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Classification of N-electron states in a quantum dot
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The physical symmetries of an ¹lectron gas in a d-dimensional quantum dot are studied. The sym-

plectic group framework is used to discuss the dynamical modes of the system and to classify the N-

electron states including spin. We focus on the results for a few-electron (N(12) dot in d =2 dimen-
sions. For N & 4 electrons the types of configurations appearing are strongly N dependent. The allowed
configurations for N &4 are also highly restricted compared to those for N) 4. These findings suggest
that results of few-electron (N & 4) cluster calculations may have limited applicability to large-N systems.

I. INTRODUCTION

In recent years there has been much progress in the
fabrication of so-called quantum devices with physical
characteristics that derive directly from the quantum
behavior of an ¹ lectron system. Such systems may in-
volve small or large numbers of electrons as well as being
confined in one or more dimensions, and they possess
properties that have the potential for application in fu-
ture electronic technology. There is now a great deal of
data emerging from transport and optical measurements
on quantum dots containing anywhere between 1 and 100
electrons. Attributing the various experimental peaks to
a specific number of electrons requires full knowledge of
the ¹ lectron energies of the quantum dot. At the
present time this is an unsolved problem for arbitrary N,
although there have been numerical studies of the few-
electron (N (4) quantum dot, ' an analytical solution of
an N-electron quantum dot in a magnetic field with a har-
monic potential interaction, and a discussion of the
N=2 "helium" dot. Given the wide possible variation
of N values in a given quantum dot experiment, it would
be a significant advance if some "signatures" could be ob-
tained whereby one would know that the occurrence of a
given multiplet of conduction peaks in the experimental
data signaled that the quantum dot contained 6(N~ 8
electrons, as opposed to 2 ~ N ~ 4.

This paper takes a first step towards this goal by pro-
viding a classification scheme for the wide variety of pos-
sible N-particle states in a quantum dot with parabolic
confinement. Unlike previous classification schemes
used early on in nuclear and atomic physics, the states
can be labeled using Schur function techniques which are
valid for any N. In this way, the appearance (or disap-
pearance) of various configurations can be charted as a
function of N. We find that the types of configurations
appearing varies nontrivially as N is increased. Indeed, in
d=2 dimensions it is not until N~4 that the types of
states occurring become fairly N independent. This
finding therefore injects an element of caution into inter-
polation between the results obtained by diagonalizing

few-electron systems and the true physics of the large-N
system.

In the description of the ¹ lectron quantum system
there is a strong resemblance to the N-body nuclear sys-
tem of protons and neutrons which we want here to ex-
ploit. In nuclear physics, there exists a large body of
literature describing the collective modes of the
nucleon system but also establishing a microscopic
description based on the Heisenberg algebra (see, for ex-
ample, Moshinsky, ' Kramer and Moshinsky, ' Rowe, "
Vanagas, ' Filippov, Chovposky, and Vasilevsky, ' Ari-
ma and Iachello' and their respective collaborators).
Such a description in terms of the Heisenberg algebra is
called a microscopic model. The advantage of such a mi-
croscopic model is that it contains various physically ap-
pealing submodels, such as the shell model, collective
model, and cluster model. The basic idea of the shell
model ' is that as a first approximation the ¹particle
states can be built from independent single-particle states
in some common potential, usually taken in practical ap-
plications as a harmonic-oscillator potential. In this
sense, the shell model resembles a mean-field theory. In
confined systems of electrons, the two competing energy
scales are the kinetic energy of the particles (which scales
as the inverse square of the confinement length) and the
electron-electron interaction energy (which scales as the
inverse of the electron separation for a Coulombic in-
teraction). In systems where the confinement length scale
is small (e.g. , atoms), the kinetic energy tends to dom-
inate. Perturbative treatments of the electron-electron
energy, such as mean-field approximations or central-field
potentials which underlie the shell model, are therefore
reasonable and have had much success. However in the
mesoscopic quantum dot systems, the kinetic energy and
potential energy are comparable' and the shell-model
approach is therefore too crude. The collective model, on
the other hand, views the collection of particles as a
liquid droplet described by various phenomenological,
hydrodynamic parameters. ' The cluster model ap-
proach correlates subsets of the N particles, as in in-
teracting boson approximation models. ' Typical exam-
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ples of the latter in condensed-matter physics are Cooper
pairing in superconductivity, and electron-hole pairing in
excitonic systems. A common framework for all these
models is provided by studying the symmetry groups of
the ¹particle system. The present work transports these
ideas of nuclear physics to the realm of ¹electron quan-
tum dots.

Based on the generalized Kohn theorem introduced in
Refs. 18 and 3, recent far-infrared optical measure-
ments' have shown the confinement potential in electro-
statically defined quantum dots to be nearly quadratic.
Additional terms in the Hamiltonian arising from a uni-
form external magnetic field will also be of bilinear form.
Physically meaningful Hamiltonians can therefore be
constructed from bilinear operators (e.g., XX where X is
the position coordinate operator). A Lie algebra based
on such bilinear operators generates the symplectic
group. This fact, coupled with the success of the sym-
plectic group in describing collective nuclear
behavior, ' implies that the symplectic group
Sp(2Nd, R ) is an appropriate dynamical group for a
many-body theory of N electrons in a d-dimensional
quantum dot. It should be noted that there is an impor-
tant difference between a dynamical group and a symme-
try group. A symmetry group of transformations leaves
the Hamiltonian invariant and gives rise to degenerate
multiplets of states which carry representations of the
group. Examples of this are the rotation group SO(3) and
the spin group SU(2). A dynamical group, on the other
hand, requires only that energy eigenstates belong to a
single irreducible representation of the group but does
not require that all states of an irreducible representation
be degenerate. A familiar example is the simple three-
dimensional harmonic oscillator for which the dynamical
group is Sp(6,R) while the symmetry group is its SU(3)
subgroup.

The advantage of dealing directly with the dynamical
group, as we will in this paper, is that its algebra can be
chosen to include not only the operators appearing in the
Hamiltonian, but also various physically meaningful
operators (including certain forms of anharmonic poten-
tial terms and particle-particle interactions ) which
would usually have to be accounted for in perturbation
theory. A dynamical group will contain the symmetry
group of the Hamiltonian as a subgroup, and will lie
above it in the group chain. The basic philosophy is
therefore to classify states of the many-body system using
labels obtained by looking down the various group-
subgroup chains, starting with the dynamical group at
the top. Figure 1 shows the various group-subgroup
chains of interest in the present problem.

We begin by formulating in Sec. II a microscopic mod-
el of an ¹particle system in algebraic terms, and then
discussing the algebra of the dynamical group which is
the noncompact Lie algebra of Sp(2Nd, R). As men-
tioned above, physical quantities associated with the sys-
tem, e.g. , total kinetic energy, total angular momentum,
simple types of particle-particle interaction, external
confining potential and magnetic field, can be expressed
in terms of this algebra. Physically relevant subalgebras
can then be identified and the ¹particle states classified

Sp(2) x O(Nd) Sp (2N) x O(d) Sp(2d) x O(N)

U(Nd)

Sp(2) x O(N) x O(d) U(1) x O(Nd) U(N) x O(d) U(d) x O(N)
I r
I r r

'~

U(N) x U(d)

U(1) x O(N) x O(d)

FIG. 1. The group-subgroup chains of an X-particle system
in d dimensions. For simplicity we denote Sp(2n, R ) as Sp(2n }.

II. DYNAMICAL GROUP OF THE 1V-PARTICLE SYSTEM

In this section we formally develop the algebras that
generate the dynamical group of the system of ¹

interacting particles. The spatial part of the Hamiltonian

in terms of the group representations. It can be seen
from the subgroup chains in Fig. 1 that one appropriate
subalgebra is that of Sp(2,R)XO(N)XO(d). The O(d)
group describes the angular momentum of the system,
and O(N) contains the permutation symmetry of the
states via the subgroup S(N) CO(N). Various intermedi-
ate subalgebras between the Sp(2Nd, R ) and
Sp(2,R) XO(N) XO(d) are possible (see Fig. 1). The rela-
tive values of the system parameters, e.g. , strength of the
magnetic field, will determine the appropriate chain of
groups and, hence, basis states for describing the system.
The microscopic model, and, hence, the ¹particle sys-
tem itself, is then characterized as unitary irreducible rep-
resentations (irreps) of its Lie algebra and subalgebras.
However, apart from the trivial one-dimensional repre-
sentations, all unitary irreps of noncompact Lie groups
are necessarily infinite dimensional. A complete
classification scheme of such irreps is not yet available al-
though there exists an extensive mathematical literature
on certain types of unitary irreps. The symplectic
group representations we require here are the unitary
discrete series irreps. In the Appendixes we briefly dis-
cuss the representation theory of such irreps employing
the powerful Schur function techniques ' which have
the advantage of being valid for any Xor d.

In Secs. III and IV, we apply the various group-
theoretic results to the physical system of ¹interacting
particles in d dimensions, specifically classifying the
states of the few-electron dot in d=2 dimensions. In or-
der to implement the Pauli principle, we need spatial
states of well-defined permutational symmetry. This in-
formation is contained in the O(N) group and its reduc-
tion to S(N). We analyze this group reduction in Appen-
dix A. We note that in the process of presenting a
classification of states of the ¹ lectron quantum dot, this
paper also quotes group-theoretic results. The derivation
of these results is presented elsewhere. '
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Qrisj = z [Xri~Xsj ] & ~risj = z IXri~ sj ]

Krisj =2[ ri& sj]
(2)

while each of the Nd nonzero generators iAI5„5, pro-
vides a phase, one for each of the Nd quanta. As men-
tioned above, there are various subalgebras of possible in-
terest. Here we focus on the algebras described explicitly
in terms of the Cartesian operators X„;,P„ leading to
subalgebras of symplectic groups and orthogonal groups
(see Fig. 1). Since the X's and P's separately commute
among themselves, so do the Q's and K's which in turn
generate two Abelian subalgebras R' "+" " . More-
over, the Vs close under commutation and generate a
GL (Nd, R) subalgebra. Other subalgebras can be formed
by contracting on the particle or spatial indices. The two
sets of operators (summing on twice repeated indices)

Qij =XriXrj & ij =Xri rj Xrj ri & Kij = ri rj

T; = ,'(X„;P„+X„.P„—;+P„,X„+P„X„;).
Q„, =X„;X„, L„,=X„;P„X„P„;—, K„,=—P„;P„

T„,—= —,'(X„;P„+X„P„;+P„;X„+P„X.„; )

close under commutation and form the algebras of
Sp(2d, R ) and Sp(2N, R ), respectively. Note that the
operators forming the T's and L's are the syrnrnetric and
antisyrnrnetric parts of the contracted Vs. Furthermore,
the Sp(2d, R ) algebra acts only on space indices
(i = 1, . . . , d) and due to the summation over particle in-
dex is indifferent to particle indices (r = 1, . . . , N). Simi-
larly, the Sp(2N, R) algebra acts only on particle indices
and is indifferent to space indices. The two algebras do
not commute with one another. This can be easily seen
by calculating the commutator of Q;j with T„„for exam-
ple. However, the subsets [L;i ] and I L„,] separately
close under commutation

of the N-particle system is a function of coordinate and
momentum operators of these individual particles. We
denote the coordinate and momentum components of the
rth particle (r =1, . . . , N) by x„; and p„, (i =1, . . . , d),
respectively. The space dimension is d where d=1, 2, or
3. The associated operators X„, and P„; obey the Heisen-
berg algebra,

[X„;,X, ]=0, [X„;,P j]=ifiI5„,5;, [P„,,P, ]=0
with N distinct, commuting copies of the one-particle
Heisenberg algebra. So far the particles are distinguish-
able and their particle and spatial indices are treated in
the same manner. This rejects the fact that the spatial
part of an N-particle system in d dimensions behaves as
Nd quanta in one dimension. The (2Nd) -dependent set
of bilinear operators, IX„;,X, ,X„;P,~ ,P„,,X,j. , P„;P,J], can
be shown to close under commutation. Since
P„;X, =X, P„,. ifiI5—„,5;. , there are 2(Nd + 1)Nd-
independent generators. The sympletic group Sp(2Nd, R)
has (2Nd+1)Nd-independent generators which can be
taken as

[L,j,Lki ] if—i(L,k5ji L—
,i5jk +L,i, 5,i L—ji5,„),

[L„„L,„]=i%(L„,5,„L—5„+L„5 L—,„5„,),
and form, respectively, the subalgebras of O(d) and
O(N). Now, the operators of Sp(2d, R) and O(N), and
those of Sp(2N, R) and O(d), do commute. Hence, we
have identified as subgroups of Sp(2Nd, R) the direct
product groups Sp(2d, R)XO(N) and Sp(2N, R)XO(d)
(see Fig. 1). These subgroups are physically significant as
they separate effects arising from the dimensionality d
from those depending solely on particle number N. The
O(d) group determines the total angular momentum of
the system in the d-dimensional space. O(N) also con-
tains various sub groups, but of greatest physical
importance is the group-subgroup chain
O(N)DO(N —l)DS(N) where S(N) is the symmetric
group which gives the permutational symmetry of the
many-particle system. O(N —1) extracts the center-of-
mass behavior and necessitates a Jacobi-type transforma-
tion.

A further contraction over the remaining free indices
of the Sp(2N, R) and Sp(2d, R) operators can be made. In
so doing we obtain a subalgebra of both Sp(2d, R) and
Sp(2N, R ), which is that of Sp(2,R ) defined by

Q—:X„;X„;, T=X„;P„;+P„;X„,, K =P„,P„,

with nonzero commutation relations

[Q, K]=2i 'iiiT [Q, T]=4iiriQ, [K,T]= 4iRK . —

The Sp(2,R) generators are found to commute with the
orthogonal groups O(N) and O(d), and, hence, the sym-
plectic groups Sp(2N, R) and Sp(2d, R) contain the sub-
groups Sp(2,R ) X O(N) and Sp(2,R ) X0(d ), respectively.
The Sp(2,R) group is capable of describing collective vi-
brational excitations of the system, as in the nuclear
problem. The generators of Sp(2,R ) and O(Nd) also
cornrnute and, hence, generate the subalgebra of
Sp(2,R) XO(Nd). We can then recover the physically in-
teresting groups by reducing to O(Nd) DO(N) XO(d) (see
Fig. 1). One can immediately see that there exists in all
three different reduction chains a cornrnon subgroup
Sp(2,R ) X O(N) X O(d) which would appear fundamental
in describing the collective behavior of the Nd quantal
system. Other subgroups can, of course, occur, but this
paper will only focus on the physically relevant sub-
groups discussed above.

The main point that we wish to emphasize is that the
symplectic group chains have many interesting model-
based possibilities. The Sp(2,R) algebra already includes
the total kinetic-energy term (1/2m)(P„;P„;)=(1/2m)K,
and the potential term (men /2)(X„;X„;)=(me@ /2)Q of
the isotropic harmonic-oscillator Hamiltonian
H (01/2m)K+( com/2)Q. The spatial part of the N-
particle Landau Hamiltonian for N electrons (charge q,
mass m) in two dimensions in a homogeneous magnetic
field,

+2 2
1 K+Bq Q qBL

27tl g~c 2Plc

consists of operators from Sp(2,R) and O(d). The Hamil-
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tonian of Johnson and Payne describing an electron gas
in a parabolic quantum dot (A'co) in an external magnetic
field with an electron-electron interaction term

mQ
N (N —1 ) Vo — g (X„;—X„.)(X„;—X„.)

TS1

can also be expressed as

IQo

2m 2 4mc

0+N(N —1)Vo+ g Q„,
TS (10)

(4332)

-(33)

(4431)

kiR
L~L~
k&~

+(31)

with Ao: co +(—qB/2mc) —NQ . The first three terms
of Hzp contain operators in the Sp(2,R) and O(d) alge-
bras, while the last term is expressed as generators of
Sp(2N, R). We note that Q„, generates the Abelian alge-
bra of R ' +" making possible an exact solution of the
Hamiltonian H Jp.

So far we have identified the symplectic group
Sp(2Nd, R) as the dynamical group of the N-particle sys-
tem, and we have discussed the subgroups of physical in-
terest. We now need the representation theory of these
groups in order to classify and label the N-particle states
of the system, and, hence, to identify a suitable set of
basis sets for quantum dot Hamiltonians and their corn-
muting operators. We exploit the power of Schur func-
tion techniques to generate results that are independent
of the rank of the groups involved. Physically this means
that we classify the states of the X-electron quantum sys-
tem in a way that gives an explicit algebraic dependence
on the number X of particles present. The salient
mathematical details related to the representation theory
of the noncompact group Sp(2n, R) have been presented
in Ref. 31.

Before proceeding we give a brief discussion of termi-
nology and notation. For compact groups, irreps are
denoted by partitions, and their properties, such as
branching rules and Kronecker products, are given by
certain operations of Schur functions which describe the
characters of the irreps. A brief discussion is given in
Appendix A. For full details, the reader is referred to
Refs. 24, 29, and 30. From the representation theory of
finite and compact groups, every finite-dimensional non-
equivalent irrep can be denoted by a partition (p)—an
ordered set of positive integers pl ~ . ~ pk & 0. The in-
tegers p, are called the parts of the partition while the
weight of the partition is the sum of its parts
w(p)=p&+ . +pk. As shown in Fig. 2 the partition
(P, ) is called the conjugate partition of (p) formed by in-
terchanging columns and rows of the associated Young
diagram. We use the convention of distinguishing
characters and irreps of the orthogonal groups O(N) and
symmetric groups S(N) by square brackets [ ], those of
the sympletic groups Sp(2n) by angular brackets ( ), and
those of the unitary group U(n) by curly brackets [
For clarify, we shall often subscript the rank of the group
after the brackets. We shall also employ a reduced nota-
tion for the symmetric groups which is denoted

FIG. 2. Conjugate partitions (top) and O(n) hook-length
modification rules (bottom). See text for a full explanation.

by angular brackets ( ). The relation to the standard
notation is the removal of the first part p, of
[p„p ,2. . . , p k]=(pz, . . . , p k), and has the advantage
of presenting many results of S(N) N independently.
Given N one recovers the standard notation by the in-
verse process (p) =[N —w, p] where w is the weight of
(p). There should be no confusion with Sp(2n) group ir-
reps as the context will clearly indicate which group is to
be used. For the sake of brevity, we shall denote the non-
compact symplectic group Sp(2n, R) by Sp(2n); the latter
is often used for the compact symplectic group
Sp(2n, C) (l U(n) which is not considered here at all.

III. SPIN AND SPATIAL PERMUTATION
SYMMETRIES

In classifying the N-particle states under the spatial
symmetry groups, one must consider the spatial permuta-
tion symmetry. This information is contained in the
O(N) group and its reduction to S(N). The O(N) DS(N)
reduction is given in Appendix A. It is important be-
cause the requirement of overall antisymmetry (symme-
try) on the total wave function for an N-fermion (boson)
system implies spatial states of a well-defined permuta-
tion symmetry. For an X-electron system with each elec-
tron taking two spin values, we need to couple N times
the defining spin irrep [s;0]3=[—,']3 of SO(3), and decom-
pose this into symmetrized tensor irreps of SO(3). This
decomposition provides the total spin S of the X-particle
system and its spin permutation symmetry. With the
downward-pointing arrow denoting irrep character
reduction, we have

[s;0] l g —+S,——S X [S]
2 '2

where the summation is S =(N/2), (N/2) —1, . . . , 0 or —,
'

depending whether N is even or odd. The decomposition
incorporates particle number X and total spin S directly.
The corresponding S(N) irrep label is, in general, a two-
part partition, [(N/2)+S, (N/2) —S]=((N/2) S),the-
latter being the reduced notation for this irrep. The Pauli
principle clearly requires that the spatial permutation
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syrnrnetry of an ¹ lectron system must now be

N——S = —+S,——S
2 2 '2

—[2(N/2) —S 12S] ( 2(N/2) —S—1 12S) (12)

This section uses the group-theory results of Appen-
dices A and B to classify few-particle states in a two-
dirnensional quantum dot. In addition to a description of
a quantum dot containing just N electrons, the discussion
of ¹particle states for small N has a further important
application. These few-particle states can be used as
basis states for describing correlated subsets of electrons
in a cluster-type calculation of a many-electron dot. Such
cluster models, particularly involving two particles, have
been of great use in condensed-matter physics for describ-
ing phenomena such as superconductivity and
superAuidity in extended many-body systems. Investiga-
tion of the analogs of such efFects in confined systems
such as quantum dots may provide interesting future de-
velopments.

We begin by giving a classification of the two-
dimensional single-particle states. These states could
form the starting point for a noninteracting particle
description of a two-dimensional parabolic dot in the
presence of any additional perturbations expressible in
the Sp(4) algebra. The states are taken to transform as
the spin representation (s;0)2 of Sp(4). The symplectic
group character theory [Eq. (B2) of Appendix B with
n=2 and k= 1] gives

(s;0),l g ( —,'(v)), x [v], . (13)

The only possibilities for the partition (v) are (0) and (1),
and hence Eq. (13) becomes

and it is the states labeled by these partitions that couple
to the spin states to give totally antisymmetric states.
For an ¹ lectron system in a strong magnetic field, the
spins are aligned with the field, and hence we have the
spin-polarized case where S =(N/2). The spin permuta-
tion label (using the reduced notation discussed in Sec. II)
becomes [N]= (0) and the spatial permutation label be-
comes [1 ]= (1 ').

IV. FEW-ELECTRON STATES
IN A TWO-DIMENSIONAL DOT

0 0
(1(l)),x [l],x [1],
0 0 0

[1+2j + I ],x [+1j, x [

(17)

with l even, and

0

(,'(1)),x [o*],
0 0

( 1(1) ),X [1] X [1
0 0 0

Il +2j+ I])X [+1],

(18)

with 1 odd. In both Eqs. (17) and (18), 1 and j are non-
negative integers. There is obviously some redundancy;
the states are normally labeled by j and +l, but we have
maintained all labels to show the full group-theoretic
content. The labels on the bottom lines of Eqs. (17) and
(18) correspond to the well-known Fock-Darwin labels
for a particle in a harmonic-oscillator plus magnetic field
[i.e., setting 1 —+ IlI, and j ~n in Eqs. (17) and (18) yields
the labels of Ref. 3].

We now move on to a description of two-electron
states in the quantum dot. These two-electron states will
be labeled by the chain (see Fig. 1 with N=2 and d=2),

Sp(8) DSp(4) XO(2) DSp(2) XO(2) XO(2) .

Using Eq. (B2) with n =2 and k=2, the first reduction
yields

It is quite clear that all even angular momentum states
are contained in one basic spin irrep of Sp(4) while all odd
angular mornenturn states are contained in a second. It is
also evident that there is no multiplicity; for each angular
momentum quantum number there exists one Sp(2) quan-
tum number and vice versa. This is the so-called com-
plementarity in nuclear physics.

The one-particle states are hence labeled by the follow-
ing ket:

(s;0&,
0

(-,'(o) ),x [o],

(s;0&,I(-,'(0) &, X[O],+(-,'(1)&, X[O'], , (14) (s;0),l y (1(v)),x[v], . (19)
where the standard labeling of [1] in O(1) is [0*](see Ap-
pendix A). The O(1)DS(1) reduction yields [0]&[1]and
[0*]1[1].Obviously, there is no permutation symmetry
but there is a nontrivial O(1) symmetry. The total angu-
lar momentum is extracted by reduction of ( —,'(0) )2 and
( —,'(1) )2 to the subgroup Sp(2) XO(2) [Eq. (B6) with n=1
and k=2],

The possible partitions (v) are then of the form (0), (1),
(1 ), and ( n ) with n )2. Note the occurrence of the one-
and two-part partitions which do not appear in the one-
particle classification. At this stage we can extract the
S(2) permutation symmetry of the states by the character
reduction of the O(2) irreps. These are given as follows:

(-,'(0)), l g (1(l)),x[1], ,
I even

(-,'(1}),J, g (1(l)),x[1], .
I odd

(16)

[0]~ [2] [ I ] & I 2]+ [ I']
[0*]&[I'] I: n] &[2]+I:1']

(20)

where the standard labeling of [1 ] in O(2) is [0*]. It can
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be seen that the O(2) scalar (i.e., [0]) and pseudoscalar
(i.e., [0 ]) give, respectively, only a symmetric (i.e., [2])
and an antisymmetric (i.e., [1 ]) spatial permutational
symmetry type while the rest give states of each. Since
both [2] and [1 ] spin permutational symmetries can
occur, all spatial states are allowed and none are exclud-
ed.

The Sp(4) irreps labeled by (0), (1), (1 ) are highly stan-
dard, and, hence, are more easily reduced to
Sp(2) XO(2) yielding the total angular momentum quan-
tum number which can be obtained from the analysis of
Eq. (B6) with k=2, n=2, and Eq. (B7). Expanding Eq.
(B6) in leading lowest weight terms yields

& 1(0)&24 & 2(0) & ) X [0]q+ & 2(2) & ) X [2]2

+ & 2(4) &, X [4+0]2+& 2(6) &, X [6+2]~

+ & 2(8) &, X [8+4+0]~+

&s;0&,

0

& 1(v) &~X [v]~

0 0
& 2(n +2i) &, X [l]2 X [2]2

0 0 0

[n +2+2i +2j],X [+l1, X [0

&s;0&,

0
& 1(v) & X [v]

0 0

&2(n+2i)&, X[l]~X[1 ]2

0 0 0

I n +2+2i +2j l, X t+i 1, X [0]

(23)

(24)

& l(1) &~& &2(1) &, X [1]~+& 2(3) &, X [3+1]~

+ & 2(5) &, X [5+3+ 1]2

+ &2(7) &, X [7+5+3+1],+

&1(1 ) & J, &2(2) &, X [0'] + &2(4) &, X [2],

+ & 2(6) &, X [4+0*],

+ &2(8) &, X [6+2] +

(21)

&s;0& 4 g & —,'(v) & X [v], . (25)

In both cases we have set n =w (v). If (v) =(0) then only
symmetric states occur while for (v) =(1 ) only antisym-
metric states occur.

We now turn to three-electron states, labeling them
once more according to the chain (see Fig. 1 with %=3
and d=2)

Sp(12) DSp(4) XO(3) DSp(2) XO(2) XO(3) .

