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Sound in a granular material: Disorder and nonlinearity
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We have investigated the properties of low-amplitude vibrations in dry unconsolidated granular ma-
terials. The velocity of sound can vary by a factor of 5 depending upon whether one measures either the
arrival time of the rising edge of the pulse or the quantity analogous to the group velocity. If we increase
the amplitude of the vibrations, we observe nonlinearity near the point at which we first see hysteretic
behavior. This is interpreted as due to the presence of force chains. We also find frequency shifts in all
of the features that characterize the transmission spectrum.

Granular media have interesting features that distin-
guish them from other systems.! Nowhere is this more
apparent than in the phenomenon of sound propagation.
In the frequency regime where the wavelength is compa-
rable to the granularity of the media, we have found? that
the sound shows an extreme dependence on the position
of each grain—so much so that even the tiny motions
caused by the sound vibration itself (or by minute tem-
perature fluctuations in the medium) can cause the ampli-
tude of the detected signal to fluctuate with time. The
power spectrum for the fluctuations caused by the vibra-
tions themselves varied approximately as f 2 (Ref. 3).
This implies that nonlinearity is particularly important in
these unconsolidated media; the structure of the pile is
determined by the fragile contacts between the grains so
that even small vibrations will cause the structure to
evolve in time and produce fluctuations in the transmit-
ted sound amplitude. In addition, we have found a deli-
cate but reproducible dependence of the transmission am-
plitude on the frequency of the source at low vibration
amplitudes. Disorder is, therefore, also important since
it gives rise to interference effects that can lead to con-
ductance fluctuations (in frequency) or possibly even to
localization of the waves. At low frequencies, where the
wavelength of the sound is large compared to the granu-
larity of the medium, we have argued that it may not be
possible to have any horizontal sound propagation at all
due to mirage effects which govern the trajectories of the
sound and bend all paths towards the vertical direction.
In this paper we will extend our previous studies to inves-
tigate further aspects of sound propagation in these un-
consolidated systems. In particular, we will investigate
the role of the source amplitude in order to study the
effects of nonlinearity.

As in our previous experiments,” we used 0.5-cm-diam
dry spherical glass beads contained in a square box of
side 28 cm with a depth of 8 to 15 cm. The configuration
is shown in Fig. 1(a). We reduced the reflection of the
sound waves from the walls by lining the box with Styro-
foam sheets. The box is isolated from external vibrations
and temperature fluctuations by several other layers of
Styrofoam sheets and enclosed in a plastic container filled
with dry nitrogen gas. This last enclosure further stabi-
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FIG. 1. (a) A schematic diagram of the side view of the ex-
perimental configuration. D, and D, correspond, respectively,
to the two detectors used to monitor the source acceleration and
the detected signal. S represents the source speaker. The walls
are padded with 3-cm-thick sheets of Styrofoam. In (b) the
phase ¢ and in (c) the transmission 77 are shown as functions of
the frequency v for a detector at distance L, =6 cm from the
source. The slope of ¢(v) determines c,. The inset to (b) shows
the phase ¢ for a different microscopic configuration of the
beads. This is the curve of ¢(v) which is the least linear that we
have found.
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lizes the system against fluctuations in humidity. We
connected a 7-cm-diam aluminum disk inside the box to
an external speaker in order to transmit the vibrations
with a well-defined direction of motion. The acceleration
of the disk was monitored with an accelerometer (labeled
D, in the figure) attached to its back and controlled with
an electronic feedback loop. The detection accelerome-
ters (labeled D,) had a diameter of 0.7 cm and a length of
1.2 cm. They were comparable to the size of a single
grain and placed at distances from 2 to 10 cm away from
the center of the source. Because of their huge mass den-
sity compared to air, the accelerometers respond only to
vibrations transmitted through their contacts with the
solid surroundings instead of to the sound pressure in air.
This has been confirmed by two means: (i) a (smaller) box
of sand was evacuated and similar results were obtained;
(ii) the transducer was submitted to vibrations carried
only by air and no signal was seen.

