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The speci6c heat of glassy Zr-Rh-Pd alloys at low temperatures is investigated. The results
are interpreted within the framework of the model of soft atomic potentials (Karpov et al. , Solid
State Coinmun. 44, 333 (1982); Zh. Eksp. Teor. Fiz. 84, 760 (1983) [Sov. Phys. JETP 5'T,
439 (1983)j). Using the experimental data for the normal and superconducting states, low-energy
vibrational excitation parameters are obtained.

I. INTRODUCTION

Low-temperature thermal properties are very impor-
tant for understanding of the nature and properties of
low-energy excitations in glasses. This is why there are
many papers concerning this topic. Most of the investi-
gations were performed with dielectric glasses where the
specific heat C is due to vibrational excitations. The
situation in metallic glasses is not so simple because of
electronic degrees of &eedom. Their contribution, how-
ever, can be separated in amorphous superconductors
with high enough transition temperature T . In such
materials at low temperature electronic degrees of free-
dom freeze out and the remainder is due to vibrational
excitations. According to the results of numerous exper-
iments (for a review see Ref. 2) at low temperatures the
vibrational contribution to the specific heat is virtually
linear in the temperature T. This has been explained
in the framework of the well-known model of two-level
systems (TLS's).s 4 At higher temperatures the situa-
tion becomes more complicated. Along with the con-
tribution of conduction electrons there exists an extra
temperature-dependent contribution which is natural to
ascribe to common vibrational degrees of freedom.

The traditional way to describe the low-temperature
specific heat of dielectric crystals is to use the Debye
expression for the specific heat (see, e.g. , Ref. 5),

perimental data it is natural to use Eq. (1) as a definition
of an efFective temperature-dependent caloric Debye tem-
perature O(T). For metallic glasses it is known that at
low enough temperatures O(T) decreases with increasing
of the temperature (see, e.g. , Refs. 6 and 7).

The decreasing temperature dependence of 0 means
that there are excess low-frequency modes in comparison
with the density of phonon states given by the Debye
model. Such a dependence was also observed in some
polycrystalline metals (see Refs. 8 and 9 for a review)
and was also ascribed to excess low-&equency modes.

The purpose of this paper is to report the results
of an experimental study of the low-temperature spe-
cific heat in Zr-Rh-Pd metallic glasses which also exhibit
a temperature-dependent effective Debye temperature.
The varying size of this temperature dependence for dif-
ferent samples identifies it as a glass property resulting
from difFering preparation conditions of the glass.

To interpret the experimental data we use the macro-
scopic model of quasilocal vibrational states in glasses de-
veloped in Ref. 10 (see Ref. 11 for a review). This model
was successfully employed to analyze thermodynamics
and kinetics in dielectric and semiconducting glasses.

II. EXPERIMENTAL PROCEDURE AND
RESULTS

C(T) = oT', n(T) = I"
i

—i,
12~'k~ (T l
5MoOs qO)

'

where Mo is the atomic unit of mass while

15 ' x4e
I" (z) = dx, F(0) = 1.

The reason is that at low temperatures the thermo-
dynamics of a crystal is dominated by low-frequency
phonons having a linear dispersion law. To describe ex-

Aspects for the choice of Zr-Rh-Pd glasses were the al-
most equal vapor pressures of the constituents near the
melting temperature, assuring that the composition of
the alloys would not difFer much from their ingot com-
positions, and the thermal stability of the glasses up to
700 K. Physically, their rather high transition temper-
atures to superconductivity would favor the detection of
linear contributions to the heat capacity due to two-level
systems at very low temperatures while normal exci-
tations are being frozen out in the superconducting state.
In a difFerent study, a correlation of the density of TLS's
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and the phonon contribution to the specific heat has been
found. We will use those results in the present work.

