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A Gaussian size distribution of independently relaxing domains is used to model the response of vari-
ous glass-forming liquids. With a single temperature-dependent parameter, the model accurately charac-
terizes the observed dielectric susceptibility of salol and glycerol [P. K. Dixon et ai , Ph.ys. Rev. Lett. 65,
1108 (1990); N. Menon et al. , J. Non-Cryst. Solids 141, 61 (1992)j over more than 13 orders of magni-
tude in frequency. The quality and range of these data allow quantitative confirmation of all assump-
tions of the model. As a function of temperature, the model gives excellent agreement with observed
asymptotic relaxation rates (w„)via [1n(l/w„)—1n(1/wo)] ~s, where s is a temperature-dependent
average domain size, and wo a constant intrinsic relaxation rate. Thus, the model provides a physical ex-
planation for non-Arrhenius primary response, without resorting to the three adjustable parameters of
the Vogel- Tammann-Fulcher law.

INTRODUCTION

Few materials obey Arrhenius' law for dynamical
response. ' The most commonly used empirical expres-
sion for the temperature ( T) dependence of the peak ab-
sorption frequency (v„) is the Vogel- Tammann-
Fulcher (VTF) law [In(l/v )-ln(l/ vo) j 0- 1/(T —To),
where vo and To are constants, and To )0 indicates devi-
ation from Arrhenius behavior. Although the VTF law
has been used to characterize response from a wide
variety of materials, its specific temperature dependence
is difficult to justify using conventional modifications of
Arrhenius' law. Furthermore, measurements over a
sufhcient range invariably show deviations from VTF
behavior, indicating that the VTF law is only an approx-
imation. Other expressions have been proposed, " but
most have at least three adjustable parameters, and none
is clearly favored over the VTF law. The Williams-
Landel-Ferry expression is a variation of the VTF law in
which T—To is replaced by free volume. ' ' This
modification has theoretical justification, ' but usually
does not fit data as well as the VTF law. A key feature
of the free-volume approach is that net response comes
from coherent clusters, which relax via activation over
potential barriers with heights that increase with increas-
ing cluster size, so that non-Arrhenius behavior arises
from a temperature-dependent average cluster size. '

The principal distinction of our approach is that we con-
sider the relaxation of low-energy, internal degrees of
freedom, for which the energy-level spacing decreases
with increasing size. Our approach is an example of lo-
calized normal-mode analysis, similar to that first pro-
posed by Zwanzig, ' but difFers from most recent treat-
ments' which neglect the size-dependence of the relaxa-
tion rate.

Generally, systems that exhibit non-Arrhenius temper-
ature dependence also exhibit non exponential relaxa-
tion. ' Common empirical expressions that have been
used to characterize the observed response from a wide

variety of materials include the Kohlrausch-Williams-
—

( ' /T)~Watts (KWW) stretched exponential e " ', Curie-von
Schweidler powerlaw t, and Neel logarithmic time
dependence ln(t). ' ' Unfortunately, these mathematical
functions are also common approximations to a wide
variety of models, ' hence fitting with these functions
cannot isolate a specific mechanism. Furthermore, all of
these functions have divergent slopes at short times,
hence they can only be approximations valid over a limit-
ed range. Indeed, measurements over sufhcient range in-
variably demonstrate deviations from these expressions.
Recently a specific model has been shown to provide
better agreement with the observed response from dozens
of difFerent materials, including magnetic relaxation in
spin glasses, oxide superconductors, and single-crystal
ferromag nets; structura1 relaxation in liquids,
glasses, polymers, and crystals; as well as dielectric
susceptibility of glass-forming liquids. ' Here we show
that this model provides a physical explanation for
temperature-dependent relaxation rates, and excellent
agreement with observed non-Arrhenius response of
glass-forming liquids, without resorting to the three ad-
justable parameters of the VTF law.

MESOSCOPIC MODEL

Our model is based on the assumption that a macro-
scopic sample contains a myriad of independently relax-
ing regions. We define a dynamically correlated domain
(DCD) as a region where excitations relax with a single
(locally uniform) relaxation rate. In some systems, a
DCD may correspond to a region where local excitations
share a common phase factor (quantum mechanically
coherent), thus ensuring uniform relaxation throughout
the domain. Thermodynamically, a DCD is a locally
canonical system, whose energy need not be in equilibri-
um with neighboring domains or the thermal bath. The
prevalence of inhomogeneous spectral broadening indi-
cates that many amorphous materials possess a distribu-
tion of local relaxation rates. Time- and temperature-
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dependent magnetizations of EuS (Ref. 23) and Fe (Ref.
24) show that DCD's can dominate the behavior of or-
dered single crystals. Multidimensional NMR has clearly
demonstrated that the primary response in a glass-
forming liquid is due to a heterogeneous distribution of
DCD's, which become dynamically homogeneous only
after essentially all of the primary response is complete;
a typical average diameter is found to be -35 A. '

