
PHYSICAL REVIEW 8 VOLUME 48, NUMBER 21 1 DECEMBER 1993-I

Giant energy product in nanostructured two-phase magnets
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Exchange hardening of nanostructured two-phase systems composed of an aligned hard phase and a
soft phase with high magnetization is investigated using an approach which yields analytic nucleation
fields from the micromagnetic vector equation, and accounts for interactions between the soft regions.
In suitable structures the nucleation field is proportional to the volume-averaged anisotropy constant.
For example, a multilayer composed of alternating 2.4 nm hard-magnetic Sm2Fe»N3 layers and 9 nm

Fe65Co35 layers can have an energy product as high as 1 MJ/m' (120 MG Oe), with a rare-earth content
of only 5 wt%. Giant energy products may also be achieved in suitable cellular and disordered struc-
tures.

A key characteristic of a permanent magnet of volume
Vis the energy product (BH),„=(1/V) f, , ~B H~dr
which is twice the maximum magnetostatic energy avail-
able from a magnet of optimal shape. Energy product in-
creases with coercivity H, and remanence M„but it can
never exceed the value poM„ /4 corresponding to an ideal
rectangular hysteresis loop. An upper limit for the
remanence is the spontaneous magnetization Mo but if
magnetization were the only consideration then a-iron
with poM0=2. 15 T would be used for permanent mag-
nets with energy products as high as 920 kJ/m'. In fact,
the coercivity of bcc iron is so low that energy products
of iron magnets are only of order 1 kJ/m . In the past it
was necessary to resort to cumbersome bar and horseshoe
shapes to avoid spontaneous demagnetization into a mul-
tidomain state by the magnet's own magnetostatic field.

Modern high-performance magnets' such as Nd2Fe, 48
or Sm2Fe 1'7N3 overcome this problem by exchange-
coupling iron atoms to rare-earth atoms in sites with
strong uniaxial anisotropy. The rare-earth sublattice
yields anisotropy fields which exceed the magnetostatic
fields by an order of magnitude. The penalty, however, is
a reduced magnetization due to the rare-earth. and non-
magnetic elements. The light rare-earths' atomic mo-
ments are, at best, slightly larger than that of iron, but
they occupy more than three times the volume. Never-
theless, it has been possible to use Nd2Fe14B, which has

poMO = 1.61 T and poMO /4=516 kJ/m to achieve ener-

gy products as high as 405 kJ/m in laboratory-scale
magnets.

The outlook for discovering new ternary phases with
magnetization significantly higher than that of those
available at present is poor. Interstitial modification with
small atoms such as nitrogen or carbon is e6'ective for
enhancing Curie temperature and anisotropy, but the
magnetization remains practically unchanged. ' A
diA'erent approach i,s necessary if further progress is to be
possible.

Recently, magnetic hardening has been achieved in the
nanocrystalline composites Nd2Fe148/Fe3B and
Sm2Fe17N3/F produced by melt spinning and mechani-

cal alloying, respectively. The idea behind these systems
is that the comparatively low remanance M„=Mo/2 of
the isotropic hard phase can be improved by exchange
coupling with a soft phase. ' Hut the energy product,
though improved with respect to the isotropic single-
phase rare-earth material, does not reach the level at-
tained in oriented rare-earth magnets.

Here we show how it should be possible to substantial-
ly increase the energy product in oriented nanostructured
two-phase magnets by exploiting exchange coupling be-
tween hard and soft regions. We derive analytic results
for the nucleation field and energy product, and suggest
how the composites might best be structured.

To describe the magnetic reversal, we consider the free
11,12
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where H denotes the internal field, which is the sum of
the externally applied field and the magnetostatic
"demagnetizing" field. A (r) is the exchange sti6'ness,
M(r) with ~M(r)

~

=MD is the local magnetization, and

K i(r) is the first anisotropy constant. The unit vector in
the easy-axis direction n is assumed not to depend on r
(common c axis). ' The hard and soft phases can have
difFerent values of the parameters 3, Mo, and K1 denoted
by the suffixes h and s. Note that the ferromagnetic ex-
change interaction [A(r))0] in iron-rich intermetallics
is dominated by the iron sublattice (cf. Ref. 3); we do not
consider nonmagnetic regions which are able to cause os-
cillating coupling efFects such as those observed in multi-
layers with giant magnetoresistance.

