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Chaotic and regular behavior in two-dimensional anharmonic crystal lattices
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A two-dimensional anharmonic lattice model to describe the behavior of coupled nonlinear dis-
placement modes is constructed. The equations of motion and the underlying Hamiltonian of the
anharmonic lattice are found. The equations of motion are analyzed using the fourth-order Runge-
Kutta method. The integrability of the system is found to depend on its energy as well as the
regularity of the system potential. A continuous transition between regular and chaotic behavior is
found and is illustrated using Poincaré sections. As an example, the effects of ordering on a (100)

tungsten surface are discussed in this context.

I. INTRODUCTION

A large variety of condensed matter systems exhibit
properties which manifest underlying competition be-
tween two distinct types of order. Examples of such be-
havior include metamagnets,! ferroelectric-ferromagnetic
systems,?  ferroelectric-piezoelectric  crystals,> and
crystalline-superfluid systems? as well as orientation-
position ordering phenomena in molecular liquid
crystals.? It is well known that an interplay between two
distinct orders may result in critical temperature shifts
as well as crossover phenomena. This can be readily an-
alyzed using the mean-field approximation.® However, a
more fundamental microscopic approach to the problem
poses a serious difficulty due to inherent nonlinearities in
the description.

Denoting the order parameters corresponding to the
two coupled subsystems by ¢; and g2 and their conju-
gate momenta by p; and p2, respectively, the following
quartic Hamiltonian has been a frequent choice for the
semiclassical modeling of this type of problem:

1
~ (P2 + P3) + w1q? + w2qk + Beias + a(qf + 03).

H =

2
(1.1)
This type of Hamiltonian has been used in the
context of ferroelectric-ferromagnetic,2 ferroelectric-

piezoelectric,® and commensurate-incommensurate tran-
sitions in crystals,” and several types of smectic liquid
crystal transformations®® to name but a few of its use-
ful applications. The same Hamiltonian arises also in
an extension of the continuum approximation to the
one-dimensional Hubbard model of the metal-insulator
transition.?

A separate class of applications of the class of Hamilto-
nians exemplified by Eq. (1.1) has emerged in studies of
two-dimensional nonlinear lattices.’*~!° It is on this lat-
ter context that this paper will be focused. The primary
interest will be directed towards elucidating the ques-
tion of regular versus chaotic behavior in two-dimensional
monatomic crystal lattices. While periodic orbits can
be regarded as classical analogs of anharmonic phonon
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modes, chaotic behavior may be indicative of disorder
and even melting effects.

II. THE MODEL

A two-dimensional monatomic crystal lattice, as shown
in Fig. 1, is considered. Each lattice site is occupied by
a single atom and each atom is coupled to its four near-
est neighbors by harmonic “springs” (elastic forces). To
make the model more general, the lattice is allowed to
be characterized by two inequivalent lattice constants a
and b so that the basic unit cell of the lattice need not
be a perfect square. As a result, anisotropy is directly
built into the model. Thus, the total potential energy
of the lattice has two components: One component is
due to the isotropic atomic interactions and the other
component represents the anisotropy energy. The latter
is responsible for any deviations from the square sym-
metry. However, in order to reduce the complexity of
the computation, the anisotropy energy is removed and
only rectangular lattices are considered. Consequently,
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FIG. 1. A two-dimensional monatomic rectangular lattice
with two lattice constants a and b.
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the potential energy of the system is constructed entirely
from two-body central potentials. Since the lattice con-
sists of one kind of atom, only one type of two-body po-
tential is involved in the calculations.

It is not difficult to demonstrate that the following
generic Lagrangian density has all the required features
to properly describe the crystal lattice under considera-
tion:

auz O3 aui 2 Cu 8“1 2
=35 (%) -5 (5) -5 (%)
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where u; and us are the two orthogonal lattice displace-
ment fields, m is the mass of a single lattice site, and
the coefficients in Eq. (2.1) are all assumed to be model-
dependent constants. Then, under Legendre transforma-
tion, the corresponding Hamiltonian density is given by

2 2 2 2
;L m (Ou; oii (Ou; Gii ((Ou;
%_;{2(3t) +2 <8m> +2 (8y

—4 }—{— /\ul'u.2

Using Euler-Lagrange equations, it is easy to show that
the equations of motion for the two displacement fields
take the form

(2.2)