Pure starting materials (99.99% Zr and Pd, Material
Research Corp. ; 99.9% Rh, Ventron Corp. ) were arc
molten on a flat polished copper plate in high purity ar-
gon atmosphere and quenched by shooting a Hat polished
copper hammer at 40—50 ms speed through the burn-
ing arc onto the molten alloy sphere. Splats of 40—50 pm
thickness resulted. Due to the cooling conditions in the
hammer-and-anvil device, the central and circumferential
parts of the circular splats were not always fully amor-
phous, as inspection by x-ray analysis showed. These
parts were cut away. The samples were then investi-
gated for crystalline inclusions by electron diffraction,
with no indications within the limits of resolution of ca.
0.5% of volume. Further, measurements of the angle of
the x-ray diKraction maxima for estimates of the near-
est neighbor distance and direct measurements of the
mass density were made. Both types of measurement
yield similar findings with respect to characteristic dif-
ferences of the packing density for the metallic glasses.
This is exemplified in Fig. 1 where the density is plot-
ted vertically over part of a Zr-Rh-Pd composition trian-
gle. (Note that not all ternary alloys shown are identical
with those for which calorimetric data were taken. ) For
binary Zripp Pd alloys density p vs concentration x
data lie quite close to a straight line which at x = 0
extrapolates well to the density of hcp zirconium (6.44
g cm ). For binary Zripp Rh alloys there are nonsys
hematic deviations from a straight line far outside the
experimental resolution (Ap + 0.03 gcm ). For the
ternary Zr75Rh25 Pd alloys a more systematic den-
sity minimum near x=10 was observed (Ap 20 x 10
gem ). This may be interpreted as an enhanced ten-
dency of forming a "kee volume" in the middle of the
ternary alloy series, superimposed by an uncontrollable
influence of the preparation conditions, notably in the
Rh-containing glasses. This, in turn, may originate from
different ingot sizes, difFerent piston speeds, and/or dif-

ferent temperatures of the molten sample before quench-
ing.

The heat capacity C of the small samples (mass 10—
60 mg) was measured using a heat pulse method. The
apparatus is fully automatized and computer controlled.
Samples, heater, and thermometer were mounted on a
100 pm thick sapphire support. Heat capacities of the
addenda were measured separately and accounted for.
Direct calibration of the equipment was performed with
a high purity platinum sample of dimensions similar to
the sample sizes. Good agreement with the literature
data within 0.5%—1% was obtained.

In a magnetic field of 6 T practically identical C data
were obtained for temperatures between 2 and 10 K.
Prom this fact it is estimated that the thermometer cali-
brations in such fields are correct to within 1%, and that
the apparatus is capable of determining the Sommerfeld
parameter p and 0 with and without a magnetic field
with an absolute accuracy of 1'%%up and 2%, respectively.
We also note that the decay of the heat pulse signal is
purely exponential for both Pt and the amorphous metal
alloys. Characteristic decay times are between 1 and 20 s.
No time-dependent heat capacities at our scale of times
were observed for the metallic glasses, as expected.

In Fig. 2 a typical C/T vs T plot is shown for
Zr75RhisPdi2 both without and with a 6 T magnetic
field (field data omitted above T, for clarity). Note the
curvature in the normal state, indicative of a contribu-
tion of higher power than T in C(T). Also note here
the small upward curvature below 2 K, this being due to
precursors of superconductivity as magnetic field depen-
dence showed.

Results obtained in the temperature range from 1.5
to 12 K are summarized by the least-squares fit coeK-
cients of the polynomial C = P o, T given in Table
I, with n = 1, 3, 5, and 7. For reasons to be dis-
cussed below, fits are also included within the temper-
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FIG. 1. Mass density for binary and ternary amorphous Zr
alloys. For the latter, Zr concentration is fix:ed at 75 at%.

FIG. 2. Example of calorimetric data (metallic glass
Zr75Rh] 3Pdig).



15 668 W. GEY, W. ESCHNER, AND YU. M. GALPERIN

a1 = 10 &el
3

(J/K mol)
4.99+0.03
5.03+0.03
4.99+0.03
4.96+0.04
4.98+0.05
4.98+0.03
4.99+0.03
4.94+O.O4
4.94+O.O4
6.55+0.02
6.492+0.01

GP /lc~
(K)
4.2
3.7
4.2
3.8
4.2
4.2
4.2
4.0
4.0

Interval
(K)

1.5—6.5
1.5—10.0
1.5—6.5
1.5—12.0
1.45—6.5

10 a3
(J/K mol)
3.02+0.04
2.94+O.O4
3.43+0.04
3.43+0.04
2.26+0.07
2.45+0.04
3.20+0.04
3.26+0.04
3.08+0.04
1.49+0.02
1.430+0.01

18
26
26
21
21
21
27
19
19

0.20

0.70
1.48-10.0
1.5—6.1

1.88-10.0
1.8—8.0
1.41—7.0
0.30-30

17.5
22.5

25
Pt

Ptb

TABLE I. Results of calorimetric data fitting and parameters of the model. Atomic weights are 91.22, 102.905, and 106.4
for Zr, Rh, and Pd, respectively. Included are calibration data obtained for Pt and comparison is made with literature data
(Ref. 14). Parameters of the model are calculated for t,„pt ——1.5 s, to = 10 s.