We start from the perfectly aligned state where
M(r) =Mon. If a su%cientiy high internal field is
reached, the aligned state becomes unstable, and magnet-
ic reversal begins (nucleation). Nucleation is a necessary
but not suflicient condition for complete magnetic rever-
sal. It sets a (Ower limit to the coercive field, H, ~H&,
since there is a possibility that the reversed nucleus will
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(2)

and expand the free-energy density with respect to the
small transverse components mz my « 1, and minimize
the free energy to yield the micromagnetic equation,

V%( A (r)Vm) —IC, (r)m+ —,'poMO(r)H&m=0, (3)

with m=m„(r)e +m~(r)e . Note that n=e, does not
enter the micromagnetic vector equation, so long as H is
applied in the —n direction (cf. Ref. 11). This equation
represents an eigenvalue problem, and to find H& it is
sufticient to solve the differential equation,

2A(r) 7'%+ (4)

with the interface boundary condition A, (e V)'p,
= Ah(e V)+h. Here 4 represents m or m or any linear
combination of the two, and e is the unit vector normal
to the interface. The boundary condition reAects the fact
that phases with strong exchange stiffness tend to realize
a more homogeneous magnetization state (V% and Vm
small). Apart from a minor generalization of the bound-
ary condition, Eq. (4) corresponds to Schrodinger's equa-
tion for a particle moving in a three-dimensional poten-
tial 2K&(r)/poMO(r), which allows us to apply ideas fa-
miliar from quantum mechanics to discuss micromagnet-
ics. In particular, the nucleation field corresponds to the
quantum-mechanical ground-state energy, and the small
transverse magnetization or nucleation mode 4' has its
analog in the wave function.

First we consider an ideally soft inclusion (diameter D,
IC, =0) in a hard matrix (Fig. 1). The initial state is one
where the magnetization of the matrix and inclusion are
perfectly aligned. Introducing spherical coordinates and
taking the limit +—+0 as r —+ (x) we obtain the eigenvalue

not propagate. ' ' The energy product can be estimated
from the hysteresis loop by putting H, =Hz.

In special cases, the nucleation problem [Eq. (1)] has
been solved in one, two, or three dimensions by series ex-
pansion or an appropriate ansatz. ' ' ' ' Here we take
the vector identity,

M(r)=MO(r)(m (r)e, +m (r)e +'1/ 1 —m —m e, ),

equation,

DQ—p,OM, H~ /2 A, cot Q—poM, H~ /2 A,
h

+1+—Q(2KI, p—oMhH~)/2Ah =0,

which can be solved numerically (Fig. 2). The nucleation
field reaches a plateau below D=6h, where 6h is the
Bloch wall width of the hard phase.

Taking values appropriate to Sm2Fe, 7N3, the interme-
tallic with the most favorable combination of magnetiza-
tion and anisotropy, ' ' inclusions smaller than 3 nm in
diameter will have coercivity equal to the anisotropy field
of the matrix ( =20 T). Even at a diameter D =7 nm, the
soft inclusion retains a coercivity @OH& =7 T. For larger
inclusions the coercivity falls off as 1/D; inhomogeneous
magnetostatic fields can initiate nucleation at diameters
greater than 20 nm.

For sufficiently small reverse fields IH (H&(D), the
single soft inclusion is ideally aligned along e, and slight-

ly enhances the remanence, provided M, )Mh. To ob-
tain a significant remanence enhancement it is necessary
to generalize to large numbers of spherical inclusions per
unit volume (Fig. 3). The remanence is

M„=f,M„+f,M, ,

where f, and fI, = (1 f, ) are the vo—lume fractions of the
soft and hard phases, respectively, but when the distance
between neighboring inclusions becomes too small, the
soft regions interact and coercivity is destroyed. This
behavior is illustrated schematically in Fig. 4. In the case
of well-separated inclusions, the lowest-lying magnetiza-
tion mode which is responsible for nucleation decreases
exponentially in the hard region. But when the distance
between the soft inclusions is small, the magnetization
modes can tunnel through the hard region, which no
longer acts as an effective potential barrier. In fact, this
micromagnetic exchange interaction can reduce the nu-
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FICx. 1. Spherical soft inclusion with diameter D in a hard-
magnetic matrix (dashed region).

INCLUSION DIAMETER (nm)

FIG. 2. Nucleation field H& as a function of D, the diameter
of the inclusion in Fig. 1. The values assumed are for the
SmqFe, 7N3/Fe system: poM, =2. 15 T, poM„= 1.55 T,
2, /Ag =1.5, K, =O, and Xg =12 kJ/m .
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FIG. 3. A possible structure of remanence enhancement,
with many inclusions per unit volume.

FIG. 5. An oriented, disordered two-phase magnet with com-
mon c axis. The size of the soft and hard regions is smaller than
the Bloch wall thickness 5z of the hard phase.

(7a)

= (K, (r) ) =f,K, +f„K„,
is introduced. The nucleation field is given by

H =2(K, (r) ) /p, (M (r) )

(7b)

cleation field considerably when the thickness of the hard
region is less than 5&.

In the plateau region (Fig. 2), where the soft regions
are very small, the problem can be treated in perturbation
theory. As in quantum mechanics, the lowest-order ei-
genvalue correction is obtained by using the normalized
unperturbed function %0 so an eQ'ective anisotropy con-
stant E,~,

f,K, +f,K,
f,M, +fqMq

If we neglect further pinning of the nucleus, we obtain a
rectangular hysteresis loop with H, =H~ and
M„= (Mo(r) ). The energy product depends on the
shape of the magnet, but the optimal value is given by
@0M„/4 for Hz )M„/2 and poH&M„/2 for Hz (M„/2.
Using Eqs. (6) and (8) we find the highest-energy product
obtained for H& =M, /2. Putting K, =0 yields

po(M, —Mq )M,
(BH),„= @0M—, 1—

h

or

(a)

Due to the large E&, the second term in the parentheses
is small so the energy product approaches the ultimate
value of poM, . The corresponding volume fraction of the
hard phase is

(10)

SOFT HARD SOFT

If we consider the Sm2Fe&7N3/Fe system and take
values poM, =2. 15 T, poMh =1.55 T, and Kh =12
MJ/m, we obtain a theoretical energy product of 880
kJ/m (110 MGOe) for a volume fraction of only 7% of

(b)
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FIG. 4. Schematic diagram showing the effect of interaction
between different soft regions. (a) The distance between the in-
clusions is large, and the magnetization node decreases ex-
ponentially in the hard region. (b) The distance between the in-
clusions is small, and micromagnetic exchange reduces the coer-
civity.

FIG. 6. A multilayer structure composed of alternating hard-
and soft- magnetic regions. The multilayer periodicity should
not exceed —10 nm.
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the hard phase. A further increase of the energy product
is possible if iron is replaced by Fe65Co35 with
poMo=2. 43 T; the theoretical energy product of the
Sm2Fe, 7N3/Fe65Co35 system might be as high as 1090
kJ/m (137 MG Oe), with ft, =9%. It is remarkable that
these optimum magnets are composed nearly entirely of
3d metals, with only about 2 wt % samarium.

The nucleation field [Eq. (8)] is independent of the
shape of the soft regions, so long as their size lies in the
plateau region (Fig. 2). The hard regions act as a
skeleton to stiffen the magnetization direction of the soft
regions. The practical problem, however, is to realize a

structure where the soft regions are su%ciently small to
avoid nucleation at small fields while having the hard re-
gions crystallographically oriented. One conceivable
solution is a disordered two-phase magnet (Fig. 5) with a
common c axis throughout the hard regions, but it is
dificult to see how this might be achieved in practice. A
more realistic possibility may be a multilayered structure
of alternating soft and hard-magnetic layers (Fig. 6). The
micromagnetic multilayer problem is analogous to the
periodic multiple quantum-well problem; assuming a uni-
form demagnetizing field the solution for the lowest ei-
genvalue H& is given by the implicit equation,

~h
V (2K', PoMh—Hiv)/2Ahtanh )/(2K' PoM~H—iv )/2Ah

A,
QpoM, Htt /2A, tan (/ poM, Htv /22,

A~
' ' 2

where A, & and A,, denote the thickness of the hard and soft
layers, respectively. Equation (11) permits direct numeri-
cal calculation of the critical thickness A,, of the soft layer
above which nucleation occurs, as a function of k& and
the required coercivity H~. For example, to obtain a
megajoule magnet using Sm2Fe&7N3, we need a coercivity
of 1.12 T with a remanence of 2.24 T which corresponds
to 79 vol % Fe65Co3~, thus fixing the ratio A,, /A, t, . Taking
A, =1.67X10 " J/m and Ah =1.07X10 " J/m, we
obtain the values A, I, =2.4 nm and A., =A,, =9.0 nm. To
achieve the same coercivity when kh ~ ~ we find
k, =9.5 nm, the difference being due to the micromagnet-
ic coupling between the soft layers. The form of the
megajoule magnet must, of course, correspond to the op-
timum operating point on the BH curve; it should ap-
proximate an ellipsoid with c/a =0.55.

Equation (1) is based on classical micromagnetic con-
siderations; the sizes of the hard and soft regions must be
large compared to atomic dimensions so that a continu-
um model can be applied. The model must break down
when A,, or k& is smaller than about 1 nm. Furthermore,

the micromagnetic approach takes no account of thermal
fluctuations of the free energy, which might be an impor-
tant source of nuc1eation in rare-earth magnets at am-
bient temperature. Fortunately, the nanostructures we
have been discussing are very likely to impede domain-
wall propagation should a reverse nucleus form by
thermal nucleation. Besides, due to the small prefactor
(M, —Mh)/M„0. 28, for the Sm2Fe»N&/Fe system, the
energy product is not much affected if the fraction of the
hard phase is increased. We have still an energy product
of almost 800 kJ/m (100 MGOe) in this system when

fh =30%, and we can use the extra hard material to im-
prove the thermal stability and to create pinning centers.

In conclusion, it is likely that substantial improve-
ments in the energy product of permanent magnets can
be achieved by exchange hardening in nanoscale com-
binations of a soft phase and an oriented hard phase,
structured according to the principles we have outlined.
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