A simple picture of correlated vibrations (phonons) is
as follows. (Similar pictures apply to magnons, polari-
tons, etc.) In condensed matter at finite temperatures,
molecules may execute random (Einstein-oscillator-like)
local vibrations. A reduction in energy occurs if neigh-
boring particles Auctuate coherently, so that they main-
tain virtually equilibrium separation at all times, not
merely when time averaged. Since this energy reduction
is on the order of k&T, these "dynamical correlations"
will be thermally distributed throughout the sample, and
may inAuence behavior at all temperatures. For harmon-
ic interactions in a perfect crystal, Bloch's theorem re-
quires that all Auctuations be a linear combination of
plane-wave excitations; in real systems, normal-mode ex-
citations may be transiently localized into DCD's. Many
physical systems exhibit evidence for mesoscopic dynam-
ic correlation, including the simulated two-
dimensional liquid shown in Fig. 1. In Fig. 1, distinct
dots indicate "molecules" that oscillate harmonically
about an equilibrium position, whereas snakelike chains
indicate diffusive motion characteristic of a boundary be-
tween dynamically correlated domains.

Assuming a domain-size distribution n„with size-
dependent initial response P, and relaxation rate w„the
net relaxation is the weighted sum over all sizes

FIG. 1. Analog simulation of a two-dimensional liquid (Ref.
3S). Steel balls, 1/16 in. in diameter, are placed between two
electrified conducting plates, so that the balls experience repul-
sive dipolar interaction. The apparatus is placed on a vibration
table to simulate temperature. Raw video images ( —30
frames/sec) appear to show random "molecular" vibration.
This photograph was made using a 1-sec exposure time, from
video images averaged over 16 frames. Video averaging
suppresses harmonic oscillations, revealing blurred (snakelike)
surfaces of difFusive motion, which form boundaries between
dynamically correlated domains.

—tP(t)=g, o[P, n, ]e '. Here s is the number of parti-
cles in a DCD, which contribute to response, hence s is
usually proportional to volume. Some physically reason-
able assumptions are made to obtain the size dependences
of P„n„andw, .

Equilibrium response is assumed to be proportional to
the number of responding particles, P, =Pos, which is
simply the thermodynamic requirement that response per
particle (Po) is a homogeneously intensive quantity. If a
system is to approach thermodynamic equilibrium, de-
tailed balance requires that the ratio of relaxation rates
between states separated by energy 6E, must be
e '; thus, assuming a uniform asymptotic rate
(tie ), local relaxations obey activated (Arrhenius-like)—5Es /2k& T
behavior, w, =w e ' . The key assumption
which distinguishes our approach is that we consider the
relaxation of low-energy internal-degrees of freedom, for
which the density of states is proportional to volume
5X/~5E,

~

o=s, so that the spacing between adjacent
(5N = 1) energy levels is ~5E, ~

o- I/s. In 1937,
Frohlich first considered finite-size effects in perfect
spheres, and obtained the standard quantum-mechanical
result that energy levels vary inversely proportional to ra-
dius squared, ~5E, ~

~ 1/s . In 1962, Kubo recognized
that imperfections will normally remove the degeneracies
inherent in ideal spheres, so that real mesoscopic systems
usually obey the thermodynamic requirement:
~5E, ~ 1/s. We implement this requirement to obtain re-
laxation rates that vary exponentially with inverse size.

This key assumption, that densities of states are exten-
sive quantities, can be pictured in several ways. For sim-
ple comparison to local excitations (Fig. 2), consider a
one-dimensional lattice of alternating masses m

&
and m2,

connected by springs of constant ~. Initially let m2 = ~
[Fig. 2(a)], so that motion consists of local (Einstein)
oscillators with degenerate energy E, =iii+2~/m, . Even
if randomness removes the degeneracies, local oscillations
do not depends on domain size. For finite mz [Figs. 2(b)
and 2(c)] interactions between local oscillators yield
dispersive phonon bands. In general, bandwidths
(6—fi+vlm i z ) are independent of domain size,
whereas the number of degrees of freedom that fill the
bandwidth is proportional to s; hence the average
energy-level spacing is ~5E, ~

