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Chaetic and regular behaviar in two-dimensional anharmenic crystal lattices
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A two-dimensional anharmonic lattice model to describe the behavior of coupled nonlinear dis-
placement modes is constructed. The equations of motion and the underlying Hamiltonian of the
anharmonic lattice are found. The equations of motion are analyzed using the fourth-order Runge-
Kutta method. The integrability of the system is found to depend on its energy as well as the
regularity of the system potential. A continuous transition between regular and chaotic behavior is
found and is illustrated using Poincare sections. As an example, the efFects of ordering on a (100)
tungsten surface are discussed in this context.

I. IXTaODU CTIOX

A large variety of condensed matter systems exhibit
properties which manifest underlying competition be-
tween two distinct types of order. Examples of such be-
havior include metamagnets, ferroelectric-ferromagnetic
systems, ferro electric-piezoelectric crystals, and
crystalline-super8uid systems as well as orientation-
position ordering phenomena in molecular liquid
crystals. It is well known that an interplay between two
distinct orders may result in critical temperature shifts
as well as crossover phenomena. This can be readily an-
alyzed using the mean-Geld approximation. However, a
more fundamental microscopic approach to the problem
poses a serious difhculty d.ue to inherent nonlinearities in
the description.

Denoting the order parameters corresponding to the
two coupled subsystems by qz and q2 and. their conju-
gate momenta by p~ and. p2, respectively, the following
quartic Hamiltonian has been a frequent choice for the
semiclassical modeling of this type of problem:

modes, chaotic behavior may be indicative of disorder
and even melting eKects.

II. THE MODEL

A two-dimensional monatomic crystal lattice, as shown
in Fig. 1, is considered. Each lattice site is occupied by
a single atom and each atom is coupled to its four near-
est neighbors by harmonic "springs" (elastic forces). To
make the model more general, the lattice is allowed to
be characterized by two inequivalent lattice constants a
and 6 so that the basic unit cell of the lattice need not
be a perfect square. As a result, anisotropy is directly
built into the model. Thus, the total potential energy
of the lattice has two components: One component is
due to the isotropic atomic interactions and the other
component represents the anisotropy energy. The latter
is responsible for any deviations from the square sym-
metry. However, in order to reduce the complexity of
the computation, the anisotropy energy is removed and
only rectangular lattices are considered. Consequently,

(pl + p2) + ~1'll + 2'V2 + PQ192 + (Vl + V2) '
2

This type of Hamiltonian has been used in the
context of ferro electric-ferromagnetic, ferroelectric-
piezoelectric, and commensurate-incommensurate tran-
sitions in crystals, and several types of smectic liquid
crystal transformations ' to name but a few of its use-
ful applications. The same Hamiltonian arises also in
an extension of the continuum approximation to the
one-dimensional Hubbard model of the metal-insulator
transition.

A separate class of applications of the class of Hamilto-
nians exemplified by Eq. (1.1) has emerged in studies of
two-dimensional nonlinear lattices. It is on this lat-
ter context that this paper will be focused. The primary
interest will be directed. towards elucidating the ques-
tion of regular versus chaotic behavior in two-dimensional
monatomic crystal lattices. While periodic orbits can
be regarded as classical analogs of anharmonic phonon

FIG. 1. A two-dimensional monatomic rectangular lattice
with two lattice constants a and b.
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the potential energy of the system is constructed entirely
from two-body central potentials. Since the lattice con-
sists of one kind of atom, only one type of two-body po-
tential is involved in the calculations.

It is not difFicult to demonstrate that the following
generic Lagrangian density has all the required features
to properly describe the crystal lattice under considera-
t 1OIl:

0 = cr, ~k + j,yak„—m~

4 = o.22k +(22k„—m~

P L'1111 7 v Lt2222
2 2 2 2

0 C

v 4'=p 0,

~2S22Y=
4'

(2.8)

m f Bu, ) ' o;, (Bu;5 ' (,; t'Bu, )
2 (Bt) 2 (Bx) 2 (By)

L"" 4 (2.2)

Using Euler-Lagrange equations, it is easy to show that
the equations of motion for the two displacement fields
take the form

B2up(r) B2up B2up
PP B 2 ~PP B 2 PP P

ippppu 3Aupu s (2.3)

The wave equation (2.3) is a partial difFerential equation
in both space and time. This equation calls for a Gnite-
diKerence algorithm and can be solved with appropriate
boundary conditions. As a special case, we shall assume
traveling-wave solutions of the form

up ——up(k r —(ut) = up(z) (2 4)

and reduce Eq. (2.3) to an ordinary difFerential equa-
tion. For both numerical convenience and physical in-
sight, three dimensionless variables X, Y, and T are in-
troduced and the dependent and independent variables
are scaled according to

Z=7T u1 ——pX) u2 ——v Y. (2.5)

This transforms the wave equation (2.3) into two dimen-
sionless component equations of motion on X and Y as

where u1 and u2 are the two orthogonal lattice displace-
ment fields, m is the mass of a single lattice site, and
the coeKcients in Eq. (2.1) are all assumed to be model-
dependent constants. Then, under Legendre transforma-
tion, the corresponding Hamiltonian density is given by

3v 2 p2A 3~2v2AD= 4 0

The equations of motion (2.6) and (2.7) can be looked
upon as a system of two coupled anharmonic oscillators
vibrating in two orthogonal directions. When the cou-
pling is weak, the two oscillators are essentially indepen-
dent of each other and the system appears integrable. It
is well known that, for an integrable system, there ex-
ists an additional conserved quantity besides the energy
such that the trajectory for a given energy and initial
conditions lies on the surface of an invariant torus so
that the system behaves regularly. However, the inte-
grability of the system and the invariant torus can be
destroyed by increasing the coupling between the oscil-
lators. This leads to the appearance of chaotic motion.
The degree of chaos depends on the amount of perturba-
tion on the integrability of the system. This question will
be investigated in considerable detail in the following sec-
tion. It was erst pointed out by Ali and Somorjai that
a nonlinear Hamiltonian system regains its integrability
at very high energies and this results in the reappearance
of regular motion. Therefore, intuitively, our system is
expected to behave regularly at low and. at very high ener-
gies and behave chaotically at intermediate energies. To
illustrate these order-disorder transitions, surfaces of sec-
tion (Poincare sections) are constructed to examine the
evolution of the system in phase space. However, before
proceeding further, the system's behavior must be looked
at in greater detail. Since the Hamiltonian contains all
the dynamical information about the system, it seems
logical to obtain an effective Hamiltonian density that
corresponds to the reduced equations of motion, Eq. (2.6)
and Eq. (2.7). The following dimensionless Hamiltonian
density is found:

= KxX —X + DXY (2.6)

~ + ~ ——(z~x'+ li~v')
2Mx

and

d2Y = KYY —Y +DYX (2.7)

+- (x'+ v') ——w'v', (2.9)

provided the following relations hold:
where 'R is scaled according to &' = c& and the symbols
used have the values



D RIAUKAI GORTEL, ANTUSZ YNSKI,NIP,r5 734

p. 4
p .3
p .2
p ~ 1

0
p .1
p .2

-p .3

()tent IB~ ~t gf the system PFI& CplitO&& P

the systeme ecoup eThe two
soon as

toIs a e
] ft the eI—

f the phonon, i
terms in t}e q

ergy 0 .
ly. The coupling

. Chaotic motion ap-
corresponding y'

hi h]y effective.
the energy

w become ig .
strong.

m«ion
is sufhcient y

~ but remains
coupling i

ddle p 'n
pears lf t e

bove the sa
ever mor

jses a 0
becomes e

Qf the phono
k the system

th between
e central pea ~

ljn streng

pret th.e sy
h e energiesese . b omes lm

'
mp ossible

djfferent way
the particle,

ace- In the
cessible « .

n hase sp
s are acce

- ' trajectory ln
~

e artie e s

p Qnon js vely
redict the p

h energy owhen t e e
n otentia ] and ls

er extreme,
mooth va y g

~ .
Also,

artjcle sees a
ear the «igto jts mlnu e

~ 16 the con ri
ensitlv

Alj and Somorj
f the system de-

point ed
the total ene gy

~

h h-energy
terms to,

;n thjs ig-
e coup}ing

'
energy' Thu

~

led and the
th jncrea g

in decouP
ts regu ari

ith a wea
stem regain

- statements wiua]itative s aate thes q
l t ons

.ca] simu a

t 2m~Mx=
~ 0
(2m~ + ]Mv' =

i 4 )
dX

P~ —Mx
dT '

dY
P& =My

dT
Op

j2.1O)

m nu

L RESULTSIII. GVERVVIEW OF NUMERIC A

dime ns ion-we integra ed theconjectures, we
'

for Kg ——Ky—2.6) and (2.7, or
th d R

less equations

5 t ensure numerical
trated the regWe demons raaccuracy. e

y . Poincaremotion o

d h
of which was cons r
P against

si entum P~.
turn y

' t
sitive momen— with a posiPO1Ilt X

—0.33, —0.31, —
l

ig g

aces of section w
at least six i

tative surfaces
s. At eac eneergy value, a

ar orbit was arated. Each regu ar oror lswt ere generate . ar or
the surface o spierce e

2

t informat jon wels sufhcientdensity p
f the beha

This Hamjltonia
derstanding o

oth

an intuitive un e ofto acquire an ' '
e un

otential in
the system.

}l
lot o e

29 d l , b„.,h....D = —1/2 have e nK~ Ky
e otentia

local po en s
licity. The p

tern and four
l eak. Fur- re

ordinate sys emof the coor
h t surrounding

between any syddl
uadran, su

halfway e
xhibits four-

there is a sa
es stemex i ill . Th, hg

etr . An ln e
otentia surthosed by issec

'

ce is dissec e
po

ig
p

the vertica p

l face withential sur ac
These ou — o

f the pot
a sym

ld n ad itionantials provid n t naide an

si arti-
oft esy

as ap si
pcle with two

l h hs we can place
energies, t e m

)
~ ~

}l l
of the po

lma
e uations o mterms in t e eq



48 CHAOTIC AND REGULAR BEHAVIOR IN TWO-DIMENSIONAL. . . 15 735

each irregular (chaotic) orbit was allowed to pierce the
surface at least 500 times.

At the energy of —0.33, the particle is lying very close
to the bottom of one of the potential wells. As we have
already Inentioned, we expect the two oscillators to be
decoupled at this energy. For all the initial conditions
we put in, the orbits we obtained were all regular. These
orbits are shown in Fig. 3. There is no sign of chaos
anywhere in the figure. It appears that chaos begins to
emerge at the energy of —0.31. As shown in Fig. 4, at
this energy, some of the regular orbits bifurcate into two
closed loops divided by a separatrix denoted by 8 in the
figure. Although not shown here, chaotic motion can be
seen to be confined within the separatrix. We can take
this as an indication of which of the coupling terms in
the dimensionless equations of motion becomes e8'ective.
At the energy of —0.2499, the system's integrability is
seriously diminished. All of the potential wells are now
accessible to the particle; therefore, as depicted in Fig. 5,
the surface of section has expanded to two separate parts.
Furthermore, chaotic motion has dominated the picture;
the regular structure has begun to disappear. Right be-
low the central peak of the potential, at the energy of
—0.05, the regular structure has shrunk to an infinites-
imally small region of the surface if it has not vanished
completely. All orbits we have generated are chaotic.
This surface of section is depicted in Fig. 6. We expect
the system to regain its regularity at very high energies.
We found that this is indeed correct;. As demonstrated
in Fig. 7, the regular structure has reappeared and dom-
inated the surface at the energy of 1000.

It is interesting to note that a particular regular orbit
called the separatrix can be seen in Figs. 3, 4, 5, and
7 as delineating the regions of local oscillations around
a single potential well from large scale oscillations in-
volving several potential wells. In a paper investigating
coupled nonlinear wave equations Hawrylak et al. re-
duced their problem to two equations identical in form to
our Eqs. (2.6) and (2.7). They found three general types
of solutions corresponding to separatrix. motion. Type-1
solutions are a topological soliton coupled to a stationary
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FIG. 4. Poincare section at the energy of —0.31.
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but convergence was slow and heavily dependent upon
the damping factor for Newton's method.

We note Anally that after obtaining many periodic or-
hits of difFerent periods For a given energy E (see Fig. 8),
the classical action and Liapunov exponents were calcu-
lated for each. Further, the periodic orbits were either
classified as adiabatically stable (attractor) or adiabati-
cally unstable (repellors). 2s It has been conjectured and

we have reason to believe from our own study that this
is true that periodic orbits that are adiabatically stable
and have small actions possess particularly interesting
properties from the point of semiclassical quantization
for which they were successfully used.

In the following section we brieHy present a physical ex-
ample with which the model outlined in this paper shows
qualitative similarities.

C3
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FIG. 8. A seleetian of nine peri+die arbits determined by the symmetry-boundary method for E' = 0.21.
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V. A PHYSICAL EXAMPLE

The results obtained using the low-energy electron
difFraction (I RED) technique demonstrated the existence
of a second-order structural phase transition on a crys-
tal lattice plane along the (100) direction in the tung-
sten (W) system at a temperature about 300 K.2s At
the same time, a similar behavior was also observed on
the molybdenum (100) surface. These findings lead to
the conclusion that the basic mechanism responsible for
the transition is likely to be the same for both surfaces.
Furthermore, there is clear evidence from LEED that
the transition is confined to the top layer of the lattice
planes. ' Since the interlayer couplings do not play a
significant role in the transition, the phase transition is
considered to be two dimensional. Since tungsten has a
bcc lattice structure, its lattice planes in the (100) direc-
tion are simply two-dimensional square lattices. In prin-
ciple, we can construct a two-dimensional lattice model
to describe the structural change observed provided the
model is suKciently anharmonic, since anharmonicity is
an essential ingredient in the phenomenological descrip-
tion of structural phase transitions.

Early theoretical studies on tungsten surface recon-
struction suggest that its low-temperature phase corre-
sponds to small oscillations with respect to the displaced
potential minima while its high-temperature phase corre-
sponds to large-amplitude oscillations due to the anhar-
monicity of the effective potential. Consequently, the
transition seems to be driven by the softening of the
surface-phonon mode. The nature of the transition is
further clarified by a recent investigation of the tung-
sten surface reconstruction by means of Monte Carlo
simulations. This latter investigation shows that the
transition is of order-disorder type (continuous) and takes
place at T, = 240 K. At the transition temperature the
pattern of displacements from the equilibrium positions
becomes random as shown in Fig. 9.

We believe that the theoretical model discussed in
this paper can provide an adequate phenomenological
description of the structural phase transition of a tung-
sten (100) surface In this .respect, we can regard the
low-energy regular phase of the lattice (depicted in Fig.
1) as the low-temperature phase of the tungsten sur-
face, whereas the relatively high-energy chaotic phase
of the lattice (shown in Fig. 6) can be taken as the
high-temperature phase of the tungsten surface. This
identification is to be understood in the statistical sense
where the mean energy (E) of the system is a function
of temperature and, in particular, for low temperatures
where the system is only weakly anharmonic (E) = kiiT
with k~ denoting the Boltzmann constant. Obviously,
at higher temperatures this type of relationship becomes
nonlinear. Temperatures corresponding to the energy
levels close to the separatrix will cause a severe destabi-
lization of the lattice dynamics leading to a disordered
phase. This result agrees qualitatively well with the
Monte Carlo simulations carried out recently by Han
and Ying for the tungsten surface. They have shown
that the low-temperature phase of the tungsten surface
corresponds to an orderly oriented displacement phonon

field while its high-temperature phase corresponds to
a randomly oriented one. In addition, since our solu-
tions to the equations of motion represent the displace-
ment phonon field, our results, consistent with an early
investigation, also indicate that the low-temperature
phase corresponds to small-amplitude oscillations about
the potential minima and that the transition is driven by
the softening of the surface-phonon mode. Our model,
however, is somewhat more general since it predicts
the existence of an additional regular phase beyond the
chaotic phase. That this phase does not appear to be
physically realized by the tungsten surface does not nec-
essarily invalidate the model itself. In this connection, it
must be realized that the equations of motion derived for
a perfectly periodic lattice cannot be readily extended be-
yond the energies corresponding to chaotic (separatrix)
motion. At this critical energy level the lattice struc-
ture has been virtually destroyed and the validity of the
continuum approximation used to derive the equations
is no longer present. As a result, a disordered state has
set in with a completely irregular positional structure.
It is perhaps worth noting that surface reconstruction
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sten at (a) T = 110 K and (b) T = 240 K, following Ref.
30.
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has also been found to take place on the Si(ill), the
Ge(ill), and the Ge-Sn(111) lattice planes which have
a honeycomb structure. Although our results are not
directly applicable to these systems, by adopting a tri-
angular underlying lattice and carrying out the similar
steps as outlined in the sections above, we can obtain
an analogous set of nonlinear equations of motion and
provide a qualitative description of the transition.

VI. SUMMARY

space. Eventually, at the level corresponding to the cen-
tral potential maximum the motion is completely chaotic.
What is interesting is that increasing the energy further
restores regular motion whose amplitude is now larger as
it corresponds to oscillations about more than a single
potential well. As a physical example, we have discussed
the case of surface reconstruction for the tungsten lattice.
Although a return to regular motion does not appear to
take place, we believe that the approximate nature of the
equations of motion invalidates their use above criticality.

We have shown in this paper that anharmonicity in the
two-dimensional lattice leads us to a nonlinear Hamil-
tonian system for displacement fields, which exhibits a
range of interesting dynamical behavior. For low-energy
levels, the dynamics is governed by regular motion about
the local minima of the potential surface. As the energy
increases, irregular motion becomes more and more pro-
nounced covering an ever increasing area of the phase
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