8%u,(r) 8%u 0%u
oz~ e ggr Tl e

= Sppllp

—Lppppul — 3hu,ul (2.3)
The wave equation (2.3) is a partial differential equation
in both space and time. This equation calls for a finite-
difference algorithm and can be solved with appropriate
boundary conditions. As a special case, we shall assume

traveling-wave solutions of the form

up = up(k - T — wt) = u,(2) (2.4)

and reduce Eq. (2.3) to an ordinary differential equa-
tion. For both numerical convenience and physical in-
sight, three dimensionless variables X, Y, and T are in-
troduced and the dependent and independent variables

are scaled according to
z=71T, uy =pX, uy=vY. (2.5)

This transforms the wave equation (2.3) into two dimen-
sionless component equations of motion on X and Y as

X

7z = KxX - X* + DXY? (2.6)
and

d*y

7z = KvY - Y3+ DY X2, (2.7)

provided the following relations hold:
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The equations of motion (2.6) and (2.7) can be looked
upon as a system of two coupled anharmonic oscillators
vibrating in two orthogonal directions. When the cou-
pling is weak, the two oscillators are essentially indepen-
dent of each other and the system appears integrable. It
is well known that, for an integrable system, there ex-
ists an additional conserved quantity besides the energy
such that the trajectory for a given energy and initial
conditions lies on the surface of an invariant torus so
that the system behaves regularly. However, the inte-
grability of the system and the invariant torus can be
destroyed by increasing the coupling between the oscil-
lators. This leads to the appearance of chaotic motion.
The degree of chaos depends on the amount of perturba-
tion on the integrability of the system. This question will
be investigated in considerable detail in the following sec-
tion. It was first pointed out by Ali and Somorjail® that
a nonlinear Hamiltonian system regains its integrability
at very high energies and this results in the reappearance
of regular motion. Therefore, intuitively, our system is
expected to behave regularly at low and at very high ener-
gies and behave chaotically at intermediate energies. To
illustrate these order-disorder transitions, surfaces of sec-
tion (Poincaré sections) are constructed to examine the
evolution of the system in phase space. However, before
proceeding further, the system’s behavior must be looked
at in greater detail. Since the Hamiltonian contains all
the dynamical information about the system, it seems
logical to obtain an effective Hamiltonian density that
corresponds to the reduced equations of motion, Eq. (2.6)
and Eq. (2.7). The following dimensionless Hamiltonian
density is found:

P P 1 2 2
7{—2 X+2My—§(KXX + KyY?)
1/ ya 4y _ D avo
— (X Y — XY 2.9
+g (XYY -3 : (2.9)

where H is scaled according to #' = eH and the symbols
used have the values
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This Hamiltonian density provides sufficient information
to acquire an intuitive understanding of the behavior of
the system.

A contour plot of the system potential in the Hamil-
tonian density Eq. (2.9) is displayed in Fig. 2, where
Kx = Ky =1 and D = —1/2 have been chosen for sim-
plicity. The potential has a local maximum at the origin
of the coordinate system and four local potential wells,
one in each quadrant, surrounding the central peak. Fur-
thermore, there is a saddle point halfway between any
two neighboring wells. Thus, the system exhibits four-
fold symmetry. An interesting property of the potential
can be exposed by dissecting the potential surface in two
ways. First, the potential surface is dissected with the
vertical plane that contains the saddle point on the ex-
treme right of Fig. 2 and is oriented along the z axis.
Second, the potential surface is dissected diagonally with
the vertical plane that contains the origin and is oriented
in the (1,1) direction. In both cases, the intersection
of the potential surface with the vertical plane exposes
a symmetric double-well shape. These double-well po-
tentials provide an additional explanation for the chaotic
motion of the system.

Our system can be regarded as a phonon quasiparti-
cle with two coupled vibrational modes. If the energy of
the phonon is sufficiently low, with the appropriate initial
conditions, we can place the phonon at the bottom of one
of the potential wells. At these energies, the motion of
the particle is very restrictive; the value of X is approx-
imately the same as that of Y. As a result, the coupling
terms in the equations of motion (2.6) and (2.7) become
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Contour plot of the system potential.

ineffective. The two oscillators are decoupled; the system
exhibits regular motion. But, as soon as we lift the en-
ergy of the phonon, its amplitude of oscillation increases
correspondingly. The coupling terms in the equations of
motion now become highly effective. Chaotic motion ap-
pears if the coupling is sufficiently strong. As the energy
of the phonon rises above the saddle point but remains
below the central peak, the system becomes ever more
chaotic. In this regime, the coupling strength between
the oscillators reaches its highest value. We can inter-
pret the system’s behavior at these energies in a slightly
different way. At these energies, two or more potential
wells are accessible to the particle; it becomes impossible
to predict the particle’s trajectory in phase space. In the
other extreme, when the energy of the phonon is very
high, the particle sees a smooth varying potential and is
insensitive to its minute variation near the origin. Also,
as pointed out by Ali and Somorjai,'® the contribution of
the coupling terms to the total energy of the system de-
creases with increasing energy. Thus, in this high-energy
regime, the oscillators are once again decoupled and the
system regains its regularity. In the next section, we illus-
trate these qualitative statements with a wealth of data
from numerical simulations.