The first reduction [Eq. (B2) with n=2 and k=3] is writ-
ten as

We have for the case (n) with n ~ 2 the signed sequence

, (n) =(n) —(n2). To leading lowest weight terms the ex-
pansion is given by

& 1(n) &$2&2(n) &
&
X [(n)+(n —2)+ +(g)]

+ & 2(n +2) &, X [(n +2)+(n)+

The possible partitions (v) are now of the form (0), (1),
( 1 ), ( n ), and (n, 1) with n ~ 2. Note the occurrence of
the new two-part partitions which do not appear in the
two-particle classification. Extraction of the S(3) permu-
tation symmetry of the states by the character reduction
of the O(3) irreps leads to the following analysis:

[o]1[3]
+(g)]~+ (22)

[ I ]1[3]+[21]
where (g)=(1) if n is odd. For n even, (g) alternates be-
tween (0) and (0*) starting with (0) in the zeroth leading
term. Note that the reductions remain multiplicity free
but are not complementary as there are several angular
momenta O(2) irrep labels for each Sp(2) irrep label. We
also observe that, in general, given an Sp(2) irrep label
&2(n') &&, the angular momentum quantum numbers are
limited to 0 ~ l + n', stepping in units of 2 except for the
cases (0) and (1 ) which step in units of 4. A consequence
of the stepping by 2 and 4 is that there is no mixing of
even and odd angular momenta within a given Sp(4) ir-
rep. In fact, this even or odd nature is determined, as we
shall clearly see below, by the weight of the Sp(4) parti-
tion. The difFerence between these two-particle states and
the one-particle states is that there are now more angular
momentum quantum numbers possible. The general
states, which we have separated into symmetric [2]z and
antisymmetric [1 ]2 states, are labeled as

[1*11[211+I: 1'1

[2]1 [3]+(2)[21]

I:2*11(2)[21]+I:1']

[n]$(a +1)[3]+(n—a)[21]+(a)[l ]

[n*]J(a)[3] +( n—a)[21]+(a+1)[1],

(26)

where the standard labelings of [1 ] and [n, l] in O(3) are
[1*]and [n*], respectively, the multiplicities of S(3) ir-
reps are placed in parentheses, and a = [n I3J which
denotes the integer part of n/3. Note that, excluding
[1*]and [2*], all the O(3) irreps yield states of totally
symmetric permutational symmetry. However, to couple
with the appropriate spin permutation symmetry, only
states with spatial permutation symmetry [21] and [1 ]
can exist. This is because three electrons cannot form a
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+ & 3(6)), X [4+0*]~

+ & 3(8)), X [6+2]2+
& —,'(n) )zg& 3(n) ), X [(n)+(n —2)+ . +(g)]z

+ & 3(n +2) ), X [(n +2)+(n)+2(n —2)

+ +(g')] +

(27)

X [(n —1)+(n —3)+ . +(g*)]2

+ &3(n +3) )
&
X [(n +1)+(n —1)+2(n —3)

+ . +(g')] +

where (g)=(0) or (1) and (g')=(0 )+(0) or 2(1) depend-
ing on the even or odd nature of the O(2) sequence of la-
bels. We note the appearance of multiplicities of angular
momentum quantum numbers. The angular momentum
content for the partitions (0), (1), (1 ) does not change
from that of the two-particle system. Also, depending
whether the weight of the Sp(4) partition is even or odd,
the angular momentum quantum numbers are all even or
all odd, hence no mixing occurs. With i,j being non-
negative integers and n = io (v), the three-particle states
can therefore be labeled as follows:

totally antisymmetric spin state. The totally symmetric
spatial permutation [3] will therefore not arise and leads
to the complete exclusion of the states transforming as
& —,'(0) ) of Sp(4), and states transforming as [3]3 of other
Sp(4) irreps. This represents a massive restriction to the
number of possible three-electron states.

From Eq. (B6) the reduction of the Sp(4) irreps in lead-
ing lowest weight terms expands to

& —', (0) )2 J, & 3(0) ) i X [0]2+ & 3(2) ) i X [2]2

+ & 3(4) ), X [4+0]2

+ & 3(6) ), X [6+2]~
+ & 3(8) ) i X [8+4+0]2+

&
—', (1)) (&3(1)),X[1] +&3(3)),X[3+1]

+ & 3(5)),X [5+3+1]
+ &3(7) ), X [7+5+3+l]2+ .

&
—', (1 ) )2g & 3(2) ), X [0*]2+& 3(4) ), X [2]~

0
&

—'(v))2X [v]3

&3(n)), X[1]2X[1 ]3

0 0 0
{n +3+2i +2j },X [+l},X [0]

(29)

The possible partitions (v) are then of the form (0), (1),
(1 ), (n), and (n, l) with n ~2, and (n„n2) with
n, ~ n2 ~2. Note the occurrence of the general two-part
partitions which do not appear in the three-particle
classification. Extraction of the S(4) permutation symme-
try of the states by the character reduction of the O(4) ir-
reps leads to the following analysis:

We pause here to connect the present work to the
three-electron calculations performed by Laughlin in
connection with the fractional quantum Hall effect, and
the X-electron calculations of Stone, Wyld, and Schult.
Both groups considered the high magnetic-field limit
where the system is spin polarized. They identified the
number m of N (noninteracting) electron states of a given
angular momentum within the lowest Landau level and
then diagonalized the Coulomb interaction for each an-
gular momentum. The present formalism provides a
rigorous counting procedure for evaluating the number m
of possible states of a given angular momentum for a
given N, and reproduces the m values of both Stone,
%'yld, and Schult and Laughlin. More importantly,
the present counting scheme is both systematic and
manageable for any X.

For the four-electron states in a quantum dot the com-
plexity of the analysis increases significantly. In fact, the
four-electron system can be considered as the generic
case since all the possible types of Sp(4) partitions that
can occur under the dimensional constraint vI ~2 have
appeared. For jt Ue or more electrons no other types ofpar
titions uiII arise. We will once more label the four-
electron states according to the chain (see Fig. 1 with
N=4 and d=2)

Sp(16) DSp(4) XO(4) DSp(2) XO(2) XO(4) .

The first reduction is written [Eq. (B2) with n=2 and
k=4] as

(30)

&s;0),
0

& —,'(v) )2X [v]3

C 0
& 3(n +2i) ), X [l]z X [21]3

0 0 k
[n +3+2i+2j},X {+l},X [

with 0~ l ~ n and k=1,2, and

(28)

[0]&[41

[ I ]l [4]+[311

[12]&[31]+[21)

[2]l [4]+2[31]+[2']

[21]$2[31]+2[2]+2[21 ]

[3]J,2[4]+3[31]+[2]+[21 ]

[31]J,[4]+4[31]+2[2]+4[21 ]+[1 ]

(31)
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[2 ])[31]+2[2]+[212]

[n] la [4]+b [31]+c [2 ]+d [21 ]+e [14]

fn„n2]J,a[4]+b[31]+c[2]+b [212]+a[1 ],
where the multiplicities of the S(4) irreps are placed be-
fore the irrep label. To couple with the appropriate spin

permutation symmetry, only states with spatial permuta-
tion symmetry [2 ], [21 ], and [1 ] can be retained. The
totally symmetric partition [4] and in addition [31] will
not suffice and lead to the total exclusion of the states
transforming as (2(0)) and (2(1)) of Sp(4). From Eq.
(B6) the reduction of the Sp(4) irreps in leading lowest
weight terms is given by

(2(1 ) )pl (4(2) ) ) X [0*]2+(4(4) ) ) X [2]2+ (4(6) ) ) X [4+0 ]2+ (4(8) ) ) X [6+2]2+ .

(2(n))21(4(n) ), X [(n)+(n —1)+ . +(()]z+ (4(n +2) ),X [(n +2)+(n)+ . +(g')]&+
(2(n, 1) ) z J, (4(n + 1)), X [(n —1)+(n —3)+ + (g) ]z

+ (4(n +3) )
&
X [(n +1)+(n —1)+2(n —3)+ . . +(g')]&+

(2(n„n2) )2J, (4(n, +n2) ) ) X [(n „n2)/D]2+ (4(n, +n2+2) ),
X[((n, +2, n2)+(n, + l, n +2I)+(n„nz+2) —(n„n2))/D]2+ .

(32)

0
(2(v) )2X [v]~

c

(4(n +2i) ), X [l]~X [2 ]4

0 0
[n +4+2i +2j],X I+i],X [0]

(33)

where n =w(v), (v)=(2), (3), . . . , (21),(31). . . and
k= 1,2;

&s;0&,

0
&2( )& X[ ]

c d

(4(n +2i) ) X [l] X [21

0 0 k

[n +4+2i +2j],X [+I]~

(34)

Separating the states according to their permutational
symmetry, the four-electron states can be written as

&s;o),

We have noted from the above analysis that as the
number of electrons N increases the admissible Sp(4) par-
titions increase from only (0) and (1) for N= 1, to the gen-
eral case (v)=(v„v2) for N~4. It can also been seen
that for a given Sp(4) partition (v) the Sp(2) XO(2) reduc-
tion does not change in any essential way with respect to
particle number for N ~2. In fact, for N + 3 the reduc-
tion is independent of X. What does change significantly
with N is the O(N) DS(N) reduction, and is responsible
for the inadmissability or "disappearance" of certain
Sp(4) XO(N) irreps. We now briefly discuss the reasons
behind this effect of disappearing partitions. This ex-
planation delves into details of the O(N) DS(N) Schur
function expression for which we refer the reader to Ref.
38. We start with the general O(N) &S(N) reduction dis-
cussed in Appendix A. The reduction has the general
form

[v)fgm(vp)[N —w(p), p] . (36)

As noted in Appendix A, the reduction can be carried out
N independently. The partition (p) has weight
w (p) ~ w (v). For the appropriate permutational symme-
try to arise, we need

where n =w(v), (v)=(3), (4), . . . , (1 ), (21). . . and
k=123

[N —w (p),p] = [N 2r —s, 2",1']-
which yields the necessary condition

(37)

(s;0),
0

(2(v) )2X [v]~
C

(4(n +2i) ), X [l]2X [1 ]~

0 0 0
[n +4+2i +2j] &

X I+1]&
X [0

where n =w(v) and (v)=(4), (5), . . . , (31),(41). . . .

(3&)

1or2ifr=0,
2r —$=2f )1 (38)

Thus, given the admissible partitions (p)=(2", 1'), this
condition determines and fixes the allowed values of N.
For higher values of X this condition will not be satisfied,
and hence to absorb more of the value N other higher
weight partitions (p) must be sought, or (v) replaced by
another larger partition. The reasons for (v) not being
admissable are therefore twofold: (i) there are no (p) of
the form [2",1'], and (ii) there exists a (p), but it does not
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TABLE I. The smallest partitions (m) giving spatial S(N)-type [2'+'] or [2"+'1].

N
w (m. )

(m')

2
0

(0)

3
1

(1)
2

(2)
3

(21)

6
4

(2 )

7
6

(42)

8
8

(62)
(44)

9
10

(73)
(64)

10
12

(84)
(6)

11
14

(86)

12
16

(8')

satisfy condition (38).
Finally we will discuss, for a given number of particles

N, the smallest O(N) partition and, hence, by com-
plementarity the Sp(4) partition denoted here by (n } that
can give rise to an admissible S(N) irrep label. This can
be readily found for the following few-electron cases:
(n)=(0) for N=2, (n)=(1) for N=3, (m)=(2), and (1 }
for N=4. The resolution of this problem for general N is
complicated because of the complexity of the Schur func-
tion plethysrn operations involved in the reduction
O(N) &S(N) (see Appendix A). We will now give a pro-
cedure by which one can obtain these smallest partitions.
It yields a necessary, but not sufficient, condition for the
smallest partition. Given an S(N) irrep label
[N —w (p),p] = [N —2r —s, 2", 1'], with N —2r —s= 1,2
as above, we must partition (p) =(2",1') in k smaller par-
titions (p,. )=(2', 1') with i =1, . . . , k. Note that each

(p; ) is of a similar shape to (p). Clearly,

w (p) = g w (p; ) or 2r —s = g 2r; —s, (39)

Denoting the smallest partition of Sp(4) associated with
the S(N) irrep label [N —w(p), p] by (m. ), we have the
necessary weight condition

to ( m. ) = g iso (p; ) . (40)

The Sp(4) restricts (m. ) to at most two-part partitions.
However, we still must sort through the possible (n. ) by
making sure that each plethysm (i p; ) contains a two-
part partition (m.; ) that is smaller or equal to (n. ). For ex-
ample, since (1p, )=(p&) we have (p, )=(m &)=(0), (1),
(2), (1 ), (21), (2 ) while (2p2) has only two-part parti-
tions for (p2)=(0), (1), (2), (1 ), (21), (1 ), (2 ), (21 ),
(2 1), (2 ). For five electrons with spatial permutational
symmetry types [2,1], [2, 1 ], and [1 ], we can partition
[2, 1] into one term, (p&) =(21) itself, so that w (m) = 3
and only (n. )=(21) is possible from the plethysm con-
straint. Note that for [2,1 ] the partitioning process gives
(p& ) =(1 ) and (p2) =(1) so that to (m. ) =1.2+2.1=4,
while [1 ] yields to (n) = 1.2+2.3 =8. For the six-
electron system it is spatial permutational symmetry type
[2 ] that gives rise to (m. ) =(2 ). Indeed, for the general
N-electron system (6 N ~ 12), it is spatial permutational
symmetry type [2"+'] (for even N=2r+2) or [2"+'1]

(for odd N=2r+3) that gives rise to the weight condi-
tion w(n. )=2(N —4). The smallest partitions (rr) giving
spatial S(N)-type [2"+'] or [2" '1] are given in Table I.
The smallest partitions (m. ) giving spatial S(N)-type
[2"+'1 ] or [2"+'1 ] are given in Table II. These con-
siderations are important when one wants to evaluate the
lowest energy eigenstates for the N-electron system. For
a central harmonic potential in zero magnetic field, the
energy depend on n =w(v) as discussed elsewhere, i.e.,
the lower the weight of the partition the lower the ener-
gy. These partitions are mainly given by the spatial
S(N)-type [2"+'] or [2"+'1] which are associated with
lowest total spin S=O (N even) and S =

—,
' (N odd), re-

spectively.

V. CONCLUSIONS

We have given a general procedure for classifying
states of ¹particles confined in two dimensions with a
view to describing the complex behavior of a quantum
dot system. In fact, the general analysis of this paper is
relevant to both fermion and boson systems, and can pos-
sibly even be applied to anyon systems as well. Since we
have focused on a confined system of particles, we have
only considered the discrete series representations. The
basis states corresponding to these representations de-
scribe localized states (e.g., vibrational and rotational
modes) and not extended states (translational modes). We
have found that'for N&4 the pattern of occurrence of
various types of configurations is highly nontrivial as N is
increased. It is not until N~4 that the types of states
occurring become fairly N independent. This finding in-
jects an element of caution into the practice of interpolat-
ing between results obtained from diagonalization of
few-electron systems, and the physics of the large-N sys-
tem.

Finally we note that, using the concise labeling and
counting scheme provided in this paper, we have recently
been able to evaluate matrix elements and hence energies
for various ¹ lectron Hamiltonians. These results will
be presented elsewhere.
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TABLE II. The smallest partitions (~) giving spatial S(N)-
type [2'+'1 ] or [2"+'1'].

APPENDIX A: SCHUR FUNCTION ANALYSIS
OF O(k) AND S(N)

8
8

(53)

9
10

(5')

10
12

(75)

In order to introduce some of the Schur function tech-
niques we require, we give the relevant compact group
reductions that appear in the symmetry classification of
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the ¹lectron system in two dimensions (see Fig. 1). For
details, see King, Black, King, and Wybourne, Butler
and King, Butler and Wybourne. Many tables of
Schur function operations, such as the outer and inner
multiplications and division, can be found in Ref. 40.

In general, the nonequivalent irreps of the compact
groups, both finite and infinite, can be labeled by parti-
tions. For the orthogonal group O(k) each nonequivalent
true irrep can be labeled by the so-called standard parti-
tions, [p] and [p*], with Pi ~ [k/2] parts. Here, [p']
represents the associated irrep character of [p] defined by
[p']—:[0' ] X [p], and [0'] denotes the one-dimensional
nontrivial deterniinantal irrep of O(k). If [p] or [p*] is
nonstandard with p, i ) L N/2 3, one must apply the
O(k) modification rule. This rule removes a hook length
of length h =2p,

&

—k starting at the bottom of the first
column of the associated Young diagram, and removing
h contiguous boxes along the boundary of the diagram.
If the resulting diagram, denoted symbollically as [p —h],
is a regular partition then [p]=(—)' '[p —h]' where c
is the column in which the removal procedure ends, oth-
erwise if the resulting partition is irregular, it is the null
character S. If one begins with the associated character
[p]* then [p]'=( —}' '[p, —h]. The hook length remo-
val procedure must be repeated until a standard irrep la-
bel or the null label is obtained. By way of illustration, if
[p]= [3321]and h =3,4,5 then the Young diagrams are as
shown at the bottom of Fig. 2, and [p —h]= —[33]*,(ZI

and [31]*,respectively.
In classifying the states of the N-particle system in two

dimensions one requires various orthogonal group reduc-
tions. The simplest is O(N)&O(N —1) and this is sym-
bolically given by the compact Schur function expression,

[I ]N ~[1 /M]N 1= X [v/—m]N —1 (A 1)

where M represents the Schur function series containing
only those partitions of one part, i.e., m integer, and the
symbol "/" denotes the Schur function operation of
division. Although the series is, in principle, infinite,
the division by definition restricts the series to a finite
number of terms. An example of the application of this
formula is

[311]Nj, [311/(0+ 1+2+ 3) ]N

= [311+31+211+21+111+11]N (A2)

The advantage of the Schur function techniques is that a
general result such as Eq. (A2) is valid for all N. Howev-
er, to apply this for any particular value, the O(N) parti-
tions on the right-hand side may not be standard irrep la-
bels of O(N —1) and need to be modified accordingly in
the manner introduced above.

Implementing the Pauli principle requires the reduc-
tion of O(N) irreps to S(N). Using the O(N) DO(N —1)
reduction from above, we now only need the
O(N —1)DS(N) irrep reductions. This is actually one of
the more difficult reductions to perform as it involves
many operations at once, including the difficult plethysm
Schur function operation denoted by the symbol (3.
These plethysms are related to the symmetrization pro-

[m],4[+m], +[—m], . (A3)

Finally, we remark here that M~ j ~

—=M, M[2~ =D, and
M ~2~—=C where the latter designations are those given
by King. These series appear prominently in the sym-
plectic group representation analysis and are briefly dis-
cussed here. The M series is already defined above in Eq.
(Al). The D series represents an infinite sum of partitions
(5) whose parts 5; are all even. The lowest weight terms
are

D =(0)+(2)+(4)+(22)+(6)+(42)+(222)+
(A4)

cess of S(N) permutations, and a discussion can be found
in Wybourne with tables given by Butler and Wy-
bourne. The reduction is divided into two parts. The
first part introduces a convenient designation Q(N —1),
which, it must be emphasized, is not a group, and the
Schur function expansion of O(N —1) irrep characters to
Q (N —1) given by [p]N, J, (p/ +; M~;~ )N, where
i =3,4, . . . ~. The plethysm sum is defined as
M~;~ =—g (i j) with j =0, 1, . . . oo. Again, the Schur
function division renders finite and manageable the
infinite product of infinite series.

The second part describes the reduction of the charac-
ters of Q(N —1}to S(N) in terms of the reduced notation
of the symmetric group (p)N, l gz ((p/sp(Z)) Z)N
where the symbol denotes the Schur function operation
of outer multiplication evaluated with the help of the
Littlewood-Richardson rules. The summation term
Z =(g2) (g3).(g4). . . is an infinite outer multiplication of
partitions (g;), and sp(Z)=(2$2) ~ (3@(&) (4@(4). . . is
an infinite product of special plethysms of the form
(ig; ). A summation over all possible partitions (g, ) is
implied. Although the division renders the expansion
finite, the various plethysms make the reduction cumber-
some to perform. A small table of O(N —1)DS(N)
reductions is given by Butler and King and the reader is
referred to that paper for examples.

Although difficult, the O(N —l)OS(N) reduction has
been specified without reference to the integer N and,
hence, the result is valid for all N. However, in order to
use the results for a given N one has to perform S(N)
modification to each partition appearing in the expan-
sion. This consists of converting each reduced-notation
term (p)N to the standard notation [N —w, p]N where w

is the weight of (p, ), and if the leading part N —w is less
than the second part p„ the modification rule
[. . p, ,p, +, ... . ]=—[. . .p,. +,—1,p;+1. . . ] is employed
repeatedly until a standard partition is obtained or it is
shown to be null. For example, [13]=—[22] in S(4),
[0421]=—[3121]=+[3121]=S in S(7), and [255]= —[435]= + [444] in S(12).

In classifying the N-particle states in Sec. IV, we have
used th~ reduction O(2) DU(l). The O(2) irrep label pro-
vides the total angular momentum and hence the U(l) ir-
rep label yields the component of this angular momen-
tum. Since all irreps of O(2) are labeled as [m]z with m a
positive integer and are two dimensional, the U(1) irrep
content is readily obtained as
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—(3 )+(431)+(51 )+ (A5)

APPENDIX B: REPRESENTATIONS OF THE
NONCOMPACT Sp(2n, R ) GROUP

To develop results for Sp(2n) one uses the fact that it
contains the maximal compact subgroup U(n) and hence
the character of the infinite-dimensional unitary irreps of
Sp(2n) can be expressed as an infinite sum of characters
of the finite-dimensional unitary irreps of U(n). We refer
the reader to King and Wybourne for a fuller explana-
tion of the representation theory of Sp(2n). There exist
two basic discrete series representations, (s;0+) and
(s;0 ), of Sp(2n). Both are infinite dimensional and un-

itary, and, hence, nonfaithful. In addition there exists the
so-called "spin" representation (s;0 ) which is a faithful
unitary irrep of the double-covering group, the so-called
metaplectic group Mp(2n) of Sp(2n), and is reducible into
a direct sum of the two basic spin irreps of Sp(2n), i.e.,
(s;0)„$(s;0+)„+(s;0 )„. There are two fundamental
results associated with the basic spin irrep (s;0). The
first refers to the fact that the metaplectic group is the
usual dynamical group of the isotropic harmonic oscilla-
tor. All the harmonic-oscillator states, both even and
odd quanta, therefore span the space of the basic spin ir-
rep (s;0). Specifically, the even (odd) states span the
spin irreps (s;0+) ((s;0 )). In Schur function termi-
nology this means the irrep character (s;0) can be ex-
pressed as a sum of irrep characters of U(n), thus provid-
ing the description of the degeneracies of the states of the
isotropic harmonic oscillator

(s;0)„ge„' M= e„' g. [—m I„, (Bl)

where Im] denotes a covariant tensor irrep of U(n) and
e„=—I I "]„denotes the determinantal representation of
U(n) The half.-power of e„ implies the presence of a pro-
jective representation of U(n). The summation is over all
non-negative integers, and hence composes the Schur
function series M introduced in Appendix A.

The second result is that the tensor powers (s;0)
decomposes into a direct sum of unitary irr cps
((k/2)(v)) of Sp(2n) where (v) is a partition into at
most n parts, v&

~ n, with the additional constraint
v& +v2 ~ k. These irreps are referred to as unitary
discrete series representations, or harmonic series repre-
sentations by King and Wybourne, and are those that
are considered here since we are considering a bound sys-
tem. Furthermore, the reduction of the basic spin irrep
(s;0) to Sp(2n) XO(k) is in one-to-one correspondence
to the reduction of the k-fold tensor product, i.e.,

(s; ~ 0 [x [—(v[l x [v]~,k
2

(B2)

where the summation is over all the partitions (v) satisfy-
ing the above constraints. ' Note that the branching is

The C series is formally the inverse series of D, CD=(0),
with leading terms

C =(0)—(2)+(31)—(41 )

multiplicity free and that there is for each irrep label of
Sp(2n) just one irrep label for O(k) and vice versa —a
fact known as complementarity in nuclear physics. The
constraints imply that the summation is over those stan-
dard partitions that label covariant tensor irreps of U(n),
and those irrep labels of O(k) that are "near standard"
(i.e., [v] such that L(k/2) J (Vi(k, hence requiring
one O(k) modification step).

It is just these two results given by Eqs. (B1) and (B2)
that are needed to determine properties of the unitary
discrete series irreps ((k/2)(v) ) of Sp(2n). For example,
the branching rule appropriate for the reduction
Sp(2n) DU(n) has been shown to take the form

v 6k/2 vk D (B3)

with K =min(k, n). We have used this result in Sec. IV in
performing the Sp(2) DU(1) reduction. We note first that
((k/2)(v) ) is a unitary irrep and therefore (v) is a near-
standard label of O(k). Second, D is a Schur function
series (see Appendix A) and since this is formally an
infinite sum of partitions, the U(n) irrep content is
infinite. Third, , (v) is called the "signed sequence" of
(v). The signed sequence involves an infinite sum of par-
titions +(p) such that +[p) is equivalent to [v] under the
modification rule of O(k). For example,

, (54) =(54)—(542)+(5431)—(543 )
—(54 1 )+

(84)

More details are given in King and Wybourne. The
term (,v" D)& involves an outer multiplication of the
signed sequence with the D series and is to be carried out
with the restriction to at most E parts, as implied by the
subscript IC. This fact imposes certain limits on the parti-
tions appearing in each of the infinite sequences, (v) and
D. The above example now gives, (54) =(54)—(542)
with I['=3. The justification in labeling Sp(2n) irreps by
((k/2)(v)) derives from this Sp(2n)DU(n) reduction
and the fact that v is the smallest partition in the restric-
tion to U(n), i.e.,

—(v) le„~ I vI „+(
k k/2

n

(B5)

where the continuation involves larger partitions than v.
Note that from this remark the two basic spin representa-
tions (s;0+) and (s;0 ) could be denoted by ( —,'(0))
and ( —,'(1) ), respectively.

Another result which makes all the analysis in Sec. IV
possible and which follows from the properties of the
basic spin irreps is the general branching rule for
Sp(2n) Z Sp(2) X O(n ) which is summarized in the follow-
ing:

—(v) g g (m) [((m /C)~ (,v D)i, }„/D]„,
m

(B6}
where the symbol o signifies the Schur function operation
of inner multiplication, known more in association with
Kronecker products of symmetric group S(N) irreps.
The C series was introduced in Appendix A. Fortunate-
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[(m/C)0 (,v" D)k]„=(,v" D)P (,v" D—)tt (B7)

with E=min(k, n), where the superscript after the

ly, there is some simplification in the evaluation of
[(m/C)&&(, v" D)k]„. First, since (m) is only a one-part
partition, (m/C)=(m) —(m —2) for m ~2 with the spe-
cial cases (0/C)=(0), (1/C)=(1). Second, , (v)" with par-
titions restricted to at most k parts becomes a finite sum.
Third, the inner products are particularly easy since for
m integer (m)e(v)=(v), where (v) is any partition of
weight m. Hence, for given m the purpose of the inner
product is to extract from (,v" D)k those terms of weight
m or m —2. The terms arising from the inner products
must also be standard labels of U(n) hence the subscript
n in [(m/C)o(, v".D)k]„. As a consequence we could
write

parentheses determines the weight restriction and the
subscript determines the combined part restriction. If (v)
is a partition of even (odd) weight, the weights of the par-
titions appearing in (,v" D) are also even (odd) and there-
fore m must be accordingly an even (odd) integer. Final-
ly, the division operation by D renders this series finite by
restricting the terms to partitions which are no greater
than the partitions appearing in the expression
[(m/C)o(, v D)k]„.

Letting w (v) =w, the leading term in the reduction as
determined by the smallest Sp(2) irrep can be seen to be

(BS)

giving an alternative justification for the labeling of the
Sp(2n) irreps from an O(k) viewpoint.
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