The first question we address is what is the velocity of
sound in this medium? As we mentioned above for low
frequencies, even such a straightforward measurement
can be problematic since there is presumably a large
depth dependence to the velocity. There are at least two
different experiments which we can use to determine this
quantity. The first is the time-of-flight method where we
create a pulse at the source and measure the time it takes
for the first effect to be felt at the detector. This yields
the value ¢, ,;=280%30 m/s at a depth of 6 cm. This
value is close to the velocity of sound in air so we
checked that the velocity we measured was due only to
the propagation through the sand by remeasuring the ve-
locity in an evacuated box and one filled with helium gas
(c=970 m/s). In both cases we found the same value for
the sound speed. A second measurement can be used to
measure a quantity analogous to the group velocity. To
do this we measure the phase ¢ of the detected signal at
the detector as a function of frequency v. We can deter-
mine the group velocity c, from the slope of ¢(v)
and the distance L, between the source and detector:
cg=2mL;dv/d¢. In Fig 1(b) we show ¢(v) over the
range 500 Hz <v<25000 Hz for the case where L;=6
cm. To a good approximation, the phase in Fig. 1(b)
varies linearly with frequency over the entire range of v.
The fluctuations about this linear dependence are quite
small. For this slope we calculate ¢, =57 m/s, which is
almost five times slower than that measured by the time-
of-flight experiment. As the arrangement of the beads is
changed, the slope of the ¢(v) also changes. Sometimes,
even a linear fit is questionable. In the inset of Fig. 1(b),
we show one curve which shows the largest deviation
from a linear dependence which we have found. If we use
the averaged slope d¢/dv, the value of ¢, can vary
within a range of 50—90 m/s depending on the detailed
grain configuration.

Although the phase appears to have a reasonably
smooth frequency dependence, the amplitude of the
detector does not. We show this in Fig. 1(c), where we
plot the transmission 7= A,/ A, versus frequency. In
addition to the general trend of decreasing transmission
with increasing v, we see very sharp and dramatic varia-
tions with frequency. These features correspond to the
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small fluctuations about the linear behavior in the ¢(v)
curve. As we have reported previously,” these sharp
features are reproducible if the curve is retaken immedi-
ately. A slight disturbance can change the features in the
frequency response curve in Fig. 1. This disturbance
does not need to be close to the detector. A minute ex-
pansion of a bead (of about 1000 A) located several cen-
timeters away from the detector can generate a
significant change. Although it is true that, on average,
the signal depends more on the contacts which are closer
to the detector, it is not true that a few contacts dominate
the response. The spatial dependence is very irregular
and provides another signature of the particular bead
packing.*

The discrepancy between ¢, and ¢, indicates compli-
cated behavior in the propagation of the sound. In order
to explore this in more detail, we have measured R (7),
the response to a 8-function input as a function of elapsed
time 7. In principle, for a linear system this can be de-
rived from a Fourier transform of the data in Fig. 1.
Practically, however, higher accuracy can be obtained by
measuring this function directly. We send a short pulse
from the source and measure both the signal and the
response with detectors D; and D,, respectively. Since
we cannot make the pulse arbitrarily short due to ringing
in the speaker, we must use the signals from both detec-
tors in order to determine R (7). We divide the suitably
filtered Fourier transform of the signal from D, by that
from D,. The inverse Fourier transform of this ratio is
the response to a 8-function input, R(7). As one would
expect for a linear system, this measured R(7) is fully
consistent with the inverse Fourier transform of the fre-
quency response data in Fig. 1 and shows that the results
are not dependent on the frequency response or shifts of
the speaker driving the source.

Data for R(7) are shown in Fig. 2 for the detector at
four different distances from the source: L; =2, 4, 6, and
8 cm. We determine c,,; by measuring the onset of the
first peak as a function of distance. Likewise, we can ob-
tain the value of ¢, by calculating the average slope of the
phase as a function of frequency. Both values agree with
what we obtained above so that we conclude that the
discrepancy between the two values is not due to a non-
linear response in the medium.

In Fig. 2, we can see how the structure in R (7) devel-
ops with the distance L; from the source to the detector.
At small L;, there is one dominant peak at short times
followed by a number of smaller oscillations. As L, in-
creases, the first peak decreases and two structures of
comparable height appear in the signal. It is tempting to
think of the different peaks as corresponding to different
paths via which the sound can travel. These paths then
give rise to interference effects.

This interpretation of the sound propagation along a
few discrete paths determined by the geometry of the
contacts is quite distinct from the more conventional as-
sumption that the sound behaves as a wave diffusing
through a random medium.’ The properties of such
diffusing waves have been studied in a variety of contexts,
including electron scattering in mesoscopic metals® and
light propagation in a densely scattering medium.’
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FIG. 2. The response function R as a function of elapsed
time 7 for four different placements of the detector: L;=2,4,6,
and 8 cm as labeled in the figure.

Sound in sand is different from these other cases since
one suspects that there must be force chains, or arches,
which span the distance between the source and detec-
tor.? These chains bear most of the burden for keeping
the structure rigid. One might expect that, independent
of frequency, all the sound waves must pass through the
same set of force-bearing contacts. In this scenario it is
not clear that the analysis used for describing electron or
light diffusion can also be used to attack the problem of
sound propagation in a granular medium. In Fig. 3(a),
we plot the absolute value of the data, |R(7)|, of the
curve from Fig. 2 for L; =4 cm. After smoothing, we fit
this data with a form appropriate to three-dimensional
diffusion:’ R(7)= 4 1-*3/2exp( —B /1), where A and B are
constants. The diffusion form does look like a good en-
velope of the response-function data. In Fig. 3(b), we
show 7., the time delay of the maximum of the
diffusion fit versus the source-detector distance L;. The
diffusion wave picture naturally leads to a prediction that
Tmax depends quadratically on the distance: 7, ~L2.
However, we see that the data follow a linear, not a quad-
ratic form, which gives rise to a constant velocity
dL;/dT,,,=110+15 m/s. Unless we assume that the
effective dimensionality of the diffusion paths changes
with distance from the source, it is clear that the aver-
aged response is inadequate to characterize the wave
propagation in sand. We argue that the number of the

system. Figure 4 shows the amplitude of the detected
wave A, as a function of the source amplitude. At low
amplitudes, 4, varies linearly with 4,. As A, increases
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FIG. 4. The detector amplitude A4, vs the source amplitude
A;. Each set of curves corresponds to first increasing (filled
symbols) and subsequent decreasing of A, (open symbols). In
(a) the lower curve shows the behavior during the first run at a
given frequency of increasing and then decreasing A,. Clear
hysteresis is evident at large values of A;. The upper curve, dis-
placed vertically for clarity, shows what happens during subse-
quent runs where the hysteresis has almost-completely disap-
peared. In (b) we show what happens when A, is increased far-
ther into the nonlinear regime. The hysteresis now occurs over
the entire range of A;.
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above 0.1 g, we find that the behavior begins to depart
from linearity. At about the same value of A4, we see that
hysteresis becomes apparent; the curve measured when
decreasing the amplitude (open symbols) does not repro-
duce the initial curve measured with A increasing (filled
symbols). This indicates that there is movement of the
particles so that the sound paths are altered. In the bot-
tom set of curves in Fig. 4(a), where A is increased only
slightly into the nonlinear regime, we see that the two
traces taken by first raising and then lowering A, are
different from each other only at large values of A,
whereas they seem to coincide at low amplitudes. If we
now repeat the measurement a second time at the same
frequency [as shown in the upper curves of Fig. 4(a)] we
find that on increasing A; we recover almost the identical
curve that was last obtained on lowering 4. Subsequent
runs at this frequency continue to repeat this same
behavior. Thus, most of the changes in the curve take
place in the first run of increasing A;. However, if we
now change the source frequency, we again find strong
hysteretic behavior during the first run and only after this
do we get reproducible behavior at that frequency. In
Fig. 4(b), we see that when A; is increased even further,
the two traces remain different over the entire span of 4.