III. OVERVIEW OF NUMERICAL RESULTS

To test our conjectures, we integrated the dimension-
less equations of motion (2.6) and (2.7), for Kx = Ky =
1 and D = —1/2, using the fourth-order Runge-Kutta
method with a step size of 0.0005 to ensure numerical
accuracy. We demonstrated the regular and the chaotic
motion of the system by the Poincaré surfaces of section,
each of which was constructed by plotting the momen-
tum Py against Y every time the particle crossed the

point = = \/g with a positive momentum Px. The in-

vestigated energies were —0.33, —0.31, —0.275, —0.2499,
—0.24, —0.05, 1, 10, and 1000, but only several represen-
tative surfaces of section were reproduced and shown in
the figures. At each energy value, at least six different
orbits were generated. Each regular orbit was allowed to
pierce the surface of section at least 300 times, whereas
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each irregular (chaotic) orbit was allowed to pierce the
surface at least 500 times.

At the energy of —0.33, the particle is lying very close
to the bottom of one of the potential wells. As we have
already mentioned, we expect the two oscillators to be
decoupled at this energy. For all the initial conditions
we put in, the orbits we obtained were all regular. These
orbits are shown in Fig. 3. There is no sign of chaos
anywhere in the figure. It appears that chaos begins to
emerge at the energy of —0.31. As shown in Fig. 4, at
this energy, some of the regular orbits bifurcate into two
closed loops divided by a separatrix denoted by s in the

figure. Although not shown here, chaotic motion can be o8 A " y A
seen to be confined within the separatrix. We can take ' ' Y ' ’

this as an indication of which of the coupling terms in

the dimensionless equations of motion becomes effective.

At the energy of —0.2499, the system’s integrability is FIG. 4. Poincaré section at the energy of —0.31.
seriously diminished. All of the potential wells are now
accessible to the particle; therefore, as depicted in Fig. 5,
the surface of section has expanded to two separate parts.
Furthermore, chaotic motion has dominated the picture;
the regular structure has begun to disappear. Right be-
low the central peak of the potential, at the energy of
—0.05, the regular structure has shrunk to an infinites-
imally small region of the surface if it has not vanished
completely. All orbits we have generated are chaotic.
This surface of section is depicted in Fig. 6. We expect
the system to regain its regularity at very high energies.
We found that this is indeed correct. As demonstrated
in Fig. 7, the regular structure has reappeared and dom-
inated the surface at the energy of 1000.

It is interesting to note that a particular regular orbit
called the separatrix can be seen in Figs. 3, 4, 5, and
7 as delineating the regions of local oscillations around
a single potential well from large scale oscillations in- R o : e "
volving several potential wells. In a paper investigating Y
coupled nonlinear wave equations Hawrylak et al.!” re-
duced their problem to two equations identical in form to
our Egs. (2.6) and (2.7). They found three general types
of solutions corresponding to separatrix motion. Type-1
solutions are a topological soliton coupled to a stationary

FIG. 5. Poincaré section at the energy of —0.2499.

FIG. 3. Poincaré section at the energy of —0.33. FIG. 6. Poincaré section at the energy of —0.05.
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FIG. 7.

Poincaré section at the energy of 1000.

solution. Type-2 solutions represent a pair of topologi-
cal and nontopological solitons (tanh and sech functions
of the independent variable). Finally, type-3 solutions
(which are unstable) could not be expressed in closed
form.

Of particular importance, especially from the point
of view of semiclassical quantization, are periodic or-
bits. They can eventually serve as classical analogs of
anharmonic phonons in a lattice. The next section at-
tempts to investigate their role in the dynamics of the
two-dimensional lattice considered in this paper.

IV. FINDING PERIODIC ORBITS

In this section, methods are presented for the deter-
mination of initial conditions that give rise to periodic
orbits at intermediate energies where the motion is pre-
dominantly chaotic. At these (intermediate) energies in-
variant tori are broken but there still exist an infinite
number of periodic orbits of zero measure. As mentioned
in Sec. III, the Poincaré surface of section provides a sim-
ple method to determine the extent of regular and chaotic
motion. By examining periodic orbits that lie within re-
gions of phase space dominated by chaotic motion, the
finer details (i.e., microscopic details) of the phase space
structure can be investigated. There is also much inter-
est in finding periodic orbits because of their importance
in semiclassical quantization; see, for example, Refs. 18—
22. These periodic orbits are difficult to determine in
general but many can be found numerically for a given
energy E. Three numerical techniques were investigated
in this work to determine the initial conditions that give
rise to a periodic orbit.

We look for periodic orbits belonging to either one of
the two classes: (i) the ones which strike the potential
boundary (Px = Py = 0) at right angle or (ii) the ones
which, at least once, cross at right angle one of the sym-
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metry axes (z = 0 or y = 0) of the constant energy
contour. The most successful method used can be called
the “symmetry-boundary” technique in which a total en-
ergy is fixed first and a sample trajectory is evolved from
the potential boundary (or from the symmetry axis) un-
til it reaches the boundary (or the axis not necessarily
for the first time). Then an angle between the trajec-
tory and the boundary (or the symmetry axis) normal is
calculated and the initial conditions are slightly modified
until this angle is reduced to zero within the prescribed
accuracy. This technique is computationally efficient and
solutions are constrained to an energy manifold implic-
itly by the choice of the initial conditions. This method
was used to obtain the bulk of the periodic orbits for this
study and a sample set of these orbits is shown in Fig.
8. It should be noted that although this method is intu-
itively appealing and simple to implement numerically it
provides only a subset of all the periodic orbits of Egs.
(2.6) and (2.7) for a given energy.

Two other techniques were also investigated for de-
termining periodic orbits. The first of these methods is
really a numerical definition of a periodic orbit. Here, an
initial condition is evolved numerically according to Egs.
(2.6) and (2.7) and at each point in the time evolution
one checks whether the orbit returns to the initial condi-
tions. This method requires a 2/N-dimensional search of
the phase space for which the time variable has no upper
bound. Thus, the method is numerically inefficient. The
second method investigated provides a more general class
of orbits but is much more computationally demanding
than the “symmetry-boundary” technique. This method
is based on a Fourier decomposition technique.?42® Since
we are interested in solutions to Egs. (2.6) and (2.7) that
are periodic in time, we expand X and Y as

N/2

X(t) — Z Alyneinu,.t ,

n=—N/2

N/2

Y(t)= > Agpe™rt,

n=—N/2

(4.2)

where v, is a commensurable frequency given by v, =
muy = nve, with m and n being integers and v; and v,
being frequencies of the orbits in the respective dimen-
sions (i.e., X and Y dimensions). Substituting Egs. (4.1)
and (4.2) into Egs. (2.6) and (2.7) gives 2N + 2 coupled
equations for the 2N + 2 time-independent Fourier coef-
ficients which can be solved numerically using a multi-
dimensional Newton method. If the solution converges,
the construction of the solution guarantees that it is pe-
riodic in time. This method has shown to be success-
ful for third-order potentials such as the Henon-Heiles
potential,2* but for our quartic potential this technique
becomes too computer demanding to be effectively em-
ployed. Periodic orbits were obtained at various energies
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but convergence was slow and heavily dependent upon
the damping factor for Newton’s method.

We note finally that after obtaining many periodic or-
bits of different periods for a given energy E (see Fig. 8),
the classical action and Liapunov exponents were calcu-
lated for each. Further, the periodic orbits were either
classified as adiabatically stable (attractor) or adiabati-
cally unstable (repellors).?3 It has been conjectured—and
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we have reason to believe from our own study that this
is true—that periodic orbits that are adiabatically stable
and have small actions possess particularly interesting
properties from the point of semiclassical quantization
for which they were successfully used.?3:24

In the following section we briefly present a physical ex-
ample with which the model outlined in this paper shows
qualitative similarities.
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A selection of nine periodic orbits determined by the symmetry-boundary method for £ = 0.21.
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V. A PHYSICAL EXAMPLE

The results obtained using the low-energy electron
diffraction (LEED) technique demonstrated the existence
of a second-order structural phase transition on a crys-
tal lattice plane along the (100) direction in the tung-
sten (W) system at a temperature about 300 K.26 At
the same time, a similar behavior was also observed on
the molybdenum (100) surface. These findings lead to
the conclusion that the basic mechanism responsible for
the transition is likely to be the same for both surfaces.
Furthermore, there is clear evidence from LEED that
the transition is confined to the top layer of the lattice
planes.?”28 Since the interlayer couplings do not play a
significant role in the transition, the phase transition is
considered to be two dimensional. Since tungsten has a
bcec lattice structure, its lattice planes in the (100) direc-
tion are simply two-dimensional square lattices. In prin-
ciple, we can construct a two-dimensional lattice model
to describe the structural change observed provided the
model is sufficiently anharmonic, since anharmonicity is
an essential ingredient in the phenomenological descrip-
tion of structural phase transitions.

Early theoretical studies on tungsten surface recon-
struction suggest that its low-temperature phase corre-
sponds to small oscillations with respect to the displaced
potential minima while its high-temperature phase corre-
sponds to large-amplitude oscillations due to the anhar-
monicity of the effective potential.?® Consequently, the
transition seems to be driven by the softening of the
surface-phonon mode. The nature of the transition is
further clarified by a recent investigation of the tung-
sten surface recomstruction by means of Monte Carlo
simulations.3® This latter investigation shows that the
transition is of order-disorder type (continuous) and takes
place at T, = 240 K. At the transition temperature the
pattern of displacements from the equilibrium positions
becomes random as shown in Fig. 9.

We believe that the theoretical model discussed in
this paper can provide an adequate phenomenological
description of the structural phase transition of a tung-
sten (100) surface. In this respect, we can regard the
low-energy regular phase of the lattice (depicted in Fig.
1) as the low-temperature phase of the tungsten sur-
face, whereas the relatively high-energy chaotic phase
of the lattice (shown in Fig. 6) can be taken as the
high-temperature phase of the tungsten surface. This
identification is to be understood in the statistical sense
where the mean energy (E) of the system is a function
of temperature and, in particular, for low temperatures
where the system is only weakly anharmonic (E) = kgT
with kp denoting the Boltzmann constant. Obviously,
at higher temperatures this type of relationship becomes
nonlinear. Temperatures corresponding to the energy
levels close to the separatrix will cause a severe destabi-
lization of the lattice dynamics leading to a disordered
phase. This result agrees qualitatively well with the
Monte Carlo simulations carried out recently by Han
and Ying3? for the tungsten surface. They have shown
that the low-temperature phase of the tungsten surface
corresponds to an orderly oriented displacement phonon
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field while its high-temperature phase corresponds to
a randomly oriented one. In addition, since our solu-
tions to the equations of motion represent the displace-
ment phonon field, our results, consistent with an early
investigation,2® also indicate that the low-temperature
phase corresponds to small-amplitude oscillations about
the potential minima and that the transition is driven by
the softening of the surface-phonon mode. Our model,
however, is somewhat more general since it predicts
the existence of an additional regular phase beyond the
chaotic phase. That this phase does not appear to be
physically realized by the tungsten surface does not nec-
essarily invalidate the model itself. In this connection, it
must be realized that the equations of motion derived for
a perfectly periodic lattice cannot be readily extended be-
yond the energies corresponding to chaotic (separatrix)
motion. At this critical energy level the lattice struc-
ture has been virtually destroyed and the validity of the
continuum approximation used to derive the equations
is no longer present. As a result, a disordered state has
set in with a completely irregular positional structure.
It is perhaps worth noting that surface reconstruction
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FIG. 9. The snapshots of displacement patterns for tung-
sten at (a) T = 110 K and (b) T = 240 K, following Ref.
30.
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has also been found to take place on the Si(111), the
Ge(111), and the Ge-Sn(111) lattice planes which have
a honeycomb structure.3! Although our results are not
directly applicable to these systems, by adopting a tri-
angular underlying lattice and carrying out the similar
steps as outlined in the sections above, we can obtain
an analogous set of nonlinear equations of motion and
provide a qualitative description of the transition.

VI. SUMMARY

We have shown in this paper that anharmonicity in the
two-dimensional lattice leads us to a nonlinear Hamil-
tonian system for displacement fields, which exhibits a
range of interesting dynamical behavior. For low-energy
levels, the dynamics is governed by regular motion about
the local minima of the potential surface. As the energy
increases, irregular motion becomes more and more pro-
nounced covering an ever increasing area of the phase
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space. Eventually, at the level corresponding to the cen-
tral potential maximum the motion is completely chaotic.
What is interesting is that increasing the energy further
restores regular motion whose amplitude is now larger as
it corresponds to oscillations about more than a single
potential well. As a physical example, we have discussed
the case of surface reconstruction for the tungsten lattice.
Although a return to regular motion does not appear to
take place, we believe that the approximate nature of the
equations of motion invalidates their use above criticality.
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