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A Monte Carlo algorithm has been used to study the cubic ferromagnet with a random uniaxial
single-site anisotropy on simple cubic lattices, in the strong anisotropy limit. For both two-component
and three-component spins the phase diagram contains a “domain-type” ferromagnetic phase for strong
random anisotropy, in addition to the simple ferromagnetic phase which is seen for weak random anisot-
ropy. For two-component spins both paramagnet-ferromagnet transitions seem to be second order. For
three-component spins the magnetization probably disappears discontinuously, and there appears to be a
thin layer of infinite susceptibility phase between the paramagnetic and ferromagnetic phases.

I. INTRODUCTION

The study of ferromagnetic models with random uniax-
ial anisotropy was begun twenty years ago by Harris,
Plischke, and Zuckermann! (HPZ), who proposed the fol-
lowing Hamiltonian:

Hypz=—J 3 3 SiaS}Z_DZ
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(1
where J >0 and each §; is an m-component unit-length
spin. The n; are usually assumed to be uncorrelated ran-
dom m-component unit vectors whose probability distri-
butions are uniformly weighted over the m sphere. HPZ
showed that a mean-field approximation for Eq. (1) gives
a ferromagnetic (FM) phase at low temperatures. An iso-
tropic distribution of the n; is a reasonable model for an
amorphous alloy. There has been a large amount of sub-
sequent work, whose objective has been to improve upon
this mean-field theory. Our current understanding of this
model is that in a real three-dimensional amorphous alloy
with m =3 spins even a small amount of random anisot-
ropy will destabilize the FM phase.>”* The m =2 case is
more subtle, and understanding it requires a study of the
role of vortex lines.* ¢

Renormalization-group calculations have shown’™°
that for three-dimensional ferromagnets the isotropic
Heisenberg critical fixed point remains stable in the pres-
ence of cubic crystalline anisotropy, when m is 2 or 3.
There are many crystalline materials which have both a
cubic lattice-type and some alloy disorder. Therefore, it
is interesting to consider simultaneously the effects of
both a uniform crystalline anisotropy and a random uni-
axial anisotropy. Aharony!° argued that the presence of
a crystalline anisotropy should stabilize the ferromagnet-
ic ground state of a three-dimensional system, but that
the magnetization M must then vanish discontinuously.
He also argued that there might be a spin-glass phase in-
tervening between the FM and paramagnetic (PM)
phases. This analysis was later extended by a number of
authors.!' 1% The work we present here is, to the
author’s knowledge, the first use of Monte Carlo simula-
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tions to test these analytical predictions. We will see that
the simulations largely confirm the predictions for m =3
systems, but for m =2 there is no evidence for a discon-
tinuity of M.

It has recently been demonstrated™® that, in the ab-
sence of any crystalline anisotropy, a three-dimensional
m =2 random uniaxial anisotropy model with an isotro-
pic probability distribution for the random axes displays
a finite-temperature phase with an infinite magnetic sus-
ceptibility because the FM phase is only marginally un-
stable. Thus it is no real surprise to find that Aharony’s
original analysis is not adequate for the m =2 case.

Both Aharony'® and, even earlier, Halperin and Var-
ma’> pointed out that the model considered here could
also be relevant for understanding some phenomena
which occur in structural phase transitions in many fer-
roelectric materials, and also in the A15 superconductors.
It should also be noted that a similar model, with a non-
spherical distribution of random uniaxial anisotropy, but
no explicit crystalline anisotropy, was also considered by
Aharony,l6 and later studied in detail at the mean-field
level by Amit, Gutfreund, and Sompolinsky17 and also
Fischer and Zippelius.'®* A model of randomly interact-
ing quadrupoles with cubic anisotropy was studied by
Carmesin. "’

II. CUBIC FERROMAGNETS

The Hamiltonian for a (nonrandom) m-component fer-
romagnet with a cubic crystal field is

m
chbicz_—‘] (2) 2 SiaSJGZ—KE
ij?a=1 i

> (5741 @)

a=1

By calculating the leading term in a 4-¢ expansion? for
Eq. (2), it is straightforward to show that the cubic crys-
talline anisotropy term destabilizes the isotropic critical
point in less than four dimensions for m =4. More so-
phisticated numerical calculations’ ™% have demonstrated
that in three dimensions the isotropic critical point
remains stable for m <3, as long as |K /J| is not too
large.