~ 1/s.
Figure 3 is a comparison to the picture that slow relax-

ation comes from activation of statically correlated clus-
ters. Often, potential energy is plotted as a function of
configuration, where nearby points in configuration space
represent small changes in the positions of a few atoms. "'
Slow relaxation is attributed to activation over large bar-
riers (involving sudden repositioning of many particles) to
a distant configuration, Fig. 3(a). Such a picture requires
considerable structural inhomogeneity (large rigid clus-
ters held softly in place) and immediate communication
across the sample (if the system is to be defined by a sin-
gle configuration space). Often, barrier heights are as-
sumed to increase with some power-law size dependence,
~5E,

~

~s; generally, large rigid clusters have large bar-
riers, so that a) 0. By contrast, we consider internal de-
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grees of freedom governed by thermodynamics, so that
o.= —1; energy-level spacings decease with increasing
size because large domains have more degrees of freedom.
Furthermore, DCD formation does not require structural
inhomogeneity, and during primary response, communi-
cation occurs only across mesoscopic regions of the sam-
ple. [Secondary responses that involve communication
between domains (e.g. domain growth, direct energy ex-
change, or particle diffusion) are assumed to occur after
primary response, as shown by multidimensional
NMR. ] To relate our picture to the previous view, con-
sider a local configuration space for each DCD, Fig. 3(b).
Since DCD's are finite sized, each configuration space is
discretized, so that energy-levels near a local minimum
may resemble a quantized oscillator. Primary response
involves changing the level of excitation about distinct lo-
cal minima. Slow relaxation comes from a rapid intrinsic
attempt frequency, which is reduced by the virtually bal-
anced net relaxation rate between closely spaced energy
levels. Thermodynamics requires that the density-of-
states of all dispersive excitations must be proportional to
the volume of their domain, hence the average energy-
level spacing is

~
6E,

~

~ 1/s.

Another contrast to the previous notion that slow
response in glass-forming liquids comes from semirigid
clusters (where activation over an intermediate barrier re-
quires 6E)0) is that we find M, (0. To show that
6E, (0 for all simple thermodynamic systems, consider a
two-level system with energy-level spacing 5E2 [Fig. 4(a)]
and relaxation governed by the master equations:
dip /dt =w X& w+ Np and dX& /dt =w+ Xp w
Assuming a symmetric intrinsic attempt frequency—'BE~ /2k~ T
wp, detailed balance yields w+ =wpe ' and—( —6E2 )/2k~ T
w =wpe ' . The net relaxation rate for the
out-of-equilibrium eigenstate is w ~

=w+ +w
=2wocosh(5E2/2k& T). Thus, simple systems with
large energy-level spacing always relax faster than sys-
tems with small energy spacing. ( The traditional
result of slowly relaxing systems with large barriers re-
quires three or more energy levels constrained to
relax over an intermediate barrier [Fig. 4(b)], so that
w3 —2/(it~+'+tv ' ). )
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FIG. 2. Real-space oscillations and reciprocal-space energies
for a finite linear chain of masses connected by springs of con-
stant s. [For clarity, transverse oscillations are shown, although
longitudinal oscillations predominate in liquids. ] (a) For alter-
nating masses m i (grey) and m2 = ~ (black), excitations consist
of dispersionless, local oscillations, with energy E, =A+2s. /m, .
[Randomness would break the degeneracy of E, , but excitations
remain localized with an average energy-level spacing that is in-
dependent of domain size. ] (b) Finite m 2 )m, yields
dispersive optical and acoustical branches, with bandwidths

[+iii2 (1s/m, + 1/m2) —Q2v/m, ] and 62=R+2il/mz,
respectively. (c) When m2 =m

&
=m the real-space primitive

cell is reduced, leaving only an acoustical branch, with
6=26&K'/m . Bandwidths are independent of domain size,
whereas the number of energy-levels, which fill 6 is proportion-
al to s, yielding ~6E,

~

~ 1/s.

FIG. 3. Real-space and configuration-space comparison be-
tween response due to semirigid clusters and our model for lo-
calized normal modes. (a) Sudden repositioning of large
semirigid clusters occurs via activation over a large energy bar-
rier to a distant point in configuration space. This picture re-
quires considerable inhomogeneity (rigid clusters held softly in
place) and macroscopic ergodicity (if a single configuration
space is to be defined for the entire sample). (b) DCD formation
does not require structural inhomogeneity. Mesoscopic ergodi-
city may be characterized by a separate configuration space for
each DCD. Primary response involves transitions between dis-
tinct energy-levels near a single minimum for each DCD.
Secondary responses involving communication between
domains (e.g., domain growth, direct energy exchange, or parti-
cle diffusion) have been shown to occur after primary response
(Ref. 30).
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1 i—(ro/w )
y((o)CCPo J [xe ' "'

] dx .
0 I+(co/w )

(2)

W

(c)

Equations (1) and (2) have four adjustable parameters: Po
accommodates the magnitude of response, w governs
the time scale of response, C adjusts the spectral shape,
whereas the (scaled) average domain size x =s /(r
inAuences the magnitude, time scale, and spectrum of
response.