Zry5Rh Pdg5 10 a5 10 a7 oo /TLS E Na N
x (J/K mol) (J/K mol) (K) (J/K mol) (eV) (A.')

2.5 9.43+2.0 186 0.30 88 13
15.70+1.8 —13.1+0.7 188 133 19

7.5 6.19+1.5 178 73 12
9.36+1.1 —8.9+0.6 178 100 16

13.0 21.10+1.7 205 128 15
22.40+1.1 —17.3+0.8 200 118 15
9.63+1.1 182 0.30 83 13
11.30+1.5 —10.3+0.7 182 0.30 91 14
12.70+0.9 —10.9+2.8 185 0.35 95 14
1.9 +0.2 235

3.27 +0.1 238.7

Reference 13.
"Reference 14.

ature interval 1.5—6.5 K and for n & 5. The electronic
term a1 = p is remarkably constant, independent of al-
loy composition and also of the order of fit. The term
a3T is identified with the Debye contribution and yields
8o = O(T + 0) [if C is measured in 3/molK, we
have Oo ——(1943/as) ~ ]. Oo ranges f'rom 178 to 200
K; it is weakly dependent on the order of fit. There is
substantial variation of the a5 term within different al-
loys, well outside its dependence on fit order, but with
a clear correlation to the a3 term. It is illuminating to
discuss these data in terms of a temperature dependence
of the caloric Debye temperature. In the region of our

fit, O(T) = Oo 1+ (T /as)(as + a7T ) . Figure 3
shows this function for four of the ternary alloys investi-
gated. For two of them original data taken directly from
the heat capacity measurements according to the formula

8(T) = T [1943/(C, , —aqT)] are presented (trian-
gles). In this representation, because of the dominating
contribution of the electronic term to C „there will
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FIG. 3. Temperature variation of the effective Debye tem-
perature for four metallic glasses. Investigated Rh concentra-
tions x= 2.5, 7.5, 13.0, 25.0. For clarity, direct experimental
data (triangles) are shown for two alloys only. Solid lines rep-
resent least-squares four parameter 6ts. Parameters are given
in Table I.

be rather high uncertainties at low temperatures. Also,
traces of superconductivity will be exaggerated. Never-
theless, it is seen that the data are well described by the
above four-parameter fit with a very clear minimum of
8(T) near T = 7.5 K. Above 9 K the data might have
been better represented by adding one or two more terms
to the polynomial for C(T). With respect to the inter-
pretation below, this is not necessary.

It is clear that the success of such a procedure crucially
depends on the quality of knowledge of a1T. Here we
take advantage of the independence of this term of the
fit procedure and even of the alloy chosen.

The interesting feature of the graphical presentation of
Table I is that at temperatures around the minimum of
8(T), common to all alloys, the phonon contribution to
C is almost the same [as revealed by O(T)], amounting to
8(T);„from 175 to 182 K. In the limit T —+ 0, however,
strong variations of Op occur, ranging from 178 to 200 K.
Thus, near T = 7.5 K the difference AO(T);„amounts
to 7 K while at T + 0 it has risen to 22 K. It is to
be noted that the strongest variation of O(T), i.e. , the
largest value of a5, is measured for Zr75Rh13Pd12. This is
in the middle of the ternary alloy series. For these alloys a
minimum density has been measured, as reported above.

In the interpretation (see below) the Tl S contribution
GATI, S to the linear term a1T is needed, which cannot be
obtained from the present measurement. We have ac-
cess to pTz, s from very-low-temperature calorimetry on
the binary metallic glasses Zr1pp Rh&, 21 ( 2; ( 29.
These measurements that cover the temperature range
170—1000 mK as reported above uncovered a correlation
between GATI. S and 80. The correlation can be expressed
as pTz, s = (ao —as)/6, where ao ——(3.93 + 0.5) x 10
3/molK, 5 = (2.4 + 0.5) K, and as ——1943/8o.

