shows clearly
that no such term arises in dimensions d ) 1.

So far we have eluded the question of constraints. The
eight fields rn and 1;~k are related by eight constraints
coming &om the relation n = 1. In the limit of small
deviations (a -+ 0) these constraints are

m =1, rn. l,~I,
——0; (23)

the second of these equations is compatible with the
equations of motion (19), implying that the above sub-
stitution procedure was indeed correct. The constraint
rn = 1 is part of the definition of the nonlinear o. model.

III. DERIVATION OF THE GAP EQUATION

The aim of this section is to find, starting from the
o-model Lagrangian (2), an equation governing the tem-
perature and anisotropy dependence of the Haldane gap.
Before embarking upon calculations, let us simply state
the results, obtained in the approximation where the cut-
off A (proportional to the inverse lattice spacing a )

Here we have set the magnon speed v to unity; it can
be restored at the end by dimensional analysis; we have
introduced a Lagrange multiplier o(x, t) whose role is
to enforce the constraint p = 1/g at every space-time
point. In the path integral formalism, implementing a
constraint in this way is equivalent to inserting a delta
function b(p2 —1/g) in the path integration measure,
by virtue of the representation b(x) = f (dk/2vr)e'" of
the delta function. The advantage of this method is to
simplify the integration measure for p, which simply be-
comes that of a triplet of scalar fields.

The strategy used to compute the Haldane gap is to
calculate at one loop the effective potential V(o) for the
Lagrange multiplier. This amounts to integrating the
field p, assuming o to be constant. We then look for a
minimum in V(o). If such a minimum exists for o g 0,
then the position o of this minimum is the mass squared
of the triplet field y, namely, the square of the gap. Of
course, the exact integration of rp in Eq. (27) would
produce an effective action for o. containing an arbitrary
number of derivatives. Assuming 0. to be constant then
amounts to neglecting its quantum fluctuations, driven
by the derivative terms. This is the substance of the
large-iV limit in this problem (here 1V = 3, the number
of components of y). Regarding the question of whether
this approximation is justified, we may recall the exact
S-matrix results of Ref. 12 for what is believed to be



48 HALDANE GAP IN THE QUASI-ONE-DIMENSIONAL. . . 15 883

the one-dimensional O(3) nonlinear 0 model, and which
show that the only single-particle states are a triplet of
massive bosons; this validates our approximation, as far
as the mass gap is concerned.

At one loop, the derivative V'(cr) of the zero-
temperature effective potential in the Euclidian formal-
1sm ls

plus a finite temperature correction, finite as A —+ oo:

coth — k2 + o2 —1

= n dz Qz2 —1 [coth(Pnz/2) —lj
1

1 3 dpp dp 1

2g 2 (2vr) (2m) p2+ p + Rp2~ + o'
= 2ch G(pch). (35)

x coth—
2

2+ Bp~~+ L2. (29)

This expression is meaningless without the introduction
of a momentum cutofF A, which should be proportional
to the inverse lattice spacing a . We will evaluate this
integral by restricting it to a cylinder of height 2A and
radius A, parallel to the p axis in momentum space.
Defining the integration variable x = Rp&, we have

1
dx v'k'+*+ &'

The gap equation is then simply V'(4 ) = 0, where 4 =
~o. The extension of this formula to a finite temperature
T is obtained by replacing the integration over p0 by
a sum over Matsubara frequencies u = 2vrnT: After
summing over Matsubara frequencies, the gap equation
becomes (P = 1/T)

1 3 dp 1

g 2 (2~)' g&2+Rp2 +~z

Summing up all contributions and expanding around A =
oo, we obtain

E(o., P, A m oo) = 4PA —Aln2

, ( ch') 1+-Pa
~

1 —ln
~

——G(Pn) (36)4A2) P

This result, inserted into Eq. (31), yields at last

4A'

Q2
i(

4A2)

This is essentially the gap equation (25), except that the
reduced variables (24) have not been introduced. To this
end, let us consider the one-dimensional case, i.e. , let us
take the limit R ~ 0. We must use the fact that

x coth —Qk2 + x + A2
2

The integral over x can be done analytically:
dG(y)

dg
H(y) = ) Kp(ny). (38)

n=1

2''B = T dk lnsinh —gk2+ A2+ A2R
3g 0 2

—Insinh —gh~ + iP).2
(31)

We then obtain the one-dimensional equation

16''
3gA2 4A2

= —ln + 4H(A/T).

The remaining integral may also be done analytically, in
the limit A && 4, T: Let us introduce the notation

A pF(oi, P, A) = dk lnsinh —gk + A .
0 2

After integrating by parts, this function becomes

(32)

Ii(n, P, A) = Alnsinh —QA2+ o.2
2

P kdk Pcoth —Qk2 + n~.
p i/'k' + n'

(33)
The second term may be separated into a contribution
atT=O:

f k2dk i 2, 2 (=-A + 'n
~

1+ln-
k2+ 2

(34)

Since H(oo) = 0, the zero-temperature gap is Ap
2A exp —(8~ /3gA ). In terms of the reduced variables
(24) the finite-temperature gap equation in dimension 1
is then

2 ln 8 = H(b/t)

This equation also appears in Ref. 9. Finally, upon sub-
stitution of the reduced variables, the three-dimensional
gap equation (37) takes the form (25).

IV. DISCUSSION

In this section we illustrate the consequences of the
gap equation (25). That implicit equation may easily
be solved numerically, given the expression (26) for the
function G in terms of modified Bessel functions. Figure
1 shows the t dependence of b for various values of the
anisotropy parameter r.
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FIG. 1. Reduced Haldane gap b as a function of the reduced
temperature t for various values of the anisotropy parameter
r: 0.01, 1.5, e = 2.718. . ., and 4.

At zero temperature, the gap equation reduces to

(8 + r) 1n(8 + r) —8 1n8 —r = 0. (40)

(41)

wherein we have substituted the special value G(0)
7r /6. This equation may be solved numerically for t, as
a function of r, and the result is illustrated on Fig. 3.

Let us now discuss the relation existing between the
critical value r and the microscopic parameters J and
R = J~/ J. The coupling J resurfaces if the magnon

This equation has the solution b = 1 in the limit r ~ 0,
and has a nonzero solution for sufBciently small r. Figure
2 illustrates the numerical solution of b vs r. Taking the
limit b ~ 0 we see that the critical value of the anisotropy
parameter is r = e. This in turn corresponds to a critical
value R, of the coupling ratio R = J~/ J.

Beyond this value of r, a gap will appear only above
some critical temperature t, (the Neel temperature). If
we take the limit b —+ 0 in Eq. (25), we obtain

5 6

FIG. 3. Reduced Neel temperature t, as a function of the
anisotropy parameter r = RA /Ao.

speed v is restored in the explicit value of the gap by
dimensional analysis. The expression for Ao, the zero-
temperature gap in the B~ 0 limit, is then

4o ——2vA exp —(8vr /3gA )
= 4JAas exp —[4vr s/3(aA) ] . (42)

r = 4Rexp —8~ s/3(aA)2 (43)

The critical value r = e then translates into a critial
ratio

The ratio Ao/ J can then be related to the cutoff prescrip-
tion, i.e. , to the product Aa. If we accept the ratio ob-
tained from numerical simulations, namely, Ao ——0.41J,
we are led by the above equation to the prescription
Aa = 2.1. Notice, however, that the ratio Eo/J is ex-
tremely dependent on the value of Aa, because of the
exponential factor.

After restoration of v, the expression for the anisotropy
parameter r is

R, = 4exp 1 —8~ s/3(aA) (44)

0.6

0.2

The choice Aa = 2.1 then leads to B = 0.026. This
value, although small, seems too high when compared to
coupling ratios observed in actual materials; for instance,
the ratio R has been estimated to be 0.02 in CsNiC13,
in which a 6.nite Neel temperature is observed. Of course,
CsNiCl3 and other compounds of the ABX3 type have a
hexagonal structure, not cubic. It seems that trying to
B.nd the correct value of B from a well-chosen cutofF pre-
scription is dangerous. However, definite predictions may
be obtained from a continuum theory, up to an overall
scale in all but one variable.
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