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The nearest neighbor Ising antiferromagnet on a stacked triangular lattice is a frustrated coopera-
tive system in which it is known that at least two long-range ordered states exist at low temperature.
This model has also been of considerable interest as it is known to be a reasonable description of
two antiferromagnetic insulators, CsCoBrs and CsCoC13. It has also been the subject of previous
theoretical and simulation studies which have yielded con8icting results for the critical phenomena
displayed near the transition from the paramagnetic to the high-temperature ordered phase. We
have carried out a detailed Monte Carlo study of this system using the recently developed multiple-
histogram technique and finite-size scaling analysis, with the purpose of extracting estimates for the
critical exponents relevant to this continuous transition. Our results give P = 0.311(4), p = 1.43(3),
o. = —0.05(3), and v = 0.685(3) which are not in agreement with previous Monte Carlo work. In
addition, although they are close to the expectations from previous symmetry arguments, there are
systematic differences between our results and these theoretical predictions. A possible interpreta-
tion of these Monte Carlo exponent estimates is that they do not correspond to those calculated for
any known universality class, and add to the growing number of simple models of interacting spins,
in which geometrical frustration is relevant, which appear to exhibit novel critical behavior. Fi-
nally, we have examined the evolution of real-space spin configurations and have seen that a buildup
of correlations between anti-phase-domain walls, or solitons, along the stacking direction precedes
the transition, an observation which is consistent with recent neutron-scattering measurements on
CsCoBr3.

I. INTRODUCTION

A spin system is said to be frustrated if the pairwise
interactions between spins cannot all be simultaneously
satisfied. Such systems often display interesting statisti-
cal mechanical behavior because of the complex orderings
that can arise when the spins arrange themselves in an
energetic compromise. Frustration requires competing
interactions, and can be due to randomness, as in a spin
glass, or can arise from the geometry of the lattice.

The Ising model with nearest-neighbor, antiferromag-
netic interactions on a triangular lattice is perhaps the
best known example of a geometrically frustrated spin
system. Wannier showed in the 1950s that this sys-
tem is disordered at all finite temperatures, and has a
critical point at T = 0. Lattices which locally frus-
trate nearest-neighbor antiferromagnetic interactions are
based on two geometrical units. These are triangles and
tetrahedra which form the basis for triangular, Kagome,
pyrochlore, and face-centered-cubic structures. Consid-
erable recent interest has been generated in this area
by experimental studies on magnetic materials which are
well described by antiferromagnetically coupled spins on
these types of lattices.

In the stacked triangular lattice (STL), also known
as the hexagonal lattice, the triangular planes, which
frustrate antiferromagnetic interactions within them, are
simply stacked directly over each other. Therefore the in-
teractions along the stacking direction are nonfrustrated
regardless of whether these interactions are ferromag-

netic or antiferromagnetic. The nonfrustrated coupling
along the stacking direction allows the STL antiferro-
magnet to undergo a finite temperature phase transi-
tion. For the case of both XY and Heisenberg spins
with nearest-neighbor antiferromagnetic interactions on
the STL, Kawamura has performed extensive analyses
of the critical behavior, by conventional Monte Carlo as
well as by analytical methods. He argued that both mod-
els display novel critical behavior and belong to new uni-
versality classes, a prediction which has recently gained
considerable experimental support. Some controvery has
been added to this Beld, at least for Heisenberg spins,
by recent Beld theory in 2 + e dimensions which con-
tends that the behavior either should be weakly discon-
tinous, O(n = 4), or should display tricritical mean field
behavior.

Recently, neutron diffraction from FeF3, which is a
cubic pyrochlore antiferromagnet, showed the sublat-
tice magnetization exponent P to be anomalously low,

P = 0.18 + 0.02. The authors of this study also carried
out a histogram Monte Carlo analysis with Bnite-sized
scaling on classical Heisenberg spins, coupled with an-
tiferromagnetic nearest-neighbor interactions and ferro-
magnetic third-nearest-neighbor interactions on the py-
rochlore lattice. This is believed to be an appropriate
model for FeF3. These results indicate that, for this
model also, the transition from the paramagnetic to the
long-range ordered state is characterized by critical ex-
ponents which do not correspond to any known univer-
sality class. This model with antiferromagnetic, nearest-
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neighbor-only interactions has also been studied by his-
togram Monte Carlo analysis, and these results are con-
sistent with the absence of long-range order at any fi-
nite temperature. This is also the conclusion reached
from conventional Monte Carlo analysis of classical anti-
ferromagnetically coupled Ising spins on the pyrochlore
lattice.

The classical, antiferromagnetic Ising model on the
STL has been studied in some detail recently. It is
known that it displays two ordered states at low tem-
peratures. The high-temperature ordered state corre-
sponds to a (1, —1, 0) magnetic sublattice structure in
which the magnetic unit cell consists of a triad of three
nearest-neighbor spins. Spins on two of the sublattices
form an up-down pair, while the third is randomly ori-
ented. At lower temperatures the system enters another
ordered state characterized by the (—1, 2, 2) sublattice
structure. The emphasis in this paper is to investigate
the critical phenomena near the transition at T~ from the
paramagnetic to high-temperature ordered state with the
(1,—1,0) sublattice structure.

At present there are confm. icting theoretical results for
the critical behavior at T~ of this model. The results of a
symmetry argument indicate that the transition should
belong to the three-dimensional (3D) XY universality
class with critical exponents P = 0.346(9), p = 1.316(9),
v = 0.669(7), and n = —0.007(9). However, previous
conventional Monte Carlo simulation work (without a
comprehensive finite-size scaling analysis) has indicated
that critical exponents close to those of a mean field tri-
critical point, P = 0.19(10), p = 1.15(5), o. = 0.5(l),
and v = 0.47, are relevant for this transition. Netz
and Berker have argued that this discrepancy is due to
the proximity of the transition to a tricritical region at
finite field which inHuences the critical behavior except
in a very narrow region around T~. In this paper we
will present results of a multiple-histogram Monte Carlo
study, together with a finite-size scaling analysis which
predicts critical exponents that difFer significantly from
mean field tricritical point exponents and, to a lesser ex-
tent, kom those of the 3D XY model. These exponents
are extracted &om a finite-size scaling analysis of the be-
havior right at the transition T~ and, hence, would only
be influenced by the existence of a tricritical region to the
extent that T~ varies Rom one lattice size to another.

There are two possible explanations for the discrep-
ancy between our Monte Carlo exponent estimates and
those predicted by the 3D XYmodel. Systematic errors
may exist in either our calculations and analysis, which
would have to be substantialy greater than the statistical
errors, or in the predictions for the 3D XY model. Al-
ternatively, this Ising model may belong to a new univer-
sality class, as has already been suggested for the XYand
Heisenberg antiferromagnets on this lattice. However, it
is important to note that earlier work suggesting new
universality classes for frustrated systems applies only to
vector spin systems where there can be chiral order and,
hence, does not apply to the Ising on the STL. Thus, if
systematic errors could in fact be ruled out, a completely
new explanation for the existence of a new universality
class (possibly involving the role of frustration induced

disorder) would be needed.
In zero external magnetic field, the case we are inter-

ested in, symmetry principles dictate that the physics
of the system will be identical if the interactions between
classical spins on adjacent triangular layers are ferromag-
netic or antiferromagnetic. Since the analysis is simpler
for the ferromagnetic case, this is the model we will use.
The Hamiltonian is then

where 0, z
——+1 denotes the spin at site i, j, and Jo is

positive and accounts for the the nearest-neighbor, an-
tiferromagnetic exchange in the triangular lattice plane
(the ab plane); Ji is also positive, and produces the
nearest-neighbor, ferromagnetic spin coupling along the
stacking axis (the c axis). Therefore, (i, i') runs over the
nearest-neighbor pairs in the ab plane, and j is the index
along the c axis.

This model Hamiltonian is reasonably close to
that which describes the antiferromagnetic insulators
CsCoBr3 and CsCoCl3. The interactions between the
spin 2 magnetic moments localized at the Co + site
are antiferromagnetic both along c and in the ab plane.
These isostructural, hexagonal materials are quasi-one-
dimensional magnets with a ratio of the strength of ex-
change interaction along c to that within the ab plane of

160:1. In addition, the moments are not completely
Ising-like and a small amount of transverse spin coupling
appears in the Hamiltonian. Although there are some
potentially important difFerences between the real mate-
rials and the model system studied here, we expect the
analysis of this simple model to be of some importance
in elucidating their critical phenomena. In most of the
work described below, we have chosen Jo ——Ji, since the
ratio Ji/ Jo is irrelevant to the asymptotic critical behav-
ior and the isotropic case is technically easier for Monte
Carlo methods.

The status of the experimental field is presently un-
clear. Three determinations of the P exponent, which
describes the rise of the sublattice magnetization from
zero at the phase transition, have been made on the
Co-based magnetic insulators. Mekata and Adachi ob-
tained a value of P = 0.35 + 0.02 for CsCoClq, a value
which is consistent with predictions of the 3D XYmodel.
Yelon et al. obtained a value of 0.31 + 0.02, while
Farkas et al. obtained the value 0.22+0.02 for CsCoBr3.
The P value determined by Yelon et al. is consistent
with the 3D Ising model, while that of Farkas et al. is
close to that expected from tricritical mean field theory
(P = 0.25). Very recently, Wang et aL2o have performed
critical heat capacity measurements on the same sample
of CsCoBr3 studied by Farkas et al. , and obtained val-
ues of n = —0.027(5) and A+/A = 1.13(7), where n de-
scribes the cusp in the heat capacity at T~ while A+/A
is the critical ratio of heat capacity amplitudes. While
these values are not far from those expected theoretically
from the 3D XY model, the discrepancy is potentially
interesting in light of the direction of the difFerence be-
tween the measured n and that predicted theoretically
(the measured value is more negative), and the conclu-
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sions which we will present in this paper. It is worth not-
ing, however, that these measurements on CsCoBr3 are in
remarkable agreement with those on the superBuid tran-
sition in liquid He, another system which is expected
to belong to the 3D XY universality class. Clearly, a
comprehensive experimental program of measuring the
critical properties of these materials is required.

The remainder of this paper is organized as follows.
In Sec. II, there is a description of our Monte Carlo
method, including the multiple-histogram method, finite-
size scaling, and an algorithm to estimate the critical
exponents. The Monte Carlo results are described in Sec.
III, followed by a discussion of their significance in Sec.
IV.

B

II. USE OF THE MONTE CARLO METHOD
TO STUDY CRITICAL PHENOMENA

A. The histogram Monte Carlo method

Most Monte Carlo simulation work utilizes the
Metropolis algorithm in order to generate new spin con-
figurations at a particular temperature. One then goes
on to calculate thermodynamic averages of observables.
In a surprisingly recent development, Ferrenberg and
Swendson realized that this method did not make full
use of all of the data held in the actual distribution of
the sampled state. They developed the single-histogram
Monte Carlo method to take advantage of this additional
information.

A diKculty with the single-histogram method arises
due to the fact that at any temperature the proba-
bility distribution in energy is rather narrow. This
was improved by the development of the multiple-
histogram Monte Carlo method, also by Ferrenberg and
Swendson, in which data taken at diferent tempera-
tures is combined so as to produce a more accurate de-
termination of the relevant distribution. This multiple-
histogram method permits the determination of accurate
estimates of observables over a relatively wide range of
temperature.

B. The measurement of T~

An accurate estimate of T~ is an essential first step
to the study of critical phenomena. There are several
observables that have extrema at T~. These are

h)=
k ~ ((o) (o) )

(10)

where 0 is the order parameter, (Ul, ) is the fourth order
cumulant, and (VL, ) is the fourth order energy cumulant.

A Monte Carlo approximation of all these observables
can be obtained if, for each state sampled, the values of
E, 0, 0, and 0 are calculated. Since the only exter-
nal parameter being considered is T, it is necessary to
store only the energy values in a histogram. Each 0,0, and 0 value recorded at a given energy E is then
simply summed into an average. In this way values for
(O(E)), (O(E) ), and (O(E) ) are obtained.

C. Other information in PM

The value of an observable (A) is only part of the in-
formation about the cooperative phenomena of a given
system that can be obtained from a Monte Carlo sim-
ulation. Further information is contained in the struc-
ture of the probability distribution of states at T~,
P(T~, E). If a double-peaked structure is observed, one
may be able to extract information about the order of
the transition. Note that a double-peak structure does
not necessarily imply that the the transition is first or-
der (or discontinuous). One can also examine the real-
space, spin configurations with the Monte Carlo simula-
tion. This is useful in elucidating changes in spin topol-
ogy in the vicinity of the phase transition, and can shed
light on the physical mechanism which drives a particular
phase transition. Neutron-scattering experiments probe
the spin correlations in reciprocal space, and this real-
space information information on model systems can be
a useful complement to the results of such experiments
on real materials.

D. Finite-size scaling

(o') =, = (oE) —(o)(E), (4)

The finite size scaling laws, as derived by Fisher and
Landau, for a continuous, or second order, transition
are given by

002
((O ) ) = = (O E) (O )(E)

8@
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~(, L) = L' ~'(*),

C~(t, L) = Co+ L i Z (x),

(13)

(14)

where x = tL ~, t = T, and TN is the transition
temperature for lattice size L. At the phase transition,
t = 0, we have the special case of Eqs. (12)—(14):

Ca~ „(L)= Co+ CiL

„(L)oc L~~,

(15)

(16)

OT~ ~~l (L) ~ L (17)

Other scaling relations relevant to a continuous transition
are

UL „,(lnO)' „,(ln0 )' „ocL'~".

It is possible to apply this analysis to relatively small
lattices; however, a new correction term L ~ must be
included in order to take into account the efI'ect of ir-
relevant scaling fields and nonlinearities in the scaling
variable. Including this term, we have

T~(L) = T~(oo) + C~L ~ + D~L (20)

T~ for each observable has a separate and independent
C~ and D~, but a common 0.

For a discontinuous, or first order, transition the fol-
lowing finite-size scaling laws apply:

CH . ——Ci+C2I.",

Td
+max pl ~ (22)

T~(L) = T~ (oo) + C~I (23)

E. An algorithm for determining critical exponents

Below we outline the procedure which we used to study
the critical phenomena of the model in question using the
multiple-histogram Monte Carlo method.

(1) Roughly determine the critical region T~ + bT~,
and create R histograIns spanning the T range of
the phase transition, storing the values of the his-
togram H (T, , E, L), as well as 0(T, , E, L), 0 (T, , E, L),
0 (T, , E, L) for several values of finite size L.

(2) Calculate f for each of the R histograms at each lat-
tice size L. Find the values of (ENI), (EM) (EM4), (0~),
(OM2), (0~) over a range of T spanning the critical re-
gion, and use these values to calculate all the observables
given in Eqs. (2)—(10).

(3) Determine the order of the phase transition. If the
distribution PM(E) at Tiv is double peaked, the method
of Lee and Kosterlitz may be applied. If not, extrapo-

Each of these observables has a separate T~ (L). For large
L the Tiv(L) scale as

T~(L) = T~(~)+ C~L-'~ .

2P+ n+ p = 2, (24)

dv+o. =2, (25)

and verify this approximation by fitting Eq. (15) using
the o. from the scaling relations.

III. THE MONTE CARLO RESULTS

A. Check for anisotropic correlation lengths

The transition from the paramagnetic state to the
high-temperature ordered state at T~ in the nearest-
neighbor, Ising antiferromagnet on a STL was studied
using the multiple-histogram Monte Carlo method de-
scribed above. We first examined whether there was a
significant anisotropy in the spin correlation length, that
is, a difference between ( and ( g, for the Hamiltonian
with isotropic exchange interactions Jp=J], since any sig-
nificant anisotropy would require that the simulations be
carried out on finite lattices which reflect this anisotropy.
The correlation length in the c axis and ab plane was
determined from a set of equilibrium states developed
through the Monte Carlo method. The spin pair correla-
tion function C(r) = (S;S,+„)can be determined individ-
ually for the two symmetry directions by restricting r to
be either along the c axis or an axis in the ab plane. As-
suming C(r, T) is described by the Orstein-Zernike form,
appropriate for a three-dimensional lattice, we have

C(r, T) = —e-"~~.A
(26)

Values for ( were determined by graphing ln LrC(r, T)]
vs r and ((T) = —1/slope. This expression for C(r, T)
is only valid for r )& the unit cell size. Because of finite-

late the fourth order energy cumulant (Vl,);„to L = oo
to see if it approaches a constant V* = 2/3 (indicating a
continuous transition) or V* ( 2/3 (indicating a first or-
der transition). If the transition is continuous, then the
critical exponents can be determined from the following
steps.

(4) Determine v from the finite-size scaling of the max-
ima of Ul, (ln0)', (lnO )' [Eq. (18)]. This is done by
graphing lnL vs ln(maxima). Similarly determine p by
graphing ln I vs ln y

(5) Determine all the Tiv (L) given by the observables of
Eqs. (10)—(18) and plot these vs L' = L ~". T~(oo) can
be determined by fitting to the form B+C~, L'+ D~. L'
and Tiv(L = oo) = B, where B is the average of B over
all the observables.

(6) With the results for v and Tiv(oo), determine P
from a graph of lnL vs lnOT . One can then use the
scaling laws for T g T~ to verify the results for P and

This is done by graphing ln(yL ~~ ) and ln(OL~~ )
against ln(tL ~"), where t =

& . If the critical expo-
nents are chosen correctly, the results for each of these
two graphs for di8'erent L should all fall onto the same
line.

(7) Finally, approximate n using the scaling laws
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FIG. 1. The correlation length is determined from the
slope of the 1n[rC(r)] vs r plot, as described in the text.
These results show that for isotropic interactions Jo——Jg ——1,
the anisotropy in the correlation lengths along c to that sn

the ab plane is small, 15%.

size efFects, the result for C(r, T) will also only be valid
for r (( the lattice size. The valid region of C(r, T) was
taken to be the region for which the plot of ln lrC(r)] vs
r was linear.

The procedure for determining the correlation lengths
was to use 10 initialization steps and 3 x 10 sam-
pled states at T = 2.94, in units of Jp ——J1, where T~
was known to be 2.9 ~ A lattice with dimensions
6 x 6 x 726 was used to determine the c axis correlation
length C(r„T),while a lattice with dimensions 66 x66x 6
was used to determine the ab plane correlation length
C(r r„T).Thus the same number of spins were used in
each ( determination.

It was found that Eq. (34) provided a good description
for C(r, T) over the region r = 10 ~ 20, for the deter-
mination of ( in both directions. The graph in Fig. 1
shows this region, and the correlation lengths are found
to be (, = 9.52(4) and ( b = 8.3(l). While we see an
anisotropy in the c axis direction, it is small enough,
(,/( r, 1.15, that we can neglect it in our analysis of
the critical phenomena.

The analysis of the critical phenomena at T~ was
performed using simulations of the isotropic model,
Jp ——Jz ——1.0. Analysis of the real-space spin and soliton
correlations Inade use of simulations of both the isotropic
model and a weakly one-dimensional model with Jq ——3.0
and Jp ——1.0.

FIG. 2. The specific heat C~ is shown as a function of
temperature near the phase transition temperature T~ for
various lattice sizes L x L x L.

and take the maximum. If M, is the magnetization of
sublattice i (i = 1, 2, 3), then the order parameter may
be written as

O&„.„s——[max(M&, M2, Ms) —min(M&, M2, Ms)]/2.

(27)

This is the form of the order parameter that we will use to
calculate the various observables given in Eqs. (2)—(10).

C. The observab1es (A)r,

The multiple-histogram method was used to deter-
mine the relevant observables as a continuous function
of temperature T in the range of the phase transitions
for lattice sizes L = 6, 9, 12, 15, 18, 24, and 30. Previ-
ous investigation of this model has shown T~ —2.9 (in

60
L=6L=9
L= 12
L= 15
L= 18
L=24
L=30

20—

B. The order parameter

The ordered state of the antiferromagnetic Ising model
has a sixfold degeneracy. As the initial state used in the
Monte Carlo routine is random, each of the six possible
ordered domains will be equally accessible. The algo-
rithm to determine the order parameter must determine
the local order parameter of each of the possible domains

O
=--I—-

I

2.6 2.8 3 3.2 3.4

FIG. 3. The susceptibility y is shown as a function of
temperature near T~, for various lattices sizes L.
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FIG. 4. The derivative of ln 0 with respect to the inverse

temperature is shown as a function of temperature near T~,
for various lattice sizes L. 0 is the order parameter discussed
in the text. A Gnite-size scaling analysis of these plots are
used to determine the critical exponent v.

FIG. 6. The derivative of the order parameter 0 with re-
spect to inverse temperature is shown as a function of tem-
perature near T~, for various lattice sizes L.

units of Jp= J]=1.0). Histograms were produced around
this temperature. For L = 6, histograms were made at
T = 2.6 ~ 3.5, in steps of 0.1, with 10 sampled states
at each temperature, and at T = 2.5 with 5 x 10 sam-
pled states. For L = 9 and 15, histograms were made at
T = 2.5 ~ 3.5, in steps of 0.1, with 10 sampled states
at each temperature. For L = 12, histograms were made
at T = 2.8, 2.9, 3.0, and 3.1 with 10 sampled states. For
L = 18, histograms were made at T = 2.5, 2.6, 2.7, 2.8,
2.85, 2.95, 3.0, 3.1, 3.2, 3.3, 3.4, and 3.5 with 10 sam-
pled states and at T = 2.9 with 2 x 10 sampled states.
For L = 24, histograms were made at T = 2.5, 2.6, 2.7,
2.8, 2.9, 2.92, 3.0, and 3.1 with 10 sampled states. For
L = 30, histograms were made at T = 2.91 and 2.935

with 10 sampled states and at T = 2.97 with 2 x 10
sampled states.

The data for these histograms were combined to deter-
mine the expectation values (CH ), (y), ~

(0') ~, ~
((02)') ~,

~((lnO)')~, ~((lnO )')~, and (Vi, ) as a continuous func-
tion of temperature for the diferent lattice sizes. These
results are shown in Figs. 2—8.

D. Critical phenomena

The data for (A)1, can now be used to estimate val-
ues of the critical exponents for this model. However we
must erst convince ourselves that the transition is indeed
continuous. First, the equilibrium probability distribu-
tions at T~ do not show a double-peak structure (see
Fig. 9) and hence the method of Lee and Kosterlitz is
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FIG. 5. The derivative with respect to the inverse tem-
perature of 1n(Q ), where 0 is the order parameter, is shown
as a function of temperature near T~, for various lattice sizes
L.

0
2.6 2.8

l

3
T

3.2 3.4

FIG. 7. The derivative with respect to inverse tern er—
2

pera-
ture of 0, where 0 is the order parameter, is shown as a
function of temperature near T~ for various lattice sizes L.
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L=24
L=30
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2.8 2, 9 2.5

in(l, )

3.5

FIG. 8. The fourth order energy cumulant Vt, is shown as
a function of temperature near T~, for the larger lattice sizes
L.

0.03 I I

ss

0.02 ~ 0.006

C4

inapplicable to our problem. Second, we can study how
the suceptibility maximum y, scales with lattice size
I . As discussed above, y scales as L" for a discontinu-
ous transition and as L~~ for a continuous one. Thus
if the slope of the plot of lny vs lnL ( 3, then we
know the transition is second order. As shown in Fig. 10
the slope of this graph from our simulations was found
to be = 2.09(3), indicating that the transition is indeed

FIG. 10. The ratio of exponents, p/v, is determined from
the slope of the ln(y „)vs lnL plot, and found to be
p/v=2. 09(3). Here y „

is the maximum susceptibility as
a function of temperature, for fixed L, as shown in Fig. 3.
These results show that the transition is second order since
p/v ( 3.

continuous with the ratio p/v = 2.09. Finally, the mast
reliable method is to determine the asymptotic value of
the fourth order energy cumulant V* and see if it is less
than or equal to 2/3. This is plotted in Fig. 11, which
clearly shows V* to be approaching 2/3 for large L. We
estimate that V*(L = oo) = 0.6667(l).

Now that the transition has been determined to be
continuous, and therefore that critical exponents are
meaningful, we will determine v in order to Bnd p and
T~(L = oo). As already mentioned, v is found from plot-

0.01 0.003

-1.4 -1.2
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-1.32 -1.26 -1.2 -1.14 0.666—

l
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0.0024

8—D Potts
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0.0016
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0.0008

0.662—

0.66—

-1.25 -1.2 -1.15 0
0.1 0.2 0.3 0.4
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FIG. 9. The equilibrium probability distribution PM(E)
at T~ is shown for lattice sizes L = 9, 18, and 30. The
critical temperature T~ is determined from the specific heat.
Note the single-peak distribution indicating the second order
nature of the transition. For comparison, the probability dis-
tribution of the three-state antiferromagnetic Potts model on
a triangular lattice at T~ ——0.63 is also shown. This model
is known to display a discontinuous phase transition.

0 656 I I I I I I I I I I I

0 003 006 009 0 12

L

FIG. 11. The fourth order energy cumulant is shown as a
function of system size L. These results extrapolate to V' =
0.6667(1) for I —+ oo, as expected for a continuous phase
transition. The solid horizontal line denotes Vr, = 2/3.
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I(lnO)'
I

~
((ino')'

3.4

2.5 3.5

T„(-)= 2.920(5)
2.8

0 002 004
—1/v

0.06

FIG. 12. The critical exponent v is determined from the
slope of the ~(ln0)' „~and ~(ln0 )' „~vs lnL plots, as de-
scribed by Eq. (26). Here, 0 is the order parameter, the
primes denote derivatives with respect to inverse tempera-
ture, and the maxima are determined from the peaks in Figs.
4 and 5, for each L The resultin. g exponent is v=0.685(3).

ting ln[(lnO)' „]and ln[(lnO )' „]vs lnL. One can
also use (UL, )' „but this was not measured since the
critical properties of this observable have a very large L
dependence which makes the finite-size scaling analysis
of it unreliable. This analysis results in an estimate of
v = 0.685(3) which is taken from the graph shown in
Fig. 12. As we had previously determined the ratio of
p to v to be 2.09, this also determines an estimate for

q = 1.43(3).
Using this value of v, Tiv (L = oo) can be found from

Eq. (28). In order to do this we must find a value of 0
that will best fit all the T~(L). The T~ for I = 6, 9, 12,
15, 18, 24, and 30, for all the measured observables, are
listed in Table I. These values for TN are plotted against
L ~ in Fig. 13, and the best fit to Eq. (28) was found
for 0 = 2. This results in T~(L = oo) = 2.920(5).

With a good determination of Tiv, P can be found
via O(L)T~ oc L ~~ . lnOT (I. )

is plotted against
ln L in Fig. 14, and this results in our estimate for
P = 0.311(4). As we now have estimates of three critical
exponents, we can use both scaling and hyperscaling re-
lations to determine our estimate for the fourth, o, . With
v = 0.685(3), p = 1.43(3), and P = 0.311(4) both scaling

FIG. 13. The transition temperatures, as listed in Table
I, are plotted as a function of L ", where v = 0.685. The
solid curves show the best fit to Eq. (28), which was found
for 0 = 2. The resulting Tiv (L ~ oo) = 2.920(5).

laws, 2p+ p+ a = 2 and dv+ a = 2, give very consistent
values of n = —0.05(3). Finally, we can fit CH( „)to
the form Ci + C2L ~ in order to test this estimate of

As shown in Fig. 15 the fit with o; = —0.05 is good,
thereby providing a reasonable consistency check. The
fact that both the scaling and hyperscaling relations give
essentially the same estimate of o. is particularly impor-
tant. It is known in cases where the critical phenomena
cross over from one behavior to another as the transi-
tion is approached that effective exponents determined
from data not taken completely in the asymptotic re-
duced temperature regime can satisfy the scaling but not
the hyperscaling relations.

We have determined that this model undergoes a con-
tinuous transition at T~ which is characterized by the
critical exponents given in Table II. These exponent val-
ues are close to, but still significantly di8'erent from, those
calculated for the 3D XY model. The exponents rele-
vant to the 3D XY universality class are listed in Table
II for easy comparison. Our estimates of the exponents of
the antiferromagnetic Ising model on the STL are farther
removed, but still somewhat similar to those of the 3D
Ising universality class. The similarity to the exponents
exhibited by the 3D XY universality class is particularly

TABLE I. The transition temperatures T~, extracted from the diBerent observables, are given
for all the lattice sizes studied.

Lattice size 6

2.912

3.160
3.117
2.999
3.355
3.389

2.892
3.094
3.047
2.994
2.918
3.126
3.145

12

2.890
2.991
2.994
2.959
2.905
3.034
3.045

2.896
2.948
2.967
2.940
2.906
2.993
3.000

2.900
2.937
2.963
2.939
2.906
2.981
2.987

24

2.909
2.924
2.951
2.931
2.90?
2.963
2.966

30

2.913
2.922
2.946
2.930
2.912
2.954
2.957
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TABLE II. The critical exponents determined from this
Monte Carlo (MC) study are given. For comparison, the ex-
ponents of the 3D XY model from Ref. 15 and the tricritical
exponents from Ref. 12 are also given.

—O. B
O

MC

-0.05 (3)
0.311(4)
1.43(3)
0.685(3)

3D XY
-0.007(9)
0.346(9)
1.316(9)
O.669(3)

Tricritical

o.5(1)
o.19(1o)
1.15(5)
0.4?

—1.2

1.5 2.5
ln(L)

FIG. 14. The critical exponent P is determined to be
0.311(4) from the slope of the 1nOz. vs lnI plot, where Oz;
is the order parameter evaluated at T =2.920.

interesting and important as previous symmetry argu-
ments made with respect to this model indicated that
the critical behavior for this model should be the 3D XY
universality class.

We can add confidence to our estimates for P, p, and
v by applying the full finite scaling laws given by Eqs.
(24) and (25). This is done in Figs. 16 and 17, in which
1n(yL~~ ) and ln(OI~~ ) are plotted against in(tLi~").
The results which rely on P converge onto one line much
better than those which rely on p. This is expected since
the estimate for P is more accurate than is the estimate
for p. The results are also plotted for comparison us-
ing the calculated 3D XY critical exponents, in Figs.

16 and 17. In this case the convergence onto a single
line is easily seen to be inferior to that achieved using
our carefully determined estimates for the critical ex-
ponents. Therefore to the extent that both our Monte
Carlo exponent estimates as well as the theoretical val-
ues for the critical exponents of the 3D XY model are
free from systematic errors, the transition at T~ in the
Ising STL antiferromagnet does not belong to the 3D
XYuniversality class. In addition, we see no evidence of
tricritical mean field-like behavior, as had been reported
previously. The values predicted from this study are
also listed in Table II. If we take seriously the quoted un-
certainties in the exponent estimates from both our own
Monte Carlo work and the theoretical work on the 3D
XY model, then the critical exponent values produced
by the present work do not correspond to those of any
universality class that we know of. Therefore a possible
interpretation of these results is that a new universality

I

0.4 — P= 0.311

0.2

0.9—
O

CO

-0.2
Seven data se

~ 4 L = 6,9,12,15,18,
I

I

0.4 —3D XY P and

0.2

, an

t

0—

-0.4

0.7— -2

LOGio(tL'i")

0.6
20

FIG. 15. The critical exponent n is determined by fitting
the peak value of the specific heat (C~) „

to the form Ci +
C2,1 ", where v has already been determined to be 0.685.
The solid curve sho'«s the fit with o. = —0.05.

FIG. 16. The full scaling laws are checked by plotting
ln(OL~~") as a function of ln(tI "), using the exponents de-
termined from our Monte Carlo studies, P = 0.311,v = 0.685.
For comparison, the same plot is shown using the values the-
oretically estimated for the 3D XY model, P = 0.346(9), v =
0.669(3). This comparison shows that the exponents deter-
mined from MC simulations provide a noticeably better fit to
the scaling relations than do those calculated for the 3D XY
model.
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class may be relevant for this remarkably simple model
of a frustrated antiferromagnet. However, we should em-
phasize that we cannot rule out the possibility that the
discrepency between our exponents and those of the 3D
XY model results from systematic errors in either our
calculation, which would then have to be substantially
larger than the statistical errors, or in the estimates ob-
tained from theory. This possibility can only be ruled
out by further studies, with a different approach to the
problem.

E. Real-space spin and soliton correlations

Considerable insight into what physical mechanism is
relevant for a given phase transition can be obtained by
examining the real-space spin correlations in the vicinity
of the phase transition. This is particularly interesting
for the model in question, as the transition we are inter-
ested in, at T~, is one from a paramagnetic state to a
long-range ordered state in which one of the three sub-
lattices is disordered. Recent inelastic neutron-scattering
measurements have been made on CsCoBrq, which fo-
cused on the behavior of the low-lying soliton excitations,
and the role that these excitations play in mediating the
phase transition seen in this material. These solitons
are anti-phase-domain walls which can propagate easily
along the quasi-one-dimensional antiferromagnetic chains
which this material displays along its stacking direction.
They are "topological" solitons, as opposed to solutions

1.43, v =0.685
-1.2

of a particular nonlinear differential equation. These
measurements indicate that the development of corre-
lations between the solitons is responsible for this tran-
sition. Specifically, they indicate that the paramagnetic
state is characterized by a homogeneous and random dis-
tribution of domain walls, or solitons, along all the mag-
netic chains. According to the picture put forward by
these measurements, the transition occurs by a bunch-
ing together, or phase separation, of the solitons along
the chains, forming soliton-rich and soliton-depleted re-
gions along all of the chains. The ordered phase forms
as interchain correlations, between soliton-rich regions on
one chain and appropriate soliton-depleted regions on the
other two sublattice chains, develop locally.

Real-space spin configurations were generated in our
Monte Carlo simulation in order to look for precisely
these sorts of correlations developing near the transition.
As the material that was studied experimentally was
quasi-one-dimensional, we chose to study this on both
the isotropic model, with Jo ——Jq ——1.0, as well as on a
weakly one-dimensional model, Jo ——1.0, J~ ——3.0. Our
model has ferromagnetic interactions along the stacking,
or c, direction which means that a soliton, or anti-phase-
domain wall, is a pair of neighboring antialigned spins
along the c direction. As we are interested in the correla-
tions between solitons we transform our spin lattice into
a soliton lattice wherein we replace all nearest-neighbor
pairs of antialigned spins along the c directions with a
1, indicating the presence of a soliton, and all nearest-
neighbor aligned spins, representing a nonsoliton, along
the c direction with 0. We then look for the emergence of
structure in the soliton-soliton pair correlation function,
as the transition temperature is approached.

We chose to calculate the following one-dimensional,
differential soliton correlation function:

-1.5

Seven data seta:
-1.8

L = 6,9,12,15,18,2

I

I

3D XYy
-1.2

-1.5

(SS; ) —(SS; )

(S.S' )

where the S, refer to the soliton degree of freedom, ei-
ther 0 or 1, described above. This quantity measures the
difference between the soliton-soliton correlations over a
particular distance r, and those averaged over all dis-
tances. This is then normalized to the average soliton-
soliton correlation. As such we have

1 '-
(S;S,+„)= —) S,S,+„, (29)

-1 0

LOG, o(tL )

L'11-'- '-
(S;S;+~)=,—) ) S,S;~~.