Thus, pTI, S can be estimated from a3, as obtained in
the present work. We have no explanation for such a
big "harderiing" of phonons due to the introduction of
TLS's. We note, however, that it appears to be inher-
ently essential for the present model, as it causes the
quantity O(T);„ to become almost constant, even when
the degree of disorder is different. Apparently, in all sam-
ples, the nature of the disordered entities seems to be the
same.
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III. INTERPRETATION AND DISCUSSION

In this section we present the interpretation of the ex-
perimental results which is close to the one used for di-
electric glasses in Ref. 16.

According to the model of soft atomic vibrational
states low-&equency atomic modes can be described in
a one-mode approximation by an effective anharmonic
potential

I'(*) = ~[~(*/a)'+ &(*/a)'+ (*/a)'1 (2)

m = E'gL = Lu g& = 10 K.i/2

with random parameters i1 and (. Here z is a generalized
coordinate corresponding to the soft mode, and a is of
the order of interatomic distance, while E' is an energy
of atomic scale. We are interested in low-energy exci-
tations which correspond to

~ g ~, ~ ( ~&& 1. In this case
anharmonic terms can be important.

To analyze characteristic parameters of soft modes let
us assume that all the items in Eq. (2) have the same
order of magnitude. In this case one can extract the
characteristic parameters from the Schrodinger equation
by making it dimensionless. Following Ref. 10 we get
that the characteristic displacement is of the order of
agL where gL = (h/2Ma . E') / (her, /f) / « 1,
and M is the effective mass of a soft atomic mode, while

is the characteristic frequency of atomic vibrations.
This frequency is of the order of the Debye frequency
kiiOp/h. The characteristic range of interlevel spacings
is

P(n () =I n I
Pp(n, (),

where Pp(g, () is some nonsingular function that is finite
atg=0.

For two-well configurations with low interlevel spacing
we can assume that

~ q ~ qL && br/,
~ ( ~- gL && b(,1/2

where bg and b( are characteristic widths of the decrease
of Pp(q, (). In this case we can approximate Pp(g, () by
the constant Pp(0, 0). As a result, combining Eqs. (4),(5)
we get the following expression for the density of states
(DOS) of two-level modes:

25/2 ~2 (bq) i/2
n (E) = Po(0, 0) = nTLs. (6)

Thus the model of soft atomic potentials reproduces re-
sults of the model of two-level systems introduced in
Refs. 3 and 4. The corresponding expression for the con-
tribution of TLS's to the specific heat has the form '

to the destruction of the soft potentials as a result of
small random perturbations due to interaction with the
environment. The influence of such perturbations is of
great importance for soft potentials. The second fact
that should be taken into account is that the dominant
part of atomic potentials have parameters close to the
standard value g —1 for atomic (nonsoft) potentials in
solids. Thus P(q, () should have a maximum at g 1
and should rapidly decrease at as g ~ —oo. The soft
modes we are interested in belong to the "tail" of the
distribution. To describe low-temperature properties it
is enough to express P(g, () in the form

Lo —w exp ~—
3/2 )

(4)

Such a spacing exists between the energy levels in the
potential (2) at g = gL, ( —

qL . At g & 0 the potentiali/2

(2) has a two-well shape. As was shown in Ref. 10 at
~ g ~) i1L,

~
( ~&~ vy

~

/, the lowest states represent a
doublet of levels with the spacing E = (A + Ap) /

where

+TLS/T —'YTLS 'YTLS —(~ /6) ~TLS kgb ~

To be more accurate we should note that Eq. (7) makes
use of the assumption that all the TLS's had enough time
to relax during the measurement of the specific heat. At
the same time it is well known that there is an exponen-
tially wide distribution of relaxation rates in glasses and
some TLS's would remain in a nonequilibrium state. To
take this fact into account following Ref. 21 one should
replace b'g in Eq. (6) by

Thus we see that the model under consideration for low
energies (E & iu) describes two-level configurations.

To analyze the thermodynamics one should specify the
distribution of the random parameters g and (, P(q, ().
This distribution cannot be calculated in the framework
of the macroscopic model and one should introduce it
phenomenologically. (In principle such a distribution can
be calculated from some microscopic model or with the
help of computer simulations. For example, computer
modeling of a-Si and a-Si02 was performed in Refs. 17
and 18. The model close to the situation in metallic
glasses was numerically analyzed in Refs. 19 and 20). It
is natural to assume that the distribution of the asym-
metry ( is even because there is no preferred direction in
a glass. More interesting is the distribution of the force
constant q. As was shown in Ref. 21 (see also Ref. 22), at

~ g ~&& 1 the distribution should be proportional to
~ q ~.

The vanishing of P(g, () as q -+ 0 in fact corresponds

~. —= min(bq, q ), ~
—— q, in

3'/'
2 (7p kgT )

Here t,„pq is the time of measurement while vp(E) is the
relaxation time of a symmetric TLS with interlevel spac-
ing E. In metallic glasses this relaxation is due to interac-
tion with electrons in the normal state and with phonons
in the superconducting one. In what follows we shall be
interested in the last case where wp(E) = h ps /D E,
and D is the characteristic value of the deformation po-
tential of TLS's, while 8 is the sound velocity.

Now let us turn to the region of higher energies where

~, » E » m.

To get such an interlevel spacing one should consider a
quasilocal mode due to a one-well potential with g )
0, g )) gL,

~ ( ~& (32i1/9) / (see Refs. 11, 16, and
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The corresponding contribution to the specific heat has
the form

CH T4 30&TLs kg) ( gL, l i/2

T ' iii4 (ik) (10)

Thus we have come to the important conclusion that the
coefficients pTi, s in Eq. (7) and P both are proportional
to the quantity nTgs and thus are related to each other. If
both are known &om the experiment, one can determine
the quantity m which is very important to the model.
Combining Eqs. (7) and (10) we get

iv/k~ = (180pTi,s/7r'p)'~ (ql, /q, )'~ .

Note that this quantity is almost insensitive to the time
of measurement.

Unfortunately the expression (7) is only applicable if
the temperature is low enough. There are several sources
of its violation. The first one is that if g is big enough one
cannot replace the function Po(q, () by a constant. The
second one is more fundamental. As was shown in Ref. 23
the interaction between quasilocal modes drastically in-
creases with the increase of their frequencies. This is
natural because the density of these states increases with
their &equency as cu . Several experiments concerning
phonon propagation (though in dielectric glasses) show
that such interaction should be important at frequencies
of the order of 1 THz that corresponds to the temperature

6—7 K. (Note that n~ oc E and the characteristic value
of E is several k~T.) One can make similar conclusions
&om the results of computer simulations of vibrational
modes. According to estimates given in Ref. 23 at
higher energies the energy dependence of the density of
vibrational states should be smoother than the energy
dependence of the Debye DOS. As a result, the tempera-
ture dependence of the caloric Debye temperature, 8(T),
should be nonmonotonous: At very low temperatures it
should be constant; then it should decrease with increas-
ing temperature due to the fast increase of the density
of quasilocal modes with their energy and at higher tem-
peratures it should increase due to the weaker (than E4)
energy dependence of the vibrational DOS. This qualita-
tive behavior is in reasonable agreement with the exper-
imental data (see Fig. 3).

Now let us turn to a quantitative interpretation of the
experimental data. According to the considerations given
above at very low temperatures where the samples are in

21). If inequality (8) holds, the anharmonicity of the
potential (2) is small and one can omit the items pro-
portional to (2:/a) and (x/a) . At the same time to
take into account soft modes we are interested in the
region rI (( 1. The density of states nII(E) correspond-
ing to low-&equency quasiharmonic modes can be cal-
culated straightforwardly from the definition n(E)
(~Ã —E(~ &)]).

Such a calculation (see also Refs. 16 and 23), assum-
ing the validity of Eq. (2), yields

r&,i" (F&'
~H(E) = ~Ti.s

/

—
I24 yak)

the superconducting state the specific heat is determined
by TLS's and described by Eq. (7). Another simple
expression for C/T exists at T ) Ti = iu/5kii. In this
region there are three important contributions to the spe-
cific heat which are due to conduction electrons, to long
wavelength extended vibrational modes (phonons) which
we shall describe by the Debye model, and to quasilo-
cal, nearly harmonic vibrational modes. In this region
we have

C/T = q.&+ ~T'+ PT'. (12)

Here nT is the usual Debye term n = as, P = as. It
can be shown that the electron-induced anharmonic cor-
rection to the quantity C/T [which is proportional to
(T/eJ;) ] is much smaller.

Having in mind that the characteristic energy of the
excitations in the region (8) is of the order of (4—5)k~T
[because n~(E) oc E ] it is reasonable to fit the experi-
mental data by Eq. (7) only in the region 1.5—6.5 K. This
fit allows to determine the coefficients in Eq. (12). The
quantity pTps can be determined from the experimental
data for very low temperatures where the specific heat
is almost linear in T while the sample is in its supercon-
ducting state and electronic degrees of freedom are frozen
out. Having the quantities n, pTLs, and P one can deter-
mine the effective Debye energy 80 and the characteristic
energy m for the quasilocal vibrations. It can be shown
that in a realistic situation bg & g, and we come to the
following expression for m:

( 180pTi, s l
vr'p

23/2

3 ln (t...t/~o)

- 1/12

One can also determine other characteristic parameters
of the model (see Ref. 16): the energy f

f = (hcu, /16)(her, /iv) (14)

and the characteristic number of atoms which participate
in a typical soft mode,

N = (h (u, ) /16Ma iii . (15)

It is not so easy to estimate the characteristic frequency
~, of atomic vibrations because in real materials there
are important corrections to the Debye model at high
&equencies. In Ref. 16 the frequency of the lowest DOS
maximum was taken for w . This &equency appears to be
about 2/3 times the Debye frequency determined from
the sound velocity measurements. The Debye tempera-
ture Oo can be also estimated from Eq. (1). At the same
time, according to many experiments [see e.g. , Fig. 1 in
the review article (Ref. 24) where the dependences C/T
vs T2 are plotted and Refs. 7 and 25] in amorphous ma-
terials there exists an additional contribution to the spe-
cific heat which is proportional to T and could be in-
terpreted as the Debye one. One can understand this
fact qualitatively having assumed that some anharmonic
quasilocal modes also contribute to the T term in the
specific heat. As a result, the effective Debye frequency
determined &om the specific heat data should be greater
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than the one obtained &om the sound velocity.
In our estimates it would be reasonable to assume that
corresponds to the most pronounced peak in the vi-

brational DOS (see Ref. 16). Unfortunately we do not
have results of a neutron analysis of Zr-Rh-Pd metallic
glasses. This is why in the following for rough estimates
we put w, = k~Op/5 where Ho is determined from the
specific heat data. The reason for this assumption is an
analogy with other glasses where the data on the neutron
scattering and sound velocity are accessible. The other
quantity we need is the characteristic length a. Following
Ref. 16 we assume here a —d/2 where d is the interatomic
spacing determined from the sample's density.

The result of such a fit is given in Table I. One should
have in mind that the quantity m is the one that is de-
termined directly while the others (E, w„and JV) are
calculated under the assumption that cu, k~Oo/h. The
number of atoms (N 20) participating in a soft mode
appears to be of the same order of magnitude as obtained
with the help of computer simulations for a model glass
(in Refs. 19 and 20). Note that the estimates given above
provided a reasonable order of magnitude for all the char-
acteristic parameters of soft modes which are not far from
the corresponding parameters in dielectric glasses (see
Ref. 16).

It is very interesting that there is a correlation between
the values of pTgs and a3, such that the increase of the
erst quantity is followed by an increase of the efFective
Debye temperature Oo. Such a correlation was also ob-
served for some dielectric glasses while for other ones the
correlation is quite opposite [see Fig. 3 in the review ar-
ticle (Ref. 24)].

IV. CONCLUSION

Finally we summarize that the temperature depen-
dence of the specific heat in Zr-Rh-Pd metallic glasses
can be reasonably well explained in the framework of the
model of soft atomic vibrational states. According to
our interpretation, the physical nature of soft vibrational
modes in all the glassy alloys investigated is the same
while their number is dependent on preparing conditions.
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