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We review the experimental evidence and qualitative arguments for the existence of small highly
regular rings of bonds in amorphous (a-)Si02 and selected other AX2 tetrahedral glasses. The
structure and vibrations of planar 3-rings and regular puckered 4-rings in a-SiOq are then modeled
using Born central and noncentral forces. The vibrational coupling of these rings to the more
disordered glass network is modeled by attaching a Bethe lattice at each connection. The calculated
vibrational properties of the breathing modes of the rings are found to be quite consistent with
the observed frequencies, linewidths, and isotope shifts of the sharp lines Dz and D2 seen in the
Raman spectra of a-Si02. The results support the previous assignment of Dq (606 cm ) to a
planar 3-ring and Di (495 cm ) to a regular ring. Similar calculations for a-Ge02 are consistent
with the suggestion that this material contains a substantial concentration of nearly planar 3-rings.
Our methods can be generalized to treat similar forms of intermediate range order in glasses having
other network connectivities.

I. INTRODUCTION

Exact determination of the structure of an amor-
phous solid is impossible, owing primarily to the absence
of global translational or rotational symmetries. Since
chemical bonding imposes approximate rotational sym-
metry of nearest neighbors about a given species, it is
best to attempt first to determine the structure on this
shortest length scale, and then endeavor to discern ad-
ditional order on increasingly larger scales of distance.
This plan has led to a fairly precise delineation of four
scales of distance, termed short, intermediate, long, and
global. The present paper presents calculational methods
enabling the use of vibrational spectroscopy as a probe
of glass structure on the intermediate scale of distance.

ations in both angles, although the typical spread in b is
thought to be much larger than in 0. In the "continuous
random network" (CRN) model, b is taken to be random
and uncorrelated with position in the glass structure.

In the present definition of SRO, all neighbors of

A. Ranges of order

Short-range order (SRO) describes the nearest-
neighbor bonding environment of each atomic species.
The elements of SRO in a-SiO~ can be visualized with
the help of Fig. 1 where one can see schematically the
SRO around the Si (or A) atom and that around the 0
(or X) atom. Every atom of type A is surrounded ap-
proximately by a tetrahedron of X atoms and every X
atom bridges between two A atoms. The relative posi-
tion of two neighboring tetrahedra is determined by the
intertetrahedral angle 0 and the dihedral angle b. Disor-
der in real glasses, such as Si02, is associated with vari-

FIG. 1. The local geometry of a 4-2 connected tetrahe-
dral AXq glass, such as a-Si02. The "intertetrahedral" angle
is 0 and the "dihedral" angle is 8. Short-range order (SRO)
involves specification of the tetrahedral arrangement (r, 0)
about X. Specification of b is an element of intermediate-
range order (IRO).
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a species are treated as if they are spherically 8ym-
metric. This allows a logical separation of SRO from
intermediate-range order (which recognizes that the
neighbors and their associated environments are not
spherically symmetric, and have orientations associated
with them). It follows that 0 is an element of SRO, but
b is not.

Intermediate-range order (IRO) involves specification
of relative atomic positions over several nearest-neighbor
distances, given the SRO. Most fundamentally, IRO rec-
ognizes that the nearest neighbors are not spherically
symmetric. IRO may take the form of specification of b,
a distribution of b, distributions of the sizes of completed
rings of bonds ("ring statistics"), properties of network
connectivity, etc.

Long-range order (LRO) allows for the possibility of
translational repetition of an IRO over several repeat
lengths and thus accounts for the possible existence of
microcrystals in the structure of amorphous solids.

Global-range order (GRO) accounts for structural or-
der defined over macroscopic (entire sample) distances,
including specification of network connectivity, chemical
order, isotropy, and the like.

Elsewhere, Galeener has described several models for
a-Si02 in terms of all their elements of SRO, IRO, LRO,
and GRO. In this paper we will make very little further
mention of LRO and GRO. We are in effect providing a
correction to the Zachariasen-Warren CRN model, by
showing that in a-Si02 the dihedral angle b is not ran-
domly distributed, but at various places in the glass is
spatially correlated so as to give small highly regular rings
of Si-0 bonds at those places.

B. Sharp lines D~ and D2 in the Raman spectra
of vitreous SiO~

The Raman spectra for parallel (HH) and perpendic-
ular (HV) polarizations of vitreous (v-)Si02, reduced by
the Bose-Einstein thermal population factor according to
the prescription of Shucker and Gammon and Galeener
and Sen, has been published earlier many times [see for
instance Ref. 11 and Fig. 5(a) in this paper]. The HH
spectrum consists mainly of broad features which peak at
about 450 cm, 800 cm, 1065 cm, and 1200 cm
These have been identified as "network" modes, ac-
counted for by coupled vibrations of a CRN, assuming
random dihedral angles b. Thus, the broad features are
accounted for by SRO only. The CRN model produces
one high frequency mode, which is thought to be split
into a TO-LO pair at 1065 and 1200 cm, respec-
tively. The vibrations of this network and the shape of
the HH Raman spectrum have been modeled quite well
with a Bethe lattice, whose details are reported by Bar-
rio, Galeener, and Martinez.

The two sharp lines Di (495 crn ) and D2
(606 cm i) cannot be explained by the same CRN-
Bethe lattice model. Dq and D2 have full width
at half maximum (FWHM) linewidths of 20 cm
and 30 cm, respectively, and are highly polarized
(HH))HV). Their strength and position in bulk v-
Si02 have been studied variously as a function of neu-

tron bombardment, ' sample fictive temperature,
trace water content, isotopic substitution on Si,
isotopic substitution on 0, tensile stress, 3 and pres-
sure compaction. These observations eliminate virtu-
ally all explanations in terms of wrong bonds or broken
bonds 25 27

As a result, Galeener was forced to consider regions
of increased order, IRO in the form of highly regular
rings of bonds, connected into the otherwise more dis-
ordered network at sites whose possible special nature is
unknown. Because D~ is stronger in porous Vycor glass
and in partially desiccated sol-gel glasses, Galeener
has suggested that the D2 structures are more numer-
ous in the vicinity of the v-Si02 surface. These observa-
tions and suggestions have been expanded extensively by
Brinker and co-workers.

C. Mechanism for small rings to be regular

One of the striking features of Di and D2 is their ex-
treme narrowness, about an order of magnitude smaller
than the 200 cm width of the dominant broad Raman
line (R) which peaks at 450 cm i. The Bethe lattice
fit to the width of the broad features of the Raman spec-
trum is consistent with a distribution of 0 having FWHM
of about 30 .i2

From empirical selection rules supported by a bond
polarizability model Galeener has argued that highly
polarized Raman lines in glasses must correspond to sym-
metric stretch (SS) motions of the kinds shown in Ref. 35.
Since R, Di, and D2 are highly polarized and occur at
similar frequencies, it is likely their motions are similar,
namely, SS motions of the bridging oxygen atom along
the bisector of 0. This means that the 0 for Di and D2
must be much more tightly controlled than that for R.
This necessary control is supplied by the regularity of the
proposed rings, and regularity can be expected according
to the following argument, given in more detail Ref. 28.

Figure 2 is an estimate of the energy of a Si-0-Si bridge
as a function of the angle 0, based on theoretical calcula-
tions of Newton and Gibbs (NG). ss The minimum angle
(0) is 150, and this is close to the most probable value
of 0 in the glass, as revealed by x-ray diffraction.

For a regular planar 3-ring, 0 has the value 03 —130~ 5
on the reasonable assumption that the O-Si-O angle is
always closely tetrahedral (109.5'). If this ring is "puck-
ered" or made nonplanar, each of its three Si-0-Si angles
will be less than or equal to 130.5 . According to Fig.
2(a) puckered 3-ring will therefore have a higher total
bridge energy than a planar one. Thus, when a 3-ring
is formed in a glass melt, it will relax its three 0 values
towards minimum energy at 0 = 03 for all three bridges.
It will "unpucker" because there is a strong driving force
for a 3-ring, once formed, to lose energy by becoming
planar, and hence regular.