A=O i=1
(30)

FIG. 17. The scaling laws are checked by plot ting
In(yL~ ") as a function of 1n(tL ). In the upper part of
the figure, the exponents determined from the Monte Carlo
studies, p = 1.43 and v = 0.685, are used. For comparison,
the same plot is shown using the values estimated theoreti-
cally for the 3D XY model, p = 1.316 and v = 0.669. This
comparison demonstrates that the scaling laws are satisfied
better with the exponents determined from MC simulations
than with those calculated for the 3D XY model.

The precise value of I ' which appears in the sum over A is
unimportant provided it is the same for all comparisons.
However, it should be large compared to the largest value
of r which we are interested in, 10, and smaller than
half of the chain length, L/2 = 300, so that the periodic
boundary conditions do not unduly effect the average.
For the Jq ——3 lattice T~ was found to be —5.14. For
both Jq ——1 and Jq ——3, lattices of dimensions 9 x 9 x 600
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IJ(=3

0.2—
aT = 5.15
&T = 5.4

~ T = 2.946
~T = 3.089

Y~ ——5.14 T = 2.92

0.1

0—
~ a

&Qgqn

4 8 0

&a a—

4 8

FIG. 18. The relative deviation from the average solition
correlation, AC, ~(r, ), is shown as a function of distance along
the c axis measured in nearest-neighbor spacings. The cor-
relation is shown for two temperatures above T~, for the
isotropic case Jq ——1 and for Jq ——3. The correlation is seen
to increase at small r as the temperature is lowered towards
TN ~

were used with 10 initialization steps and 3 x 10 sam-
pled states. The one-dimensional AC, ~(r, ) was calcu-
lated by averaging over the 9 x 9 = 81 magnetic chains
that made up the three-dimensional lattice. The soliton
correlation function was found at T = 2.946 and 3.089 for
Jq ——1 and at T = 5.15 and 5.4 for J~ ——3. These results
are shown in Fig 18. As the temperature approaches T~
from above, AC, ~(r, ) rises at small r, for both Jq val-
ues. The effect is somewhat more marked in the Jq ——3
case, and therefore the quasi-one-dimensionality of the
system appears to accentuate the effect. Of course, the
solitons themselves are thermally activated excitations
so that as the temperature is lowered the soliton density,
and thus the soliton-soliton correlation function averaged
over all distances, must decrease. The differential corre-
lation function takes this effect into account and shows
the correlations between solitons over a particular dis-
tance, relative to the average of such correlations over all
distances.

These results indicate that as the temperature de-
creases towards T~ the solitons coalesce and are ex-
pelled out of growing ordered regions. Thus the mag-
netic chains along the stacking direction do indeed sep-
arate into relatively ordered and disordered regions. We
therefore conclude that the interpretation of the inelastic
neutron-scattering data of the soliton response near T~
in CsCoBrs (Ref. 29) is likely correct.

Carlo methods and finite-size scaling. Our analysis was
performed on L x L x L lattices, with L = 6, 9, 12, 15, 18,
24, and 30. This model was known to undergo two tran-
sitions to long-range ordered states at low temperatures.
Our interest was to investigate the critical phenomena as-
sociated with the the transition from the paramagnetic
to the partially paramagnetic, ordered state at T~. We
found this transition to be continuous at T~ = 2.920(5)
in units of Jo ——Jg ——1.0, and characterized by the crit-
ical exponents P = 0.311(4), p = 1.43(3), a = —0.05(3),
and v = 0.685(3). While these results are close to those
calculated for the 3D XYmodel, the same universality
to which this model was predicted to belong, there are
significant differences. As stated earlier, there are two
possible reasons for this discrepancy. Systematic errors
may be present in the calculation and analysis associated
with producing the Monte Carlo exponent estimates, or
the theoretical 3D XY estimates, or both, and these
may account for the differences between the theoretical
3D XY model and those calculated by this simulation
work. Alternatively, this remarkably simple model of
a frustrated antiferromagnet may display novel critical
phenomena which is evidence for a new universality class.

It should be noted that our estimated exponents are
self-consistent, in that they obey both scaling and hy-
perscaling relations. Also a full Gnite-size scaling analy-
sis shows our data to be significantly better described by
the Monte Carlo estimates than those calculated by the
3D XY model. Thus we can confidently conclude that
the 3D XYexponents lie outside the range of our statisti-
cal errors and also our exponent estimates do not appear
to be infIuenced by any possible nearby multiple-critical
points.

Comparison to relevant experimental systems is less
satisfying, mostly due to the fact that the experimental
field is not itself settled. However the role of the soliton
excitations on mediating the unusual transition at T~
which arose from inelastic neutron scattering measure-
ments on CsCoBr3 was seen to be qualitatively similar
in the simulated model.

After this work was completed, we received a preprint
(which has now affected) by Plumer et at. so in which
they report on work that reproduces some of our results.
Since only a single histogram at each lattice size is used
in their work, their estimated exponents are expected to
be less accurate than those presented in this study. How-
ever, even so, we note that their exponents are noticeably
closer to the exponents we obtained from our multiple-
histogram studies than to those calculated for the 3D
XY model. For the case of each exponent, the deviation
from those estimated for the 3D XYmodel is in the same
direction as ours.
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