The m =2 case of Eq. (2) has a special symmetry that
allows the K <0 case to be mapped onto the K >0 case,
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by merely rotating the coordinate system of the spins by
a /4. For larger values of m this is not possible, and the
two cases are distinct. In this work we will consider the
limit K — . This limit constrains each spin to point in
one of the 2m directions parallel or antiparallel to the m
cubic axes.

This reduction to a model with a discrete set of states
for the spin variables greatly simplifies the Monte Carlo
simulation procedure. With the spins confined to the 2m
cubic directions, the Hamiltonian can now be written in
the simple form

m
==J 3 3 ofof, (3)
(ij) a=1 .

where each component of can now assume only the
values O or *1. The normalization condition is still
S (0%)?=1, so each o; has exactly one nonzero com-
ponent. As is well known,?! the m =2 case of Eq. (3) can
be exactly reduced to a sum of two independent Ising
models. The critical point is half that of the usual Ising
model; thus?®? T,/J=2.25575 for the simple cubic lat-
tice. For larger m, Eq. (3) has a first-order phase transi-
tion between the FM and PM phases.

Standard heat-bath Monte Carlo simulations were per-
formed for the m =3 case, on L XL X L simple cubic lat-
tices with periodic boundary conditions and sizes up to
L =48. The temperature dependence of the energy E is
displayed in Fig. 1. The ordering transition occurs at
T,/J=1.6201753%3 where the quoted uncertainties de-
lineate the region of metastability for L =48. The transi-
tion has a definite first-order character, with a jump in
the magnetization per spin AM of about 0.57, and a la-
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FIG. 1. Energy per spin vs temperature for the m =3 cubic
ferromagnet with K /J = c, on simple cubic lattices. The sym-
bols designated with a ¢ show data from “cold start” runs, and
the symbols designated with an 4 show data from ‘“hot start”
runs. The energy is discontinuous at 7, and there is a narrow
region of metastability.
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tent heat per spin AE of about 0.54J. Despite this, the
thermodynamic variables show ‘“‘pseudocritical” effects
near T, especially in the FM phase. Figure 2 is a log-log
plot which shows the temperature dependence of M. Ex-
trapolation of the FM phase data gives an upper pseudo-
critical point T, at 1.628J. This plot yields an estimated
value of the pseudocritical exponent of S=0.135, which
seems unreasonably small for a three-dimensional f.
Since the accessible range of M is quite limited, it is
difficult to make a meaningful estimate of the accuracy of
these pseudocritical parameters.

The magnetic susceptibility Y,, in the PM phase, as
calculated from the fluctuations in the magnetization, is
shown in Fig. 3. Analysis of this PM phase data gives an
estimate for the lower pseudocritical point T', of 1.602J,
and an estimate for the exponent y which is consistent
with three-dimensional tricritical behavior (y =1, with
log corrections), as might be expected. In the FM phase
the anisotropy of X, is an increasing function of T, with
the incipient instability of the FM phase apparently being
caused by diverging fluctuations of the longitudinal com-
ponent. From these Y; data we extract an estimate of
about 1.633J for T,, and a value of ¥’ of about 1.30.
Note that the estimate of T, obtained from the ), data is
somewhat larger than the one obtained from the data for
M. The author believes that the value of ¢’ is controlled
by the (unstable) m =3 cubic critical point,®® rather than
the Heisenberg critical point, where, as M goes to zero,
the correlation length diverges and y becomes isotropic.