When the 3-ring has become planar, it can further re-
duce its energy only by breaking a bond and becoming
part of a different ring with n ) 3. This necessity for
bond breaking provides a kinetic "bottleneck" at es (less
than (9)) and provides a rationale for the existence of
significant concentration of highly regular planar 3-rings
in e-Si02.
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FIG. 2. Dependence of the energy of a =Si-0-Si= bridge
on the -0- bridge angle 0, estimated using theoretical results
of Ref. 36. This enables estimation of the energy of formation
of various planar rings having the angles 0 marked in the fig-
ure. The heavy arrows show the tendencies for minimization
of energy by "puckering" and "unpuckering" of rings. It fol-
lows for minimum energy that 3-rings are planar and 4-rings
are puckered with all 0 = (0).

with energy 0.17 eV, so that E3 0.51 eV. Similarly, the
regular 4-ring requires 4 bridges, each with energy 0.04
eV, so that E4 0.16 eV. Subsequently, O'KeefFe and
Gibbs used first principles calculations to estimate E3
and E4, producing values close to experiment on D~ and
D2.

The energies of formation of Dq and D2 have been mea-
sured by one of the authors and his co-workers, ' as
follows. A sample of v-Si02 was annealed at a high tem-
perature T~ until a steady state structure was achieved.
The sample was then quenched rapidly to room tempera-
ture and the areas under D~ and D2 were carefully mea-
sured. Those areas exhibit Arrhenius behavior versus
inverse T~ as depicted in Fig. 3. The area under Dq
shows an energy of formation of 0.14 eV while D2 shows
0.40 eV.

Comparison of these experimental energies of forma-
tion with the theoretical estimates of E3 and E4 gives
strong reason to identify D~ with the regular 4-ring and
D2 with the planar 3-ring. Assignment on this basis is
especially important because it is independent of the un-
certainties to be associated with the calculation of vibra-
tional frequencies.

On the other hand, Fig. 2 shows that 04 for a regu-
lar planar 4-ring is 160.5, and is larger than (0). Thus
a planar 4-ring, once formed, can reduce its energy by
puckering so that some or all of its 0 values are less than
04 and closer to (0). Since 04 is not far above (0), we
assume that a significant number of 4-rings will relax
to the lowest value (0). Those relaxed 4-rings which are
(nearly) regular will exist in otherwise unexpectedly high
concentration because they are at an energetic "bottle-
neck" of lowest possible energy. This provides a rationale
for the existence of a significant concentration of regular
puckered 4-rings in v-SiO~.

Steric requirements of the network will not allow all
rings with n & 3 to fall to lowest energy, and it therefore
seems likely that the number of regular rings with n = 5,
n = 6, etc. , will be much less than those with n = 4.
Thus we argue that the only significant concentrations
of regular rings in v-Si02 have n = 3 (planar) or n = 4
(puckered). Moreover, these small-n regular rings are to
be expected on grounds of energy minimization.

This method of predicting whether or not significant
numbers of regular small-n rings are to be expected has
been applied to eight rather difFerent AX2 tetrahedral
glasses in Ref. 38. The number of anomalously sharp
Raman lines (such as Dq and D2) thus predicted agrees
with observation for all eight glasses.

E. Vibrational decoupling of regular rings in an
otherwise disordered network
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Raman spectra of v-SiO2 after isotopic substitution
on the silicon atoms and on the oxygen atoms show
definitively that the atomic motions for R, Dq, and D2
[Fig. 5(a)j are essentially all oxygen motion, with no sil-
icon motion involved.

Since Dz and D2 lie in the same kequency range as A,
and all these lines are highly polarized (hence represent
symmetric stretch of oxygen atoms), one could normally
expect the motions of Di and D2 to couple strongly with
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D. Energetics of D& and Dz in vitreous SiOz

The previous discussion allows a crude estimate of the
energy of formation of planar 3-rings (Es) and regular
puckered 4-rings (E4). Galeener assumed that these
rings are formed on the average by taking the necessary
n bridges &om a "sea" of average bridges with 0 = (0).
Using Fig. 2, the planar 3-ring requires 3 bridges, each
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FIG. 3. Concentrations of the Raman active "defects" Di
and D2 versus the inverse fictive temperature T~, showing
Arrhenius behavior exp ( AE/kT~) with energ—ies of for-
mation AE shown.
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those of B. This poses a serious technical problem. If Dq
and D2 are to be narrow band vibrational units, coupled
into the more disordered network, then their &equencies
will be broadened, and shifted, so as to give much broader
features for Dq and D2 than are observed.

The quantitative resolution of this problem is a central
theme of the present paper, aspects of which were pre-
viously reported by the present authors (GBME). We
argue here that the sharp lines are particular symmetric
stretch motions of regular rings that are fully connected
into the host network; these motions give sharp lines be-
cause the rings are regular structures, and because the
particular motions are localized to the rings, hence do
not couple to the similar motions of the host network.
As we shall see, this occurs in a way that automatically
also satisfies the isotopic substitution data. We shall re-
peat the argument of GBME for vibrational decoupling
of the breathing mode of the planar 3-rings, as well as
appropriate regular but nonplanar n-rings.

Consider first the planar 3-ring in Fig. 4. It is con-
nected to the rest of the network by six Si-0 bonds (four
of them shown and labeled BL in Fig. 4). In general
these oxygen atom (o) displacements will exert a force
on the Si atoms, which will communicate their motion
to the rest of the network by distorting the BL bonds:
This will broaden the breathing-mode &equency by an
amount that we shall calculate later, in Secs. IIB3 and
II C 4. On the other hand, if there happens to be zero net
force on the Si atoms, they will remain stationary, and
the breathing 0 motion in the ring will not be coupled

to the network. In the rest of this paper we demonstrate
that Dq and D2 are consistent with the breathing modes
of regular 4-rings and planar 3-rings, respectively, and
that these modes are approximately decoupled Rom the
rest of the network, in the manner just described.

It is easy to derive a mathematical condition for such
decoupling in terms of the Born force constants o. and
P, where n measures the "central" (or length restoring)
force and P the "noncentral" (or bond orientation restor-
ing) force. Other more complicated force constant mod-
els can be used, but the Born forces are the simplest
and most convenient and are known to be successful in
modern work on the "optical" vibrations of networks rep-
resenting disordered solids. (Even so, it should be noted
that the Born noncentral forces cannot correctly model
all of the acoustic modes of a solid. 42)

The individual central (f) and noncentral (g) forces
acting on a Si atom are shown in the lower right of
Fig. 4. In the absence of Si motion, the magnitudes
of these forces are given by f = n'u~~ = n'u cos (0/2)
and g = P'u sin (0/2), where the u are defined in Fig.
4 and the prime denotes the force constant for a bond
within the ring. The magnitudes of the oppositely di-
rected total central (E) and noncentral (G) forces act-
ing on the Si atom are then given by I" = 2f cos (P/2)
and G = 2g sin (P/2). The absence of Si motion requires
I" = G, so that perfect decoupling occurs when n'/P' has
the value

(n'/P')g = tan(0/2) tan(P/2).

{BL) {BL)

The frequency up of the breathing mode at perfect de-
coupling follows simply from the fact that the Si atoms
are at rest, so that only the oxygen atoms in this ring are
in motion. Consider the oxygen atom executing breath-
ing motion at the upper right in Fig. 4. The net force
inward is 2f cos (0/2) + 2g sin (0/2). Application of New-
ton', s second law to the oxygen mass m yields

20.'
cos (0/2) + sin (0/2)

2P'

{BL) or

(1+cos0) + i
—,

i (1 —cos 0), (2)
(~'& fP'l
(m)

{BL)

FIG. 4. The breathing mode of the planar 3-ring assigned
to the sharp line D2 in Fig. 1. When the net "central" force
F on each Si atom (~ ) is canceled by the net "noncentral"
force G, the Si atoms are motionless, the mode is vibrationally
decoupled from the rest of the network, and there is no isotope
shift (for this mode). Approximate decoupling of this mode
enables the 3-ring to explain all known properties of the D2
line. In the calculations the atoms are numbered as shown

and are all in the y-z plane. There are bonds labeled (BL)
which are at angles PT /2 with the plane and are connected
to appropriately oriented Bethe lattices to represent the glass
network in which the ring is embedded.

where m is the mass of the 0 atom. In the case of the
planar 3-ring, where 0 = 0s ——130.5', and using P =
PT = cos (—1/3) 109.5', one has

u)d ——0.888 (o.'/m) . (4)

Note that Eqs. (1)—(4) involve ring parameters only:
Perfect decoupling of the breathing mode is a property of
the regular ring, not of the vibrational systems to tvhich
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it is attached. Note also that the perfect decoupling con-
dition [Eq. (1)] is independent of the masses: It is a re-
lationship between force constants and. geometry alone.

Perfect decoupling by this mechanism requires that i
and G be antiparallel at all Si atoms in the ring. This
is possible for a regular 3-ring (where all 0 are equal)
only when the ring is planar. It may be verified that
there are only three conformations of the 3-ring that can
be regular (always assuming that P = 109.5 ): the pla-
nar, the "crown, " and the "oxygen chair" conformations.
The crown can be obtained by puckering the planar ring
so that the three 0 atoms are left in the basal plane
while the three Si atoms are tilted. upward by a common
amount forming a new plane parallel to and above the
basal plane. The oxygen chair has three Si atoms in the
basal plane, two 0 atoms tilted up, and one 0 atom tilted
down as if the Si atoms formed the "seat" of a (shallow)
chair, the 0 atoms its "back" and "legs." Similar con-
formations will be depicted explicitly for a 4-ring in Sec.
II. It can also be readily verified that in the present two
nonplanar cases, breathing motion along the bisector of
0 produces I" and G which cannot be antiparallel.

Equations (1) and (2) are also correct for perfect de-
coupling of oxygen breathing modes of any regular pla-
nar ring of order n; in those cases one evaluates the
equations for P = PT = cos (—1/3) = 109.5' and
0 = 0„= 360(l —n i) —P in degrees. The force res-
olutions at the Si atom are precisely as in Fig. 4 for
the planar 3-ring, and so Eq. (1) follows exactly as be-
fore. At perfect decoupling, the force resolutions at the
0 atoms are also as before, and so Eq. (2) is verified for
a planar n-ring.

Equations (1) and (2) are also correct for certain reg-
ular nonplanar conformations of some n-rings. These re-
quire that for oxygen breathing along the bisector of 0 the
E and G forces induced at the Si atom are antiparallel.
In Sec. IIC 1 we note that of the seven regular nonpla-
nar conformations of a 4-ring, this antiparallel condition
is satisfied only for the "oxygen boat. " The oxygen boat
4-ring is therefore the only regular puckered 4-ring that
is capable of perfect decoupling of its oxygen breathing
mode, and obeys Eqs. (1) and (2) when decoupled.

It is this vibrational decoupling of the breathing mode
of a regular n-ring that allows both for sharp Raman
lines and for the absence of Si motion in the lines. We
will illustrate the sharpness with detailed calculations in
later sections.

For practical applications, one often desires u in units
of wave numbers, W(cm i). Expressions of the form

= k/M are then evaluated according to

II. CALCULATIONS BASED ON THE
CLU STEM—BETHE-LATTICE

AP PR.OXIMATION

A. Dynamics of the continuous ranciom network

In order to study the complete dynamics of a regu-
lar ring embedded in an amorphous network, one must
model the elastic properties of both the ring and the
amorphous network that is attached to the ring. In
the cluster —Bethe-lattice approximation, the geometry
and force constants of the external network at each con-
nection is modeled by identical Bethe lattices. ' The
Bethe lattice is mathematically convenient because it has
no rings of bonds and its vibrational properties are es-
pecially tractable using a Born model Hamiltonian with
both central and noncentral forces between nearest neigh-
bors.

In an earlier paper Barrio, Galeener, and Martinez
(BGM) solved the Bethe lattice for an A%2 tetrahedral
glass on the assumption of Born force constants o. and
P, a single intertetrahedral angle 0 everywhere, and a
random distribution of the dihedral angle b, in Fig. 1.
Their results for the vibrational density of states and the
Raman and in&ared spectra of v-Si02 provided a best fit
to the broad features of the experimental spectra when
they used 0 = 154', n = 507 N/m, and P = 78 N/m. We
shall use these parameters and their formalism to model
the amorphous network at each place where it attaches
to the regular ring of interest.

BGM used a Green's function formulation to study
the vibrational density of states (VDOS) and the normal
modes of the Bethe lattice for the CRN model of v-Si02.
The derivation of the displacement-displacement Green's
function was reported in detail, and so we shall merely
restate essential results in order to apply their theory to
the present problem.

In the Born Hamiltonian the potential between two
nearest neighbor (A —A) atoms is

+12 — ((ill ii2) ' el2) + (+1 ii2) 5 (6)
n —/3 2 P

2 2

where eq2 is a unit vector along the line joining atom 1
and atom 2, and n and P are the central and noncentral
force constants, respectively. The interaction between
a Si atom at the origin of coordinates and a nearest-
neighbor oxygen along the z axis is then represented by

0 —P 0
0 0 —n

W (cm ) = 1.698 x 10
M(amu) ' (5)

where o. is expressed in newtons per meter and M in
atomic mass units.

We reemphasize that, the motional decoupling here is
only for the breathing mode und. er the condition of Eq.
(1). In general when Eq. (1) is satisfied other modes of
the ring will be strongly coupled to the external systems
represented by BL in Fig. 4.

(—I~ 0 0
(Ki) = 0 —K~ 0

0 0 —Kii)
(8)

This is diagonal as a result of taking a single 0 everywhere
and averaging over all (totally random) dihedral angles.

If, instead of a single oxygen atom, one attaches a
whole Si02 Bethe lattice, one obtains a frequency de-
pendent effective interaction
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There is an exact solution for (K,) in BGM, showing
that the Green's function at the tetrahedral Si site can
be written as

M~ I —) (K;)
i=1

4M~ ——(Ki + 2K~)3 (9)

where I is the 3 x 3 identity matrix and M is the Si (A)
mass. The last step in (9) follows from the tetrahedral
symmetry of bonds i.

The Green's function at the oxygen site (g) is easily
obtained in terms of the calculated quantities [see Eqs.
(18)—(23) in BGMj and the VDOS p(w) of the glass per
S102 unit Is

(l.O)

B. Planar 3-ring dynamics

Eormulation in the clu8ter —Bethe-lattice
approzi mati on

The results for (Kz) can be used to formulate the dy-
namics of a planar 3-ring in the cluster —Bethe-lattice ap-
proximation. The geometry is depicted in Fig. 4. We
take P to be tetrahedral (P = PT = 109.5 ) in the ring

p((u) = Im(M TrC + 2m Trg),
37r

where m is the oxygen mass.
The Raman response of the glass is calculated as in

BGM using a bond polarizability model, in which the
polarized part of the spectrum is shown to be propor-
tional to the symmetric stretching of the bonds at the
nontetrahedral (oxygen) sites.

This Bethe lattice model represents the Raman re-
sponse of the host network quite satisfactorily, as shown
in Fig. 5. The experimentally measured reduced Raman
spectra of v-Si02 are shown in Fig. 5(a), and the derived
polarized portion IR,&

= (HH-sHV) in Fig. 5(b). Ig, &

shows that the dominant Rarnan line (R) at about 450
cm, as well as Dq and D2, are highly polarized lines
which must be due to symmetric stretching of Si-0 bonds
along the bisectors of the Si-0-Si (0) angles in the glass.

The polarized portion of the Raman response calcu-
lated with the theory just described is shown in Fig. 5(c),
using the best fit parameters of BGM, given in the fig-
ure. Comparison with Fig. 5(b) is quite satisfactory.
The theory produces a strong broad peak at about 450
cm and a weaker less broad peak at about 800 cm
in accordance with experiment. The CRN —Bethe-lattice
theory does not yet contain regular rings.

The best Bt force constants are in reasonable agree-
ment with other calculations, but the angle 0 = 154 is
somewhat larger than the most probable value 0 = 144,
deduced &om x-ray difFraction experiments. This dis-
crepancy is not important since as was shown in BGM,
variation of 0 most strongly afFects the position of the
band near 800 cm, far &om the bands of our greatest
interest (R, Dq, D2). In fact, 0 was chosen to best fit the
position of this 800 cm band.

as it was in the CRN Bethe lattice. Following the energy
minimization arguments in Sec. I C, we take the ring to
be planar and hence 0 = 03 ——130.5 . All six atoms are
in the y-z plane of the paper, and each pair of bonds from
a Si atom to the network is in a plane perpendicular to
the paper, one bond up and one down. All angles at the
Si atoms are tetrahedral. (We sometimes refer to these
outgoing bonds as "ears" of the ring. )

Because there are six atoms in the ring, the symmetri-
cal dynamical matrix is 18 x 18 and the Green's function
for the ring can be written as

where A is a symmetric matrix, with

A~~ ——M~'I —Z,
A22 ——M~'I —RTZR,
A33 ——M~ I —RZR
A44 ——M~ I+ D4+ R D6R,

10

8

6

10 —I
d (W)

8

6

M 4

0RTION
CED
CTRUM

SiO2
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8

6

4

500

(c)
HEORETICAL

AN RESPONSE
FOR

ANGLE-AVERAGED
THE LA ITICE

B= 154

o, =507 N/m

P =78 N/m

q =5 cm-'

1000 1500

WAVENUMBER, W(cm ' )

FIG. 5. A comparison of the experimentally measured re-
duced Raman spectra (a) of v-SiOs and the derived polarized
portion [PPI (b) with the theoretical PP response (c) calcu-
lated for a Bethe lattice model with the parameters given.
The Bethe lattice does not account for the sharp Raman lines
Dq and D2 seen in experiment.
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A55 ——M(u I+ R D4R+ RD6R
A66 ——M(u I+ RD4R + D6,
A14 ———D4,
A16 — D6

A24 ———R D6R,
A25 ———RTD48. ,

A35 ———RD6R
A36 ———RD4R+,

and all unspecified A,~ are 0. Each A,~ is a symmetric 3x
3 matrix, and the rows and columns in A correspond to
atoms numbered as in Fig. 4. The interactions between
atom 1 and atoms 4 and 6 are given by

0 —
s (2n' + P') —~2 (n' —P')

k o ——.'(-' - ~') ,'(-'+-2-/l') )

v2( I pI)
—

—,'(n'+ 2P'))

where the primes (') indicate force constants in the ring,
generally assumed to be different than those in the CRN
Bethe lattice (because angles 0 are different). The matrix
R in Eq. (11) is a rotation around the x axis by 2rr/3; it
is clear that all interactions in the ring can be written in
terms of D4 and D6 by using this rotation.

The quantity Z represents the connection of the Si
atom at 1 to the rest of the network through the two
bonds in the x-z plane. Assuming that both bonds are
satisfied by the CRN Bethe lattice, one has

(—
s (2K~~ + K~) —2P'

0
0

0 0
—2' ——(2n' + P') 0

0 —
s (K~~ + 2K~) —

s (n' + P') )

2. Perfect decoupling responses of the 8 ring-
The matrix in Eq. (11) is readily inverted to give G

and then the Raman response of the whole system is
calculated. Some results are shown in Fig. 6.

Figure 6(a) shows the polarized portion of the Raman
response of the ring when one uses the force constants of
the Bethe lattice for those in the ring, i.e., for o.' = o,
and P' = P. The Raman response of the ring is seen to
be very similar to that of the CRN Bethe lattice [com-
pare with Fig. 5(c)]. According to this result, the ring
breathing mode had a FWHM 100 cm, far wider
than the experimental value of 30 cm for D2 [see
Fig. 5(a)]. The ring mode is broadened by the coupling
of its motions to those of the CRN Bethe lattices.

According to the discussion in Sec. IE, perfect decou-
pling of the ring breathing mode occurs when Eq. (1)
is satisfied, at a frequency given by Eq. (2). When we
require that Wp ——606 cm, the ring force constants are
as given in Fig. 6(b). The Raman response of the ring
is now a b function at the frequency (606 cm ~) of the
decoupled breathing mode. The 10 cm width shown in
Fig. 6(b) is artificially produced by adding a small irnag-
inary part (rl 5 cm ) to the frequency W. This avoids
computational problems associated with peaks which are
infinitely high and narrow. The ring force constants are
now digj'event than those used for the CRN Bethe lattice;
however, in GBME it is pointed out that they vary in
the expected directions with respect to the reduction of
0 &om 154 in the Bethe lattice to 130.5 in the ring.

The infrared (IR) activity of the ring in the Bethe lat-
tice was estimated using the model developed by BGM
for the CRN Bethe lattice. The result is shown in Fig.
6(c). There are weak broad responses from about 100
cm to 1300 cm, and two sharp responses at about

RA
RES

Si-O PLANAR 3-RING ( 8= 130.5 )

BEHiE LA'ITICE
ORCE CONSTANTS

a' =507 N/m

P' = 78 N/m

q =5cm

(b)
RAMAN

RESPONSE

10cm '

PERFECT DECOUPLING
FORCE CONSTANTS

a' = 390 N/m
P' = 127 N/m
a'/P ' = 0.326

0

sQ 10 (c)
INFRARED
RESPONSE

5 Wc2(W)

p

(d)
VIBRATIONAL

0.1

500 1000

WAVE NUMBER, W (cm l)

1500

FIG. 6. Calculated vibrational responses of the planar 3-
ring depicted in Fig. 4 with parameters appropriate for v-
Si02. The PP Raman response in (a) is for ring force con-
stants the same as those for the Bethe lattices representing
the attached network. The oxygen breathing mode shown in
(b) at 606 cm is obtained for force constants in the ring as
shown, satisfying the perfect decoupling condition, Eq. (1),
and for Bethe lattice force constants as in (a). The infrared
response (c) and the VDOS (d) of the ring are calculated for
the same parameters as in (b).
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800 cm and 1000 cm . No one has looked explicitly
for these sharp lines in the in&ared spectra of v-Si02,
but the careful experiments of Gaskell et al. do not re-
veal their presence, nor does the in&ared dielectric func-
tion ~2 reported by Galeener and Luckovsky. This is
most likely due to several factors: (1) In normal u-Si02
Galeener2s has estimated that at most 1% of the oxygen
atoms are in planar 3-rings, and so the IR lines would
be weak; (2) in reality the lines would be broader than
shown in Fig. 6(c), because their motions are not decou-
pled from the rest of the lattice; and (3) both lines would
tend to be lost in the strong network response occurring
at the same frequency. Figure 6(c) shows ring responses
only, to which a much larger network response must be
added.

Nevertheless, it would be interesting to measure high
signal-to-noise IR spectra in special a-Si02 samples
where the strength of D2 has been greatly increased, as
in porous Vycor or partially desiccated sol-gel Si02.3
One might then see some ER lines associated with the
structure giving rise to D2. Their positions should be
predicted approximately as in Fig. 6(c).

The local vibrational density of states for the 3-ring
is computed as the imaginary part of the trace of G,
determined by Eq. (11). This is plotted in Fig. 6(d)
for the perfect decoupling constant listed in Fig. 6(b).
The ring shows modes over the full range of frequencies
permitted to the Bethe lattice, although three of them
are rather sharp because of the highly regular geometry
of the ring. These three show up as the dominant Raman
response of the ring (606 cm ) and the dominant IR
responses ( 800 cm and 1000 cm i).

Because some modes are narrow and therefore fairly
well decoupled &om the network, one could gain some
insight into those modes by considering the vibrations of
a 6-atom Si303 "molecule. " The normal modes of this
molecule transform as the irreducible representations of
the point group D3h. They are 2A& + A2 + A2 + 3E' +E" (a total of 12, because A modes are not degenerate
while E modes have double degeneracy). The perfectly
decoupled breathing mode has A~ symmetry and the two
sharp in&ared modes are E'.

8. Imperfect decoupling of 8 rings-
The perfect decoupling condition in Eq. (1) requires a

precise relationship between forces constants (o.', P') and
ring angles (0, P). While the 3-ring angles are unchanged
in various AL2 tetrahedral glasses, the force constants
will vary greatly. There is therefore no reason for Eq.
(1) to be satisfied exactly in any glass, and we must test
the assumption that approximate decoupling is adequate
to explain the data.

We utilize the full cluster —Bethe-lattice model with
"best fit" o. and P for the Bethe lattice. The Raman
response of the ring is calculated for various P'/o. ', with
o.' adjusted to keep the peak at 606 cm

Figure 7(a) shows the 3-ring linewidth versus P'/n',
and Fig. 7(b) shows the corresponding values of n' and
P'. We conclude that P'/o, " can vary between 0.20 and
0.56 and still predict a D2 linewidth below the observed

value (40 —10 = 30 cm i). Since acceptable P'/n' vary
by nearly a factor of 3, the decoupling condition is not
very stringent, and it is reasonable to believe that chem-
ical bonding provided a ratio of central and noncentral
forces that allow for adequate decoupling of the 3-ring
breathing mode in v-Si02.

C. H.egular 4-ring dynamics

As described in Sec. I, the Raman line D~ at 495
cm has been assigned to the breathing motion of a
regular but puckered 4-ring. This is based on the ap-
propriateness of the observed energy of formation, the
reported vibrational frequencies of the ring molecules
such as octamethyltetracyclosiloxane and by substan-
tial elimination of other possibilities. The assignment
assumes decoupling of the mode from the network. To
further test this hypothesis we must model the dynamics
of a regular 4-ring and determine if the observed nar-
row linewidth (FWHM= 20 cm i) is consistent with the
expected dynamics.

E

40

20

600
(b)

6
z

400

z0

200

&x
' (CEN

PERFECT DECOUPLING

P
' (NON-CE

O. l 0.2 0.4 0.5 0.6

FIG. 7. The calculated full width at half maximum
(FWHM) Raman linewidth (a) for the Bethe-lattice-
terminated planar 3-ring in v-Si02, showing that the decou-
pling condition need not be perfect. That is, AW is less than
or equal to observation (40 —10 = 30 cm ) over a large range
of ring force constant ratios (0.2 & P'/n' & 0.56). The corre-
sponding force constants (b) are within a reasonable range of
those for the Bethe lattice, given in Fig. 6(a).
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Regular conformations of a 4 sin-g

In order for the ring to have a single breathing-mode
frequency we will assume that all Si-0-Si angles 0 are the
same in the ring, and of course that all 0-Si-0 angles P
are tetrahedral.

At the top of Fig. 8 are shown the eight atoms in a
4-ring, labeled as Si and 0. Figure 8(a) shows all eight
atoms in a single plane. Figure 8(b) shows a regular
conformation in which the four Si atoms remain in the
plane (o) while the two opposite 0 atoms are raised above
the plane (+) and two others are lowered below the plane

(—). With the help of the diagrams or a ball and stick
model, the reader can verify that all eight conformations
(a)—(h) in Fig. 8 are regular, in the sense defined above.

Of these eight configurations only two are capable of
perfect decoupling of the breathing mode. If the Si atoms
are to sit still (perfect decoupling) and the 0 atoms are to
move along the bisector of 0, then only the planar ring (a)
and the oxygen boat (b) can have central (F) and non-

central (G) forces antiparallel, in the manner illustrated
in Fig. 4. Since perfect decoupling may not be required,
as it was not required for the 3-ring, it is possible that
some other conformations should be considered as can-

REGULAR CONFORMATIONS OF A 4-RING

didates for Dq, however, we will first limit ourselves to
those rings clearly capable of perfect decoupling.

As discussed in Sec. I C, energy minimization suggests
that the lowest energy 4-rings in a glass will be puckered,
not planar. Also, mol'ecules containing Si-0 4-rings tend
to be puckered. We thus eliminate the planar 4-ring
from further discussion, and concentrate on the dynamics
of the oxygen boat 4-ring.

g. Formulation of oxygen boat 4 ring-dynamics

Figure 9 depicts an oxygen boat 4-ring. The oxygen
bridges are tilted respect to the plane of the paper by a
rotation about the dashed line joining two neighboring Si
atoms, shown in the plan view of Fig. 9. This puckering
of the ring is accomplished while keeping all angles P
tetrahedral and all angles 0 the same. It is clear that 0
for the puckered ring is less than 0 for the planar ring.
The angle of rotation p about the line joining two Si
atoms is related to 0 and P according to

sin (0/2) —~2 cos (P/2)
cos (0/2)

and using P = Pz this becomes

cos p = sin (0/2) —g2/3 / cos (0/2).

0 0
0 0
0 0

(a) PLANAR RING

0 0

+ +
(e) CROWN

0 0

The angle p is useful for visualizing the geometry of
the puckered ring; however, for the purpose of our cal-
culations, it is more convenient to produce the puckered
ring by a set of rotations of the four Si04 tetrahedra
comprising the ring. Consider a tetrahedron in the lower
corner of the plan view in Fig. 9, and imagine two of the
oxygen atoms to be in the plane of the figure, arranged
symmetrically about the axis &om that Si atom to the

PUCKFMED 4-RING
(OXYGEN BOAT CONFORMATION)

0 0
(b) OXYGEN BOAT

0
0

+ 0
(c) SILICON BOAT

+0 +

+ 0
(d) SILICON-OXYGEN BOAT

0 0
(f) OXYGEN CHAIR

0 +
0 0

00
(g) SILICON CHAIR

0 +
0 0

0
(h) SILICON-OXYGEN CHAIR

(BL)

(BL) ~
~r

2
I
I

(-)
I
I Z

6
I
I

I
ea% I

I

FIG. 8. A schematic representation of the eight regular
conformations (a)—(h) of a 4-ring in a A%2 tetrahedral glass
such as v-Si02. The relative position of Si and 0 atoms
around the ring is a common "median" plane, and so their
height relative to the plane is denoted zero (o) in panel (a).
In other panels, plus (+) denotes a position above the plane
and minus (—) a position below the plane. Thus in the crown
configuration (e) all four Si atoms are an equal distance above
the median plane and all four 0 atoms are below by the same
amount. In each of these conformations, all angles 0 have a
common value, and all P = $7.

(a) PLAN VIEW (b) SIDE VIEW

FIG. 9. The geometry of a regular puckered 4-ring in the
oxygen boat configuration of Fig. 8(b). The atoms are num-
bered 1—8 as shown in (a). All Si atoms (solid) are in the y-z
plane, while alternating oxygen atoms (open) are above (+)
and below (—) the plane, by equal distances. For equal bond
lengths and for all P = &PT it is clear that all four angles 8
have the same value; hence the ring is regular. The extent of
nonplanarity (or "puckering") is readily perceived from the
value of the angle p depicted in (b).
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opposing Si atom in the upper right corner. De6ne a ro-
tation S(@)about the latter axis, where @ is the angle of
rotation which just brings the two oxygen atoms to their
positions in the puckered ring actually shown in the plan
view. A similar rotation S(g) of the tetrahedron at the
opposite corner will completely reproduce the puckered
ring. The necessary rotation g is related to 8 by

8 1
cosa) = i/3sin ——

2 2'
The advantage of this construction is that it can be

expressed as a rotation matrix and it clearly preserves P
at the tetrahedral value.

The formulation of 4-ring dynamics proceeds as in the
1

G =B, (17)

where B is a symmetric matrix, and

3-ring case, except that the eight atoms in the ring pro-
duce a 24 x 24 matrix equivalent to Eq. (11) with 3 x 3
blocks corresponding to each pair of interacting sites.
Two rotation matrices are now required: S(g), just de-
fined, and R, which is a rotation of vr/4 about an axis
perpendicular to the plane and passing through the cen-
ter of the ring. Note that all the Si atoms are in a plane
and that the positions of 0 atoms are reproduced by ro-
tations of S(+g) in alternate tetrahedral units.

The Green's function of the oxygen boat 4-ring be-
comes

Bgg ——M(u2I —STRZRT S,
B2g ——M~ I —SR ZR S
B = M(u I —S R+ ZR2S
B44 ——Mcu I —SR+ZRS

Bgg ———STRD4R+S,
B = —SRD R+ST
B36 ———S RT D6R2S,
B47 ———SR D6RS

Bg8 ———S RD6R S,
26

——SH, D4R
837 ———S R D4R S
B48 = —SR D4RS

B~q ——mu I+ S RD4R S+ SR D6R S B = m~ I+ SR D4R S + S R D6RS,
B77 —mu2I + S R D4R2S + SR D6RS 888 ——mw I + SR D4RS + S RD6R S

The 20 unspecified elements (Bi2, Bis, etc.) are 0.
Each B;~ is a symmetric 3 x 3 matrix and i and j refer
to atoms labeled in Fig. 9.

8. Pet feet decoupling t esponse
of the oxygen boat g ring-

f p'l cos p1+
(o"j ~ icos (8/2) cos (P/2)

(19)

For P = Pz and eliminating the rotation angles using
Eqs. (15) and (16),

f'P' 5 cos (8/2)
&o"j g +3/2 —sin (8/2)

(20)

Evaluating Eq. (20) for 8 = 154 (the value used in
the Bethe lattice) yields (P'/n')g = 0.207. When this is
used in Eq. (2), and the frequency is set to 495 cm
(for Di) one obtains the ring force constants and the de-

Inversion of B gives G and enables calculation of the
Raman response. When the force constants in the ring
are assumed identical to those in the Bethe lattice, one
finds the response shown in Fig. 10(a), a fairly narrow
peak at 460 cm, whereas Dq occurs at 495 cm

As before, we will assume that force constants in the
ring can difFer from those in the Bethe lattice, and we will
invoke perfect decoupling. Following the procedure used
for the planar rings, the perfect decoupling condition is
found to be

(P' ) cos (P/2) (1 + cos 8)

(o, ' j & sin (P/2) cos vP + cos (P/2) cos 8

or, in terms of p,

coupled Raman response shown in Fig. 10(b). As before,
the expected b function is broadened to 10 cm by the
addition of a fictitious imaginary part (q = 5 cm ) to
all &equencies.

The infrared response for perfect decoupling of the Ra-
man mode is shown in Fig. 10(c). The sharp line at about
820 cm appears to be almost decoupled also. In fact
this mode has an unrealistically high frequency because
of a shortcoming of our Born force model. The mode
largely consists of out-of-plane motions of the Si and 0
atoms in the ring, and it is clear that such motions should
involve a difFerent and smaller noncentral force constant
than appropriate for in-plane motions. The difhculty is
almost entirely for this special out-of-plane mode and it
is discussed in detail elsewhere.

The infrared mode at 1250 cm is also rather nar-
row, with a FWHM 30 cm . Nevertheless, it is cou-
pled to the lattice as shown by the following facts. If one
calculates the mode for rings that are uncoupled one gets

= 1148 cm, so that the mode frequency is raised to
1205 cm by the infIuence of coupling to the CRN. No
evidence has been reported for weak but sharp IR mode
at this &equency. Since there is strong IR absorption
by the network at this frequency, we presume that either
there are not enough 4-rings to be seen in infrared, or the
mode in question is more coupled to the network than our
calculation predicts and is therefore broader and weaker.

The local VDOS of the atoms in the ring is shown in
Fig. 10(d), as obtained from the imaginary part of the
mass weighted trace of G in Eq. (17). The modes of the
ring resonate in the bands of the CRN Bethe lattice, as
can be verified by comparison with Fig. 4 in BGM.

In Sec. IC we argued that some 4-rings relax com-
pletely to the minimum energy value of 8 = (8) and hence
become regular. This energy "bottleneck" for regular-
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(~)
kAMAN

RESPONSE

BETHE LATTICE
FORCE CONSTANTS

a' = 507 N/m

P' = 78 N/m

q =5 cm

(b)
RAMAN

RESPONSE

10 cm -l

I Jail

PERFECT DECOUPLING
FORCE CONSTANTS

a' = 467 N/m
P' = 97 N/m

Cl 1P
INFRARED

RESPONSE

5 Wcq

4-RING OXYGEN BOAT ( e = 154 )

0 (deg)

160.53
160
158
154
150
146
140
130
120

n'/P'

0.121
0.128
0.153
0.207
0.268
0.333
0.437
0.619
0.805

n' (N/m)

790
748
628
467
364
296
230
168
135

P' (N/m)

95
96
96
97
98
99

100
104
109

Best fit.

TABLE I. The oxygen boat 4-ring force constants for per-
fect decoupling at pI(DI)—:495 cm, as a function of 0 in
the ring.

p

P.1

(d)
VIBRATIONAL

DENSITY

1000 1500

the oxygen boat 4-ring is even less sensitive to deviations
from perfect decoupling. We believe this fact explains
that Dj is sharper than D2 in experiment.

The corresponding values of the constants in the ring
are given in Fig. 11(b). Since the CRN —Bethe-lattice
constants are n = 507 N/m and P = 78 N/m, one has

WAVE NUMBER, W (cm -l )

FIG. 10. Calculated vibrational responses of the regular
oxygen boat 4-ring depicted in Fig. 9, with parameters ap-
propriate for v-Si02. Here 0 = 154, the best fit value for
the Bethe-lattice representation of the CRN and therefore
the minimum energy values for our dynamical calculations.
The PP Raman response in (a) is for ring force constants the
same as those of the best fit Bethe lattices representing the
attached network. The oxygen breathing mode is moved to
~ 495 cm in (b) for force constants in the ring as shown,
satisfying the perfect decoupling condition, Eq. (1), and for
the Bethe-lattice force constants as in (a). The infrared re-
sponse (c) and the VDOS (d) of the ring are calculated for
the same parameters as in (b).

ity of 4-rings does not seem as constricting on angle (8)
as does the kinetic bottleneck for regularity of a-rings.
Thus we must expect less regularity of 0 in (nearly) reg-
ular 4-rings. Moreover, we have chosen 0 = 154 so far
simply because it provides a best fit to the broad lines
in the spectra of v-Si02. Since x-ray diQ'raction shows
(0) 144, we must admit the possibility of a differ-
ent 0 from that used. Therefore, we present Table I,
showing ring force constants and ratios for several val-
ues of 0 surrounding 154, from 0 = 160.5 (planar) to
8 = 120'. The values of n' and p' appear to be reason-
able for 0 & 146 .
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0.1 0.2

LING
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0.3
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THEORETICAL LINEWIDTH

495 cm l BREATHING MODE
OF

XYGEN BOAT 4-RING

e = 154

0.6

Imperfect decoupling of the oxygen boat g ring-
As in the 3-ring case, we investigate the sensitivity of

the width of the sharp Raman line to deviations from the
perfect decoupling condition P'/n' = (P'/n')d, given in
Eqs. (18)—(20). In Fig. 11(a) the FWHM of the peak
at 495 cm is shown as a function of the force constant
ratio. Comparison of this with Fig. 7(a) indicates that

FIG. 11. The calculated full width at half maximum Ra-
man linewidth (a) for the Bethe-lattice-terminated regular
oxygen boat 4-ring in v-SiO&, showing that the decoupling
condition need not be perfect. That is, AW is less than or
eIlual to observation (30—10 = 20 cm ) over a large range of
ring force constant ratios P'/n' from 0.12 to something above
0.6. The corresponding force constants (b) are within a rea-
sonable range of those for the best fit Bethe-lattice, given in
Fig. 10(a).
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to vary these only slightly to obtain perfect decoupling.
For this reason, the peak in Fig. 10(a) is already quite
narrow.

$. Some results on the Si chai& 4 rin-g

4-RING SILICON CHAIR ( 0= 154" )

BETHE LATTICE
FORCE CONSTANTS

u' = 507 N/m

P' = 78 N/m

=0 cm

(b)
RAMAN

RESPON

30 cm

MINIMUM LINEWIDTH

FORCE CONSTANTS

a' = 449 N/m

P
' = 94 N/m

We have found that the oxygen boat can be far
&om perfect decoupling and still give a suKciently nar-
row Dz line. Clearly this may also be true for regu-
lar rings that cannot perfectly decouple. We consider
the example of the Si chair depicted in Fig. 8(g).
This conformation is known to exist in the molecule
hexamethylcyclotetrasiloxane and may therefore be one
of the low energy forms of regular 4-rings in the glass.

The dynamics of this ring is formulated in a manner
completely analogous to that leading to Eq. (17). We
omit the geometry and matrix algebra and merely present
some results.

Figure 12(a) shows the Raman response of the silicon

chair 4-ring for ring force constants the same as those
in the Bethe lattice. Although the &equency is almost
correct at the Dq line, the width is a bit too large. With
a small change in force constants one can put the peak
at 495 cm and find a minimum width of 29 —10 = 19
cm . Figure 12(b) is an example very near this condi-
tion, where the width is 30 —10 = 20 cm

The infrared response and VDOS for the silicon chair
with the latter force constants are shown in Figs. 12(c)
and 12(d), respectively. Notice the similarities with Figs.
9(c) and 9(d), which are for the oxygen boat.

We have determined that a sufBciently sharp line is ob-
tained for a wide variation of the ratio P'/n'. In Table II
is shown the calculated FWHM for 0.17 ( P'/n' ( 0.24,
using 8 = 154' and the n' and P' values (given) that
keep the frequency at 495 cm, and produce a mini-
mum line width. That is, each entry in Table II repre-
sents a search over numerous values of n' and P', to find
the pair that produces a minimum width. Each value
should be reduced by 10 cm for comparison with ex-
perimental reality. Acceptable linewidths are found for
0.18 ( P'/n' ( 0.24, and the range may be extended at
this upper end.

The insensitivity of the linewidth variations in 0 is
shown in Table III, where the minimum width for var-
ious 0 is reported, keeping the frequency at 495 cm
The angle p in the silicon chair is also given for easier
visualization of the extent of puckering. It is defined as
pictured in the side view of Fig. 9. The relation for the
Si chair is

cosy = —(2cos0/sing+ 1). (21)

10 (&)

INFRAR
RESPO

Table III shows that one can pucker the ring out of the
plane by as much as p = 50, attain 0 = 152, and still
have a sufBciently narrow line with reasonable values of
n' and P'.

0. 1

(d)
VIBRATIONAL

500 1000

WAVE NUMBER, W (cm ')
1500

8. Some results on the planar 4 ring-
For completeness we present one set of results for the

planar 4-ring, showing that it too is relatively insensitive
to perfect decoupling, but requires less reasonable force
constants than the puckered ring. Table IV is for the
planar ring (04 ——160.5 ), where Eq. (1) predicts perfect

FIG. 12. Calculated vibrational responses of the regular
silicon chair 4-ring depicted schematically in Fig. 8(g), with
parameters appropriate for v-SiOq. Here 0 = 154', the best
Bt value for the Bethe-lattice representation of the CRN and
therefore the minimum energy value for our dynamical cal-
culations. The PP Raman response in (a) is for ring force
constants the same as those of the best fit Bethe lattice rep-
resenting the attached network. The oxygen breathing mode
is moved to 495 cm in (b) for force constants in the ring
as shown and for Bethe-lattice force constants as in (a). Per-
fect decoupling is not possible since F and G (cf. Fig. 4)
are not antiparallel for this conformation. A computer search
produced the force constants given, for minimum linewidths
at w 495 cm . The infrared response (c) and the VDOS
(d) of the ring are calculated for the same parameters as in
(b).

n' (N/m)

525
502
482
463
449
427
414
400

P' (N/m)

89.2
90.5
91.5
92.5
94.2
94.0
95.1
95.8

0.17
0.18
0.19
0.20
0.21
0.22
0.23
0.24

FWHM (cm )

34.0
31.5
31.0
31.0
28.0
29.0
30.0
30.0

TABLE II. The insensitivity of the Raman linewidth
(FWHM —10 cm ) of the oxygen breathing mode to the
ratio P'/n' for a regular silicon chair 4-ring with 8 = 154'
(relaxed) and w(Di)—:495 cm
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TABLE III. The variation of the Raman linewidth (FWHM —10 cm ) of a regular silicon chair
4-ring versus 0 for fixed w(Di)—:495 cm . The extent of nonplanarity can be judged from the
corresponding angle p, defined in Fig. 9.

~ (deg)

0.0
38.5
51.4
66.5
77.3

n' (N/m)

790
554
370

119

P' (N/m)

95.5
94.2
94.2
96.2

102.5

0.121
0.17
0.255
0.47
0.86

8 (deg)

160.5
156.1
151.6
142.2
130.5

FWHM (cm ')
10.0
27.5
31.5
35.0
38.0

decoupling at (P'/n')d ——0.121. The values of n and P
that yield w = 495 cm are shown, as is the resultant
(FWHM —10 cm ), for various P'/n' that were calcu-
lated; however, the o.' values are unreasonably large for
P'/o. ' ( 0.15. Thus the completely acceptable range is
approximately 0.15 ( P'/a. ' & 0.18.

Comparison with Fig. 6(a) for the planar 3-ring indi-
cates that the allowed range is much narrower for the pla-
nar 4-ring, and we expect it to be nonexistent for higher
order rings. We thus conclude &om dynamics alone that
planar rings with n & 4 do not contribute to the sharp
Raman lines (Dr and D2) because such rings are either
unable to decouple sufficiently (for n & 5 the rings be-
come involuted) or they require a very restricted and im-
probable range of values of P'/n' (n = 4).

On the other hand, we have shown that more than
one regular conformation of a puckered 4-ring can suK-
ciently decouple over a wide range of P'/n' values. We
thus have several arguments supporting the assignment
of Di to a regular 4-ring: Regular 4-rings are expected
to exist because of energy minimization arguments; and
it will be easy for the value of P'/n' determined by chem-
istry to give sufBcient decoupling, thereby satisfying the
linewidth and isotopic substitution data.

I n) of the Hamiltonian:

G(E) )- I
~)(n I

It then follows that

Im [TrG (E)] = Im ) (n'
I

C (E) I
n')

n'

=).I
= —~ P S(E —E„)

nl

7rp(E)—

Now, any vector
I
i) of the system can be written as

I t) = ).&-*
I n)

so that

).).).C,* C, (m I n)(n I
m')

n m 7nl

C,-*„C„.

D. Correlation of m, otions in the rings

TABLE IV. The insensitivity of the Raman linemidth
(FWHM —10 cm ) of a planar 4-ring to t3'/cr', for perfect
decoupling at u(Di)—:495 cm

n' (N/m)

1329
995
790
662
568

P' (N/m)

79.7
89.6
95.5
99.4

102.2

0.06
0.09
0.121
0.15
0.18

FWHM (cm ')
21
18
10
15
31

Up to this point we have extracted information from
the diagonal part of G [cf. Eqs. (11) and (17)] in order
to get the local VDOS, and we have used the nondiag-
onal elements to calculate the Raman and infrared re-
sponses, using models presented in BGME. We will now
gain some direct insight into the atomic motions involved
by extracting information from the imaginary part of the
nondiagonal elements of C in terms of the eigenvectors

where we have used (m
I

n) = b . Thus, the imaginary
part is proportional to the product of the coeKcients of
the vectors of every normal mode.

To understand this better, consider a normal mode at
a particular &equency uo, whose basis vectors are the ac-
tual displacements of two atoms, say, a Si and a neighbor
O in a ring- Then Im+s o is proportional to the coeK-
cient of the oxygen motion in the y direction, and the
coeKcient of the silicon atom motion in the x direction,
for the given normal mode. If Im| s",.o is very small, it
means that when one moves the Si atom along x at fre-
quency uo, the y motion of the 0 atom is unaffected; their
motion is uncorrelated. If ImG&,.o is large and positive,
the two atoms move in phase: Si motion along positive
x is accompanied by 0 motion along positive y. Large
negative ImG&,"o means the two motions are correlated,
but out of phase.

Consider now the correlations of atomic motions within
a planar 3-ring whose six external bonds are connected
to the Bethe lattices having the same n and P as in the
ring, and satisfying the perfect decoupling condition Eq.
(1). In Fig. 13(a) we have plotted the imaginary part of
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(~)
5-AVERAGED

BETHE LATTICE
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a =341 N/m

P =31 N/m
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We conclude that cluster —Bethe-lattice calculations of
the Raman active vibrations of nearly planar 3-rings and
regular 4-rings in v-Ge02 are consistent with the assump-
tion that large concentrations of such rings exist in the
real glass. Such rings are able to account for the previ-
ously unexplained small features observed at both sides
of R in Fig. 16.

p ~IAJ I I I I I I I III. CONCLUDINC KEMAB.KS

1.0

(b)
PLANAR 3-RING

0 = 130.5

I I I I I I I I

1.0
(c)

4-RING

OXYGEN BOAT
0= 133

I I I I I I I I

500 1000

WAVE NUMBER, W (cm ' )

1500

FIG. 17. Calculated PP Raman responses for v-Ge02.
The response of the best fit Bethe lattice is shown in (a), for
parameters as in Fig. 16(c) (except that q has been reduced
to 5 cm, resulting in sharper features). The response of a
planar 3-ring with ring force constants identical to those of the
Bethe lattice in (a) is shown in (b). Force constants are ex-
pected to difFer very little because Os = 130.5' (0) = 133'.
The ring response in (b) peaks at essentially the same W as
the Bethe lattice in (a). The response of the relaxed regular
oxygen boat 4-ring (c) is also computed for Bethe-lattice force
constants in the ring, and also peaks at the same W as in (a).
The sharp subsidiary peaks on either side of W~ in panels (b)
and (c) are taken as origin(s) of experimental bumps at 350
and 520 cm in Fig. 16(b).

is quite narrow, the oxygen breathing mode is clearly not
perfectly decoupled from the Bethe lattice.

The Raman response of a regular oxygen boat 4-ring
is shown in the lower panel, Fig. 17(c), calculated with
n and P as above and with 0 relaxed to (0) = 133 .
FWHM is now reduced to about 25 cm and the peak
is still very near 420 cm

Since there is negligible shift in R, the existence of
the substantial numbers of planar 3-rings and regular 4-
rings would lead to a narrower Raman line than expected
from the Bethe lattice alone. If almost planar 3-rings
dominate the structure, we would also expect so see fairly
sharp subsidiary Raman peaks at about 220 cm and
500 cm . If regular oxygen boat 4-rings dominate, we
would expect sharp, weak features at about 280 cm
and 520 cm . Therefore, one or both of these kinds of
rings may account for the small relatively narrow features
seen in the data of Fig. 16 at about 350 cm and 520
cm

We have repeated an earlier argument that network en-
ergy is reduced when small rings of bonds become planar
or regular in v-Si02. Thus there is an energy minimiza-
tion rationale for small rings of bonds to be regular in an
otherwise more disordered network.

Cluster —Bethe-lattice calculations of the dynamics of
planar 3-rings are found to explain all known properties
of the sharp Raman active line D2, seen at 606 cm
in v-Si02. This requires that the rings be fairly regu-
lar, and that the ratio of their central to noncentral force
constants be within a rather broad range which assures
adequate decoupling of the oxygen breathing-mode mo-
tion from the rest of the network.

Similar calculations for regular oxygen boat and sili-
con chair 4-rings show that their vibrational properties
are consistent with all known properties of the sharp Ra-
man line Di, seen at 495 cm in v-Si02. Here, there is
even more leeway available in the ratio of central to non-
central force constants and in the geometric perfection
(regularity) of the 4-rings.

The resultant structural model involving small nearly
regular rings of Si-0 bonds explains many properties of
the Raman active "defect" lines Di and D2, including
their frequencies, sharpness, Raman activity, Raman po-
larization, lack of companion Raman lines, energy of for-
mation, isotope shifts (no Si motion), increase with neu-
tron dose, and increase with internal surface area.

Since the planar 3-ring is under compressive strain, its
presence may account microscopically for a significant
proportion of compressive surface tension in v-Si02.

In recent molecular dynamics computer simulations
a study of n-fold rings reveals that about 1% of the to-
tal number of rings are 3-rings, although most of them
were puckered in the crown configuration and no planar
rings were found. This might be due to the strength of
the three-body potentials used, particularly the ones in-
volving 0-Si-0 bonds, which for some reason allow an
exaggerated floppiness of the tetrahedral angle P, which
contradicts the observed rigidity of the Si04 tetrahedra.
The mean value P = 102 for the 3-rings in these com-
puter simulations is unacceptable.

Since the planar 3-ring does not occur in any known
crystalline form of v-Si02, Galeener has suggested that
its presence may significantly inhibit crystallization upon
quenching. The concentration of planar 3-rings (strength
of D2) increases with Active temperature T~ so that at
the melting temperatures, there may be a very large con-
centration of these structural units which must first be
broken in order to build any known crystalline form. As
suggested elsewhere the existence of large concentra-
tions of these planar 3-rings may therefore be a key to un-
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derstanding the strong glass-forming tendency of molten
Si02 and the glass transition itself. In general, the ten-
dency to form a glass rather than a crystal may be due
to specific elements of intermediate ra-nge order in the
melt, in the form of small regular rings of bonds, which
do not exist topoIogically in any crystalline form of the
substance.

Similar arguments and cluster —Bethe-lattice calcula-
tions suggest that v-GeO2 contains even more nearly pla-
nar 3-rings than does e-Si02. They also suggest that
regular puckered 4-rings exist in significant numbers and
account for "bumps" seen in the Raman spectra at 350
and 520 cm
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