We hypothesize that when the amplitude has not been
increased too much, the changes that occur in the pile are
of two distinct kinds. At low amplitudes we see only
linear and reproducible behavior which does not change
even after increasing the source amplitude into the non-
linear regime. We believe the motions that occur in these
runs are due to the grains not belonging to the primary
force chains. At larger source amplitudes these small
motions can change the sound propagation since the am-
plitude of oscillation is sufficient in this regime to bring
into contact particles which had not previously been
touching (consistent with the onset of nonlinear behavior
near this point), whereas, at low amplitude they do not
contribute to the sound propagation. Upon changing the
source frequency a new region of the sample is affected
since the maximum in the oscillation will occur in
different regions of the sample for different frequencies.
Thus, each time the frequency is changed, new hysteresis
will be found for the first run after which this annealed
configuration becomes stable. If A, is increased too far,
the changes become permanent since the motions now
occur not only in the looser particle but also in the strong
backbones of the arches.

If we scan frequency at a very low amplitude, we find a
curve with many sharp features as was shown in Fig. 1(c).
If we now increase the amplitude of the source, we find
curves that are very similar to the initial one at low am-
plitude but with small frequency shifts. This is shown in
Fig. 5(a) for the detector placed at a distance L; =4 cm
from the source. The curves are displaced vertically for
clarity. As the source amplitude increases, we find a shift
of the frequency of each feature to lower frequency. We
also see that some features decrease in intensity as A4 in-
creases, such as the feature at v=4150 Hz. Other
features remain approximately independent of amplitude
while others have been observed to increase in strength as
A, increases. We can measure the magnitude of the fre-
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quency shift, Av, as a function of A; for each of the
features. In Fig. 5(b) we show the results, taken from
several different runs, for features in different frequency
bins ranging from v=1.5 to 9.5 kHz. All of the shifts are
toward lower frequency. There is no clear trend of the
magnitude of Av with frequency. This is shown in Fig.
5(c) where we plot Av at a value of 4, =0.07 g versus fre-
quency v. If the sound waves were localized, with a lo-
calization length depending strongly on frequency, we
might have expected a correlation of Av with v as had
been found in a simulation of localized phonons in
glasses.!” The failure to find such a correlation indicates
that the localization length may not be strongly depen-
dent on frequency in the regime that we have investigat-
ed.

Sound propagation in granular media behaves in a
number of unexpected ways. Even the simple measure-
ment of the velocity of sound indicates complex behavior.
Depending on how we perform the measurement in the
linear response regime (e.g., by time of flight or by a mea-
surement of phase versus frequency) we find that the ve-
locities can differ by a factor of 5. However, if we in-
crease the amplitude of the source we can explore non-
linear effects. The onset of nonlinearity is close to where
we first see hysteretic behavior setting in. The behavior
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FIG. 5. (a) The frequency response function 7(v) of the
detector for seven different source amplitudes A; as labeled in
the figure. The detector is placed 4 cm away from the source.
(b) The frequency shift Av vs source amplitude A; for eight fre-
quency bins as labeled in the figure. (c) The frequency shift Av
vs frequency v at a source amplitude 4,=0.07 g.
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of this hysteresis is consistent with an interpretation in
terms of force chains that carry the sound. Minute rear-
rangements of the beads and their contacts can account
both for the hysteresis and for the noise in the transmis-
sion of sound observed in our previous studies. As we in-
crease the source amplitude, we also observe small fre-
quency shifts in the features in the transmission spectra.
In principle, these frequency shifts could have indicated
the presence of localized vibrational modes with different
localization lengths as a function of frequency. However,
our data indicate that the magnitude of the shifts do not
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strongly depend on frequency. We are presently extend-
ing our studies of the spatial extent of the modes by using
the extreme dependence of the signal to small tempera-
ture fluctuations.
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