COMPARISON WITH MEASUREMENTS
FIG. 4. (a) Two-level systems have net relaxation rates

[w2=(w++w )=2wocosh(8Ez/2ks T)] that increase with in-

creasing energy spacing. (b) Three-level systems may have
w, -2/(

w +
' +w '

) only if relaxation requires activation
through an intermediate level (Ref. 42). (c) Multi-level systems
(such as DCD's) involve multiple transitions between many lev-
els. Near thermodynamic equilibrium, if transitions occur over
a range of energy fluctuations (P&&), net relaxation rates in-
crease exponentially with increasing energy spacing.

16Ep12k~ T
Two-level systems have w 2

=w 0e ' only if
~5Ez~ ))k&T. Multilevel systems (such as DCD's) may
have transitions between many levels [Fig. 4(c)], so that
the net relaxation rate varies exponentially with inverse
size even if ~6E, ~

&&k TE. In general, thermal fiuctua-
tions combine closely spaced energy levels to form "super
levels, " with larger effective spacing. Specifically, assum-
ing Gaussian Auctuations in the energy of each level

IPsE ~exp[ (6E) sf"(E—, )/2k' T]],
and Fermi's Golden Rule for transitions that vary as the
square of their overlap, the net relaxation rate may be
written as

[Here f (E) is the free energy per particle for the excita-
tion of interest, and f"(E,) its curvature about equilibri-
um. ] All glass-forming liquids we have analyzed have re-
laxation rates that increase exponentially with inverse
size, indicting that primary response occurs near a stable
equilibrium [f"(E,) )0], without activation over an in-
termediate barrier.

The final assumption is that randomness yields some
specific domain-size distribution. Liquids (and other er-
godic systems) generally exhibit a Gaussian distribution
of domains, indicative of equilibrium long-ranged ran-
domness. ' ' ' ' For deviation o. about an average—e(s —s)/crsize s, the distribution of DCD's is n, ~e " ' . Us-
ing x =s/cr, the net relaxation becomes

—(x —x)P(t) ~Po [xe '" ' ]e " dx,

where the "dynamical correlation coefficient" for
thermally combined "super levels" is
C= —I/[16(Tf"(E, )ktit]. The complex susceptibility as
a function of frequency is equal to the Fourier transform
of —d [P(t)]/dt. Using w =w e /", Eq. (1) yields

The size-dependent weight factor [xn
&
—O —(x&—X)'=x ' e ' '

] used in Eqs. (1) and (2) assumes homo-
geneous equilibrium response ( 1 —0= 1 ) and a random
distribution of domain Volumes ((=1). If response was a
surface effect, or if radius was the relevant parameter of
randomness, then one would expect 1 —0=2/3 or
g= 1/3, respectively. When fitting data that span
sufhcient dynamic range, these size-scaling exponents
may be set free as additional adjustable parameters, so
that size-scaling is solely established by the inverse-linear
behavior in the exponent of w =w e ". From the
dielectric response of salol and glycerol we obtain
1 —(9=0.98+0. 13 and /=0. 994+0.04. Excellent agree-
ment with the exact predictions quantitatively confirms
all assumptions of the model: homogenous equilibrium
response (1—6)=1), Gaussian distribution of excitation
Uolumes ((=1), and relaxation rates that vary exponen-
tially with inverse size (otherwise 1 —(9 and g would devi-
ate to compensate). Empirically, within experimental un-
certainty, Eq. (2) is the correct response function for
these data.

In principle, both x and C could accommodate varia-
tions in the spectral shape of Eqs. (1) and (2). Experimen-
tally, however, the ratio x/C [=—16sf"(E,)kET] is
constant, independent of temperature; for example,
x/C= —0. 182+0.003 from the dielectric susceptibility
of salol. Furthermore, a similar ratio
(x /C = —0. 19+0.02) is found from a variety of
measurements on other glass-forming liquids,
and x /C =0. 197+0.02 for magnetic relaxation in
single-crystal iron; but glycerol is different
x/C= —0.269+0.005. Note, however, that the ratio of
glycerol to salol is 1.48+0.03, suggesting that most
"liquids" have D =3 degrees of freedom, while glycerol
has D =2. (Presumably hydrogen bonding reduces the
degrees of freedom for elementary excitations
in glycerol. ) Combined, these measurements yield
x

~
C

~

= (0.5415+0.007)/D. Theoretically, such common
behavior must be due to a ubiquitous mechanism for
dynamical correlation. Experimentally, once the con-
stant value of x /C has been determined for a particular
substance, Eqs. (1) and (2) accurately model observed
behavior with a single adjustable parameter governing
the entire shape of response.

The net primary response of a system can be deter-
mined by extrapolating Eq. (1) to t =0 or the real part of
Eq. (2) to (o=0. Figure 5 shows the temperature depen-
dence of I/g'(0) from measurements of salol and gly-
cerol. The observed net response may be approximated
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FIG. 5. Inverse net equilibrium response as a function of
temperature for ( X ) salol (Ref. 47) and (+) glycerol (Ref. 7).
Solid lines are the best fits to a Curie-gneiss law
[g'(01=4/( T—0)] yielding 4= 1040 K and 0=21 K for salol,
and &=7500 K and 0= 82 K for glycerol.
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by the Curie-Weiss law [y'( 0)=4& /(T 8) solid li—nes],
with @=1040K and 61=21 K for salol, and +=7500 K
and 0=82 K for glycerol.

Figure 6 is an Arrhenius plot of log&o(1/vz) versus
T /T, where T is the glass-transition temperature
(-217 K for salol and —185 K for glycerol). In Fig. 6,
so-called ' strong" (Arrhenius-like) liquids (e.g. , SiOz)
exhibit linear behavior (solid line). Intermediate liquids
(e.g., glycerol) show moderate deviations from
Arrhenius-like behavior, which can be approximated by
the VTF law (dashed curves). "Fragile" liquids (e.g.
salol) show very non-Arrhenius behavior, which is some-
what more poorly approximated by the VTF law. For
single exponential (Debye-like) response (C =0), the
asymptotic relaxation rate corresponds to the peak fre-
quency: w =2~v . For non-Debye response, v de-
pends on w and the width of the distribution, similar to
the fact that (I/r)&2mv when /3&1 in the KWW func-
tion. For glass-forming 1iquids, C & 0 so the largest

DCD's relax the slowest: w &2wv . It is difficult to
determine w accurately without careful analysis using
Eq. (1) or (2), but typically w /2m is on the low-
frequency side of the absorption peak, where g" is an or-
der of magnitude below its peak value. Since v depends
on w and the distribution of DCD sizes, no simple tem-
perature dependence for v can be found. Although w

is a more fundamental relaxation rate, spectral widths are
relatively weakly temperature dependent, so 1/w also
diverges more rapidly than Arrhenius' law as tempera-
ture is lowered.

Intrinsic attempt frequencies should not vary
significantly with temperature, suggesting that any
significant change in the net relaxation rate must
be due to the temperature dependence of s in

C /X
O

{D /0 54 1 5 )S /So=woe '=woe Here wo is an intrin-
sic relaxation rate corresponding to a domain of size so.
Presumably so is the minimum number of particles which
may form a DCD and relax coherently (so ~ 1), but it is
sufficient to assume that so is some characteristic small
size. Thus, slow relaxation of large domains comes from
a rapid intrinsic attempt frequency, which is reduced by
the virtually balanced net relaxation rate between closely
spaced energy levels. This concept of rescaled relaxation
rates is reminiscent of the model of Ngai and co-
workers, ' who assume that primary relaxation is
homogeneously broadened by a coupling to low-energy
excitations. In our approach, however, primary response
is due directly to changes in the number of low-energy
normal-modes; with the key distinction that we consider
a heterogeneous distribution of exponentially relaxing
domains.

Variations in s may be deduced from the measured net
response normalized by the expected intrinsic response
s ~y'(0)/Po. With decreasing temperature, Debye's T
law suggests that the intrinsic response of low-energy
normal modes should decreases as I'o ~ T, where y=3.
Experimentally, however, the net response increases as
y'(0)=C& (/T 0) (Fig. 5); h—ence the average DCD size
must increase as

r~y'( )0/P~ [&0/(T 8)]/T' . —

Indeed, least-squares fits to the data using
In(1/w )=a +by'(0)/Tr yield @=2.9+0.4, quantita-
tively confirming the expected temperature dependence.

If changes in the observed relaxation rate are due sole-
ly to changes in DCD size, the model predicts a constant
slope

B=(D/0. 5415)s(T )/so

in
—150.0 0.2 0.4 O. EI O. EI $. 0 [ln(1/w ) —ln(1/wo)]=B[s(T)/s(T )] .

FIG. 6. Arrhenius plot of inverse peak-response frequency as
a function of inverse reduced temperature. Solid line indicