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Monte Carlo simulation of dimensional crossover in the XYmodel
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We report Monte Carlo simulations of Villain's periodic Gaussian XYmodel on L X N lattices of film

geometry (L »N) with up to N =16 layers, employing the single-cluster update algorithm combined
with improved estimators for measurements. The boundary conditions are periodic within each layer
and free at the bottom and top layer. Based on data for the specific heat, the spin-spin correlation func-
tion, and the susceptibility in the high-temperature phase we study the crossover from three- to two-
dimensional behavior as criticality is approached. For the transition temperatures, determined from
Kosterlitz-Thouless fits to the correlation length and susceptibility, we observe a pronounced scaling
behavior with N. The associated critical exponent, however, deviates from theoretical expectations.
More qualitatively, we further discuss the distribution and shapes of vortex loops in the crossover re-
gion.

I. INTRODUCTION

For systems with short-range interactions the concept
of universality predicts that qualitative properties of con-
tinuous phase transitions should only depend on the spa-
tial dimension of the system and on the symmetry of the
order parameter. ' Mathematically, the spatial dimension
is given by the number of directions in which the system
extends to infinity. While this obviously can never be
realized in nature, there are still many systems where
finite-size corrections are experimentally so small that
this mathematical idealization works perfectly. By the
same argument the two long directions of films can be
considered as infinite. The film thickness, on the other
hand, is definitely finite and does strongly inhuence the
behavior of the system. In fact, in contrast to the three-
dimensional (3D) bulk behavior, we expect for films of
finite thickness a phase transition (if at all) that can be
classified according to the two-dimensional (2D) univer-
sality class. ' More precisely we expect a crossover from
30 to 20 behavior as soon as the bulk correlation length

g of the system approaches the order of the film thick-
ness. '

Taking the Ising model as a typical example, the cross-
over from 30 to 20 behavior of systems with one-
component order parameters has been studied numerical-
ly some time ago by Binder and Hohenberg. While this
has interesting applications to many magnetic materials
there are also important physical systems that are de-
scribed by a two-component order parameter, e.g. , liquid
helium or superconductors. Here we report Monte Carlo
(MC) simulations of the crossover behavior for these sys-
tems, using the XY model as the generic representative of
this universality class. In our work we have chosen
Villain's periodic Gaussian formulation of the XY mod-
el. Some of our results can be compared with recent

work by Schmidt and Schneider who performed similar
simulations for the cosine formulation.

II. THE MODEL

The partition function of the periodic Gaussian XY
model is given by

d0(x)
2'

exp ——g (V, 0 2vrn; )'—
I n,.(x) I x, i

where V;0(x) =—0(x+ i) —0(x) are the lattice gradients
in the i direction of a cubic lattice, the integer variables
n,.(x) run from —~ to oo, and 13=Jlk~T is the (re-
duced) inverse temperature. Films of increasing thick-
ness were simulated by stacking N = 1, 2, 3, 4, 6, 10, and
16 layers of size L XL with L ))Xon top of each other
along the z direction. The ferromagnetic coupling J was
taken to be isotropic. Within each layer we took periodic
boundary conditions in order to reduce finite-size effects
in L as much as possible, while at the top and bottom lay-
er we imposed free boundary conditions in the z direc-
tion.

Our choice of the periodic Gaussian formulation is
motivated by the fact that the partition function (l) can
exactly be transformed into a gas of topological defects
with long-range interactions of the Coulomb type [9,10].
This is the main difference to the cosine formulation
[with exp(Pcos(V;0)) replacing the periodic Gaussian],
where the defects also interact in a complicated nonlinear
way with the spin-wave excitations. " Physically the de-
fects can be interpreted as the vortex excitations invoked
in the description of liquid helium. ' In two dimensions
the defects are pointlike objects, providing the physical
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picture for the renormalization-group treatment of Kos-
terlitz and Thouless (KT).' ' In three dimensions the
defects are linelike objects. For literature on recent at-
tempts to understand the X transition in liquid helium as
proliferation of these vortex lines see, e.g., Ref. [14].

The phase transitions in the limiting cases N =L (3D)
and K =1 (2D) have been investigated by a variety of ap-
proaches. In three dimensions, analyses of high-
temperature series (HTS) expansions, ' resummations of
field-theoretic perturbation series, ' and recent MC simu-
lations' ' are all compatible with a conventional power-
law behavior g~(l f3/P—, ) and y~(1 —P/P, ) r with
critical exponents v=0. 670 and @=1.316. In two di-

mensions, however, the situation has been quite contro-
versial. %"hile the KT theory predicts an exponentially
diverging correlation length, '

g ~ exp [ b ( 1 P /f3—, ) ],

and susceptibility yccg " with il= —,', alternative con-
siderations' suggested a conventional power-law
behavior with nontrivial critical exponents v and y. To
clarify this point, analyses of extended HTS expansions
and MC studies ' of the cosine formulation have been
performed. The results of both approaches were inter-
preted in favor of the KT scenario. Since no data of com-
parable quality were available for the periodic Gaussian
XY model, we first studied the 2D limit of this formula-
tion. From high-statistics MC simulations ' with
correlation lengths up to (= 140 on large lattices of sizes
up to 1200, we obtained even stronger evidence for the
KT predictions in this formulation.

III. THE SIMULATION

I i i I j i i I i j i I ~ I j i ~ I I
f

\ I i I j i I ~ i
[ i i i I j I i I ~ j i i I i j i I I I2

4 '

0 i i J i j i I I I I i I I i j i I I I I—'I

t0 20 30 40
distance

FIG. 1. Correlation functions for %=4 ( ~ ) and %=30 (+)
layers of size L XL with L =100. The solid lines are fits of
cosh[(x L/2)/g—] through the last 20 points, yielding in both
cases a correlation length of /= 6.

thereby taking into account the periodic boundary condi-
tions in the x direction. As is demonstrated in Fig. 1, this
ansatz works perfectly in the quasi-2D case of a few lay-
ers. For many layers, on the other hand, corrections are
expected which modify the short-distance behavior of
g (x). The data for X =30 layers in Fig. 1 show, howev-
er, that these corrections die out quite rapidly and that
there is still a significant range in x over which the simple
ansatz is an extremely good approximation. To reduce
finite-size eA'ects in I, we always took care that
L = 6 —8g. Extensive tests for the pure 2D model showed
that this is a safe condition.

In our MC simulations of the partition function (1) we
applied the Z, approximation with n =100 to the angles
8(x). This enables us to store the sums over the integer
variables n, (x) in a lookup table, calculated numerically
for each f3 once at the beginning of the run. In this way it
is then straightforward to adapt the single-cluster update
algorithm to the periodic Gaussian formulation. Be-
sides monitoring the peaks of the specific heat C, the
main results are based on analyses of the susceptibility,

IV. RESULTS

To determine the transition point P, (X) for each film
thickness X, we first located the onset of the two-
dimensional KT behavior of g and y via goodness-of-fit
analyses. As a general rule we find that this is the case
for g) X/2. Only for the thickest film with X =16 lay-

2

y=V — s x (3)

where s(x)—:(cosO, sin9) and V=%L, and the spin-spin
correlations,

G(x, x') = (s(x) s(x') ), (4)

in the high-temperature phase, using for the measure-
ments variance reduced "cluster observables. " To be
precise, we have measured the k =0 momentum projec-
tion of (4),

g (x) = (s(x,z).s(0,z) ),

2

i i i

0.27
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with s(x,z) =—g~ i s(x,y, z), along the x direction in the
innermost layers and extracted the correlation length g
from fits to a hyperbolic cosine, cosh[(x L /2)/g], —

FIG. 2. Crossover froDi 3D power-law behavior (dashed line,
using y»=1.316) to 2D KT behavior (solid line) of the suscep-
tibility for X = 16 layers.
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TABLE I. Inverse critical temperatures P, (N) and the location of the specific-heat maximum,

P,.(N).

P, from kT fits to
g(p) y(T) x(p) pmax

1

2
3
4
6

10
16

0.754 5( 54)
0.487 8(27)
0.417 14(89)
0.391 30(53)
0.365 81(92)
0.349 67(23 )

0.342 25(60)

0.758 6(59)
0.490 3(30)
0.417 70(91)
0.391 72(54)
0.365 98(92)
0.349 74(24)
0.342 28(64)

0.751 0(32)
0.482 6(11)
0.419 88(60)
0.390 87(21)
0.366 23( 30)
0.349 85( 12)
0.341 86(25 )

0.754 8(35)
0.484 4( 12)
0.420 61(64)
0.391 29(22)
0.366 41(30)
0.349 92( 12)
0.341 89(25)

0.538 7( 19)
0.426 20(58)
0.393 79(36)
0.374 43(20)
0.358 29( 11)
0.345 77( 15)
0.339 76( 18)

ers, we start seeing a region with 3D bulk behavior; see
Fig. 2. It is tempting to identify this 3D region with

g (N /10, but even for N = 16 layers this is, of course,
still perturbed by nonuniversal lattice corrections. Hav-
ing determined the region of 2D behavior, we then fitted
the data for g and y to the KT prediction (2) and the cor-
responding formula for g, respectively. In these fits we
thus always kept v= —,

' fixed at its theoretical value. As a
test for systematic errors (due to omitted correction
terms) we also used (2) rewritten as a function of T. De-
pending on N, the number of data points included in the
fits was 5 or 6, with a maximal correlation length between
26 and 46 for N ~ 2, requiring layers of sizes of the order
of 200 to 400 . For each film thickness N these fits pro-
vided us with four estimates of P, (N) compiled in Table
I. The values for a single layer deviate slightly from our
earlier results in Ref. 22, since in the present fits we used
only the five data points with the largest correlation
length.

According to Fisher's scaling prediction ' the P, (N)
should scale asymptotically for large N as

P, (N) =P, +cN

with c being a constant and

I /A, = v3D =0.670+0.002 .

(6)

(7)

Here p, —:p, ( ~ ) is the critical coupling of the 3D
bulk system and v3D is the bulk correlation length ex-
ponent. The results of three-parameter fits to (6) for each
of the four sets of P, (N) values given in Table I [labeled
according to the type of KT fit used to determine p, (N) ]
are collected in Table II. In these fits all points with
N ~ 2 are taken into account. In Fig. 3 we plot
p, (N) p, with p, —=0.334 vs N on a log-log scale. We
see that the critical coUplings do indeed scale quite nicely
down to remarkably small values of N. The solid curve is

a straight line corresponding to the exponent

1/X=O. 71+0.01 . (8)

This value is significantly larger than the theoretical pre-
diction (7). In this comparison, however, it should be
kept in mind that (6) is only valid asymptotically for large
N. We have checked for a systematic trend in our data
by discarding more and more points for small N in the
fits. As a result we observe only a slight trend to smaller
values of I/A, , which is hardly significant in view of the
increasing error bars. Single fits to all data points gave
compatible results. In a recent MC study of the cosine
formulation Schmidt and Schneider obtained from an
analysis of Binder's parameter a similar value of
1/X=0. 70+0.08, albeit with a much larger error bar. In
order to clarify the discrepancy with the theoretical pre-
diction (7) it would be desirable to perform further simu-
lations of much larger systems.

In Table I we also give the locations /3, „(N) of the
specific-heat peaks. It is well known that in two dimen-
sions the peak maximum stays finite in the infinite
volume limit and that the peak location does not coincide
with the transition point but is displayed by about 30%
to higher temperatures. We see that with increasing film
thickness N the absolute distance from p, (N) decreases.
Assuming that also P,„(N) scales according to (6),
three-parameter fits give an even larger exponent of
I/A, =0.8 and favor a value of P,„==/3,„(~ )=0.331
that is slightly smaller than p, =0.334. The quality of
the fits, however, is much worse than in the case of P, (N)
and, by discarding data points for small N, this time a
trend to lower values of I /k and higher values of /3, „ is
visible. In Fig. 3 we have adopted the quite plausible and
commonly accepted hypothesis that p,„=p, . [Recal-
ling that also in 3D the specific-heat peak is finite
with a cusplike singularity (the critical exponent a3D
=2—Dv3D= —0.01 is slightly negative), we are, howev-

TABLE II. Three-parameter fits P, (N) =P, +cN

p3D

gl T)
g(p)
y( T)
y(P)

7.21
8.24
3.86
2.02

0.07
0.04
0.28
0.57

0.401( 13 )

0.407( 15 )

0.389(6)
0.397(6)

0.3343(9 )

0.3344(10)
0.3336(4)
0.3334(4)

0.706( 19)

0.703(20)
0.725(8)
0.721(9)
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