III. CUBIC FERROMAGNETS
WITH RANDOM UNIAXIAL ANISOTROPY

It is interesting for a number of reasons to consider the
effects of adding a random uniaxial anisotropy to our
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FIG. 2. Magnetization vs reduced temperature for the m =3
cubic ferromagnet with K /J = oo on simple cubic lattices. The
axes are scaled logarithmically.
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FIG. 3. Paramagnetic phase magnetic susceptibility vs re-
duced temperature for the m =3 cubic ferromagnetic with
K /J= 0 on simple cubic lattices. The axes are scaled logarith-
mically.

model for the cubic ferromagnet. All real cubic crystals
contain substitutional impurities, whose presence may be
intentional or unavoidable. Thus, understanding the
behavior of point defects in crystals has long been an ac-
tive area of research. Random anisotropy effects are
often considered to be negligible compared to the
simpler, and relatively well-understood, effects of random
isotropic exchange. The importance of including the ran-
dom anisotropy was emphasized by Mukamel and Grin-
stein.!?

In this work we will use a random single-site anisotro-
py term. The effects of a symmetric (dipolar) random an-
isotropic exchange are similar, because a symmetric an-
isotropic exchange generates a single-site anisotropy un-
der a renormalization-group rescaling. In addition, one
might also consider an antisymmetric (Dzyaloshinsky-
Moriya) exchange term, which can produce somewhat
different effects. The cases for which one should obvious-
ly include random anisotropy are alloys containing non-
S-state rate-earth ions.?»?* Magnetic 3d transition-metal
ions can create similar effects in systems possessing spin-
density waves.?>26

The simple Hamiltonian which was used in the Monte
Carlo simulations is

m

S, viot

a=1

H=—-J 3 § ofo—D 3, , (4)

(ij) a=1

where each v, is, for simplicity, fixed to point along one
of the m spin axes. The v, are independent identically
distributed random vectors of unit length, with equal
probability given to each spin axis. Simulations were run
for m =2 and 3, using D /J =1, 2, and 3. The computer
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program takes advantage of the fact that some of the
computation can be done with integer arithmetic when
D /J is an integer. Equation (4) is a highly idealized rep-
resentation of a real experimental system. We will see,
however, that its behavior displays interesting features
which, by the usual universality arguments, are likely to
be observable in some real materials.

The model should also be useful for understanding
structural phase transitions in “dirty displacive ferroelec-
trics.”!>?” Examples of such materials are doped SrTiO;,
which was studied by Bednorz and Miiller,?® and doped
KMnF, which was studied by Gibaud and co-workers.?’
Off-stoichiometry A15 alloys such as V,;Si and Nb;Ge
(nominal compositions) also frequently display cubic-to-
tetragonal structural transitions. All these examples cor-
respond to the m =3 case of Eq. (4). The m =2 case may
be wuseful for wunderstanding the tetragonal-to-
orthorhombic transitions in the highly anisotropic high-
temperature superconducting materials, which typically
have large concentrations of vacancies in their oxygen
sublattices.

Since we have assigned equal weight to the probability
that each v; points along any of the axes, we know that in
the infinite volume limit (L — o) a state which is fully
aligned along any of the axes will have the same energy
per spin. It is important to remember that, because of
the statistical fluctuations, this is not exactly true for
finite lattices. The energy differences per spin for fully
aligned states pointing along different axes are thus of or-
der L 7372 (in three dimensions). It is easy to show that
when D /J =2 it is highly probable that the ground state
for Eq. (4) of any lattice small enough to fit on a comput-
er will be one of these 2m fully aligned states. Thus we
should expect the data for the cases D/J=1 and 2 to
have corrections to finite-size scaling due to these statisti-
cal fluctuations, and with this size dependence. We can-
not eliminate this effect by averaging over different reali-
zations of the random v;.

For nonrandom models such as Eq. (3) it is often possi-
ble to use techniques of finite-size scaling analysis to get
rather precise answers from small lattices.’® In random
models such as Eq. (4) the data from such small systems
are typically of little value for extracting the scaling
behavior. This necessitates the use of large lattices.
Another difficulty which must be faced for these finite
random systems is that, primarily due to the differences
in their ground-state energies caused by statistical fluc-
tuations, there will be a distribution of “effective transi-
tion temperatures” for the lattices of a size L. If the
width of this distribution is not narrow, it then becomes
an additional source of error in the extrapolation pro-
cedure, unless one can somehow correct for the shifts in
T,.
For any nonzero value of D, if we look at an extremely
large lattice, it is always possible to find rare local
configurations of the v; which cause the true ground state
to differ from a fully aligned state. As long as these rare
“nuggets”?! are so distant from each other that they can-
not interact effectively, they have no important conse-
quences for the equilibrium properties of the model. As
D /J is increased beyond 2, however, the nuggets rapidly
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become so common as to create a qualitative change in
the character of the ground state.

A. The m =2 case

For the m =2 case of Eq. (4) interchanging the two
components of each spin is equivalent to changing the
sign of D. As we have already noted, for D =0 this mod-
el is equivalent to two decoupled pure Ising models.
When D =« each o; becomes constrained to point only
along the axis favored by its v;. Thus in that case the
model reduces to two 50% site-diluted Ising ferromag-
nets, which are again decoupled from each other. For
any D between these extremes there is no decoupling, and
we may anticipate that behavior of the model will become
truly XY-like when the correlation length is large, i.e.,
near the critical line.

Because each site on the simple cubic lattice interacts
with six nearest neighbors, for D /J = 6 one ground state
of the spin system has each o; aligned parallel to its v;.
Due to symmetry, there are always 2" =4 such equivalent
ground states, even for a finite lattice. (This is different
from the situation for small D /J, where exact symmetry
only gives two equivalent states.) Where there is an iso-
lated finite cluster of parallel v;, the o; of the cluster can
be reversed without increasing the energy. The percola-
tion concentration for site dilution,? ps, on the simple
cubic lattice is 0.311, which is substantially less than 1.
Thus, in the m =2 case isolated clusters of parallel v;
containing more than a few sites will be very rare.

As D /J is reduced below 6, isolated single sites become
unstable and, as it is decreased still further, isolated pairs
and then isolated triplets will also disappear from the
ground states. For D /J =3 there will be no stable isolat-
ed clusters of o; on most “computer-sized” m =2 lat-
tices. Each of the ground states of one of these finite lat-
tices then maps onto the ground state of an Ising model
in a bimodal random field.>*3* Thus the ground states of
Eq. (4) will, under these conditions, have the appearance
of the “domain phase”** of the Ising model in a random
field. This analogy is still useful for larger values of D /J.
It follows that the order parameter for the low-
temperature large D /J phase will be the direct product of
IM,| and [M,|, the magnetizations along the two spin
axes. Therefore, we have two different kinds of FM
phases, a [1,0] phase for small D /J and a [1,1] phase for
large D /J. There must be some sort of a boundary be-
tween these two phases.

One might guess that between these two regimes, the
one in which only one of the pair, |[M,| and |M,| is posi-
tive, and the one in which |M,[=[M,|>0, there could
exist another phase in which they were both positive, but
unequal. The Monte Carlo simulations, however, indi-
cate that such an intermediate phase is not stable. The
results for the m =2 phase diagram on the simple cubic
lattice are shown in Fig. 4. All of the transitions appear
to be continuous, with no observable hysteresis. The data
for D /J=1 are consistent with the hypothesis that the
PM-[1,0] transition is a pure XY-type critical line. Given
the uncertainties in the data, it would be an exaggeration
to claim that this has been conclusively demonstrated. It
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FIG. 4. Phase diagram of the m =2 cubic ferromagnetic
with random uniaxial anisotropy on simple cubic lattices. The
plotting symbols show actual data points. The dashed line indi-
cates a second-order phase transition, and the dot-dashed line
indicates a first-order phase transition.

is, however, expected a priori because in the presence of
the infinite cubic crystal field the random uniaxial anisot-
ropy becomes indistinguishable from, for example, a ran-
dom six-fold anisotropy. In the latter case both the cubic
crystal field and the random anisotropy are irrelevant,
and pure XY-type critical transition is expected.®

For the PM-(1,1] transition we expect the analysis of
Mukamel and Grinstein,'? which predicts a new type of
phase transition, to be applicable. The data for D /J =2
give values for the critical exponents which are close to
those of the pure XY model. This can be understood as a
finite-size crossover effect. The data for D /J =3,
displayed in Figs. 5 and 6, indicate the presence of a new
type of critical point, with the critical exponents
[$=0.275+0.015 and y=1.74+0.08, with T,=2.166
+0.004. Assuming the validity of the usual scaling rela-
tion, this gives a= —0.29%0.08, which is a very reason-
able value for the specific-heat exponent in this system.
Before assuming that our exponents are actually correct
within the quoted uncertainties, one should demonstrate
that they are insensitive to the value of D /J which is
used. For large values of D /J, however, one must deal
with the crossover from the random exchange Ising criti-
cal point,>’ so this is difficult to do properly.

For D /J =2 we pass from the PM phase into the [1,1]
phase and then into the [1,0] phase as the temperature is
lowered. In a simple Landau-type mean-field theory this
transition would be first order because of the change in
symmetry of the order parameter. No first-order charac-
teristics are seen in the m =2 simulation, however. As
the [1,1] phase is highly inhomogeneous, there is no
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FIG. 5. Magnetization vs reduced temperature for the m =2
random anisotropy cubic ferromagnet with D /J =3 on simple
cubic lattices. The axes are scaled logarithmically.

reason why the naive Landau theory must be applicable.
It appears that the [1,1] phase should be treated as being
made up of two interwoven infinite clusters; one of x-type
spins and the other of y-type spins. This, of course, is the
structure which exists for D/J=cw. The two-point
correlation function which distinguishes between the
[1,0] and [1,1] phases is
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FIG. 6. Paramagnetic phase magnetic susceptibility vs re-
duced temperature for the m =2 random anisotropy cubic fer-
romagnet with D /J =3 on simple cubic lattices. The axes are
scaled logarithmically.
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Xolb )= [{ofc?)*— (o) o®)?], (5)
a=1
where ( ) denotes a thermal expectation value. Y (i, )
goes to zero as |x;—x;[— co in both the [1,0] and [1,1]
phases. Thus we can use it to define the correlation
length £,. Upon summing over i and j we obtain the sus-
ceptibility xo, which is reminiscent of a spin-glass sus-
ceptibility. From the data for D /J =2, it appears that
§o, and thus also Yy, grows rapidly upon approaching
the [1,0]-to-[1,1] transition line. The existing data do not
permit a more quantitative analysis, but the picture for
m =2 is almost one of a standard second-order transi-
tion, which would be expected to obey the usual scaling
relations. If we think of the [1,1] phase as the “ordered”
phase and the [1,0] phase as the “disordered” phase, then
the transition can be crudely approximated by a random
exchange Ising critical point with an inverted tempera-
ture axis. In addition, however, we have the effect of a
coupling to a polarizable medium,*® which can destabilize
the critical point. This would cause the transition to
have a small first-order character, which is not apparent
within the accuracy of the simulations reported here.
Thus we would expect the PM-[1,0]-[1,1] point (which
was not observed directly) to be a tricritical point. It is
conceivable that what we have called the [1,0]-to-[1,1]
transition line is actually a wedge in which the order pa-
rameter rotates through intermediate directions between
the [1,0] direction and the [1,1] direction. This would
make the PM-[1,0]-[1,1] point a tetracritical point. Be-
cause of percolation effects, however, the rotation away
from the [1,0] direction is unlikely to be continuous (ex-
cept in a mean-field theory), and the author does not be-
lieve that such a wedge actually exists. Due to the simi-
larity, mentioned above, between this problem and the
random field Ising model,*>** the [1,0]-to-[1,1] transition
should be first order at T7=0, and probably for all T
along the [1,0]-to-[1,1] transition line.*3

B. The m =3 case

Although there is no longer an exact relation between
D >0 and D <0 when m =3, the two cases should still
remain qualitatively similar. Whether D is positive or
negative, when one looks at the net anisotropy of a clus-
ter of several sites one expects all three axes to be
different, except for accidental degeneracies. Therefore,
simulations were not performed for D <0. The phase di-
agram for D >0 is shown in Fig. 7. The m =3 phase dia-
gram is topologically similar to the m =2 case, with a
[1,0,0] phase replacing the [1,0] phase, and a [1,1,1] phase
replacing the [1,1] phase. For D /J=2, as the tempera-
ture is lowered we again pass from the PM phase into the
[1,1,1] phase, and then into the [1,0,0] phase.

A closer inspection of the data reveals significant (but
not unexpected) differences between m =2 and 3. The
[1,0,0]-to-[1,1,1] transition is clearly first order, although
the latent heat, AE, is only about 0.03J. The PM-[1,0,0]
transition for D/J=1 does not display any definitive
first-order characteristics, although the ratio x,; /¥, is an
increasing function of T below T, just as it was for the
D =0 case. This ratio reaches a value of approximately
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FIG. 7. Phase diagram of the m =3 cubic ferromagnet with
random uniaxial anisotropy, on simple cubic lattices. The plot-
ting symbols show actual data points, and the dot-dashed lines
indicate first-order phase transitions.

4.5 at T,, only about half the value reached in the D =0
case.

From the Y,, data for the PM phase, shown in Fig. 8,
we obtain the estimates T, /J=1.580%+0.003, and
¥=1.324+0.08. The magnetization probably jumps
discontinuously to zero at T, /J =1.577+0.002, although
the discontinuity is not clearly visible in the Monte Carlo
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FIG. 8. Paramagnetic phase magnetic susceptibility vs re-
duced temperature for the m =3 random anisotropy cubic fer-
romagnet with D /J =1, on simple cubic lattices. The axes are
scaled logarithmically.
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data. If we extrapolate the FM phase data using
T,/J=1.580, we find y'=y and $=0.29+0.02. This re-
sult for B agrees well with the experimental estimates®
for KMnF;. There is no justification for assuming that
T,=T,, however. The thermodynamic stability argu-
ments of Mukamel and Grinstein!? rule out the existence
of a stable critical point in this system. If y is the
Heisenberg critical exponent, and ¥’ is the cubic critical
exponent, their seeming equality is merely a numerical ac-
cident.® Since the cubic anisotropy is renormalization-
group irrelevant for m =3 in three dimensions, other sta-
bility arguments®”3® lead us to expect that the random
anisotropy should cause AE to be zero at a PM-FM tran-
sition. A discontinuity in M is permitted by the general
thermodynamic considerations, and required by the (non-
rigorous) renormalization-group arguments. 0~ 14

The PM-[1,1,1] transitions for D /J =2 and 3 are quali-
tatively similar to the D/J=1 transition. In all these
cases AE is too small to resolve on an L =48 lattice. In
Fig. 9 the specific-heat data obtained from numerically
differentiating the energy of an L =64 lattice with
D /J =3 are shown. A small bump at T,, corresponding
to a latent heat of at most 0.005J, is barely visible. Even
for L =64 a histogram of the energy fails to resolve two
peaks. The magnetization data from lattices of various
sizes with D /J =3 are displayed in Fig. 10. The magneti-
zation tail for T/J = 1.325 appears to be a finite size
effect, but for 7'/J < 1.30 the magnetization is essentially
independent of L. The value of AM at this transition is
about 0.20.

The behavior of the simple cubic lattice at T, along the
PM-FM line may be somewhat atypical, because on this
lattice pcs =0.311, which is rather close to % This causes
the three infinite connected clusters of parallel spins in
the [1,1,1] phase to be rather ramified. A consequence of
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anisotropy cubic ferromagnet with D /J =3 on an L =64 simple
cubic lattice.
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FIG. 10. Magnetization vs temperature for the m =3 ran-
dom anisotropy cubic ferromagnet with D /J=3 on simple cu-
bic lattices.

this was that it proved impossible in the simulations to
form all three of the “percolating clusters” by simply
cooling through the transition temperature, and then an-
nealing. If simulations had been performed for m =3 on
a face-centered cubic lattice, for which?? pCS =0.198, it is
likely that the [1,1,1] phase would nucleate spontaneously
upon slow cooling through T..

Annealing a disordered state just below 7T, was ob-
served to produce a state in which only two percolating
clusters had formed. It was then possible to take this *“2-
cluster” metastable state and form a percolating cluster
along the third spin axis “by hand.” This was done by
forcing all of the o; lying in the unordered direction to
become parallel. This part of the process necessarily
lowers both the energy and the entropy, but the true
quantity of interest is the net effect on the free energy.
This state was then relaxed to equilibrium, keeping T
fixed. Following this procedure, the “3-cluster” state was
always observed to have a lower energy than its parent
“2-cluster” state, and it remained stable. This is not a
trivial observation, because the magnetizations of the two
ordered components in the ‘“2-cluster” state were larger
than the magnetizations of individual components of the
“3-cluster” state. The third cluster can only percolate on
the simple cubic lattice by reducing the sizes of the other
two clusters. Thus, at least on this lattice, the “2-cluster”
state can be considered a distinct local minimum of the
free energy, even when the ““3-cluster” state is the global
minimum.

For any given lattice structure, one could choose a
value of m which is large enough so that 1/m is less than
p3. If D /J >z, where z is the number of neighbors of a
site on the lattice in question, then there will not be any
long-range order at T =0, and most likely not at any
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higher T either. It seems unlikely that for such a large
value of m the “m-cluster’” phase would be stable for any
value of D /J. It is plausible that in at least some of these
cases there will be truly stable phases at intermediate
values of D /J analogous to the metastable “2-cluster’”
phase which was seen in the simulations for m =3 on the
simple cubic lattice. It also seems possible that there may
be a region of stable [1,1,0] phase for the simple cubic lat-
tice, along the part of the [1,0,0]-[1,1,1] transition line.

The analysis of Aharony and Pytte'! suggests another
explanation for the observed nature of the PM-[1,1,1]
transition. It may be that there is a narrow temperature
range between the domain-FM and PM phases in which
Xm = o, but M=0. The Monte Carlo data for D /J =3
are consistent with such a scenario in the range
1.30<T/J <1.36, since in that range Y,, is limited by
the sample size L. Such a phase, if it exists, may be con-
trolled by the behavior of topological point defects,® and
exhibit power-law decay of spin correlations. The latent
heat associated with the disappearance of M might then
be expected to be zero along the PM-[1,1,1] line, and the
anomaly in the specific heat at T, would be only a simple
discontinuity.

Another reasonable hypothesis is that this behavior is
related to the lower pseudocritical point T,. If one
thinks of the randomness as “smearing out” the first-
order phase transition by causing fluctuations in the local
value of T, then perhaps there are significant regions of
space in which T, becomes greater than T, causing Y,
to diverge even though T is too high to support a bulk
magnetization. This is conceptually similar to the
“Griffiths phase,”* which has been proposed to exist in
the Ising spin glass.

1IV. SUMMARY

In this work we have studied the effects of adding a
random local anisotropy to a three-dimensional fer-
romagnet possessing a strong cubic crystal field which
favors the cubic axes. For both the m =2 and 3 cases, we
have found that at low temperatures there are two dis-
tinct types of ferromagnetic phases: a conventional fer-
romagnetic phase for weak random anisotropy, and a
domain-type ferromagnetic phase for strong random an-
isotropy. For m =2 the PM-conventional FM transition
appears to be pure XY type, while the PM-domain FM
seems to be a new type of random critical point. In the
m =3 case both PM-FM transitions seem to behave in
the manner predicted by Aharony and Pytte,!! with a
discontinuous disappearance of the magnetization, and a
thin region between the FM and PM phases in which the
magnetic susceptibility is very large, and probably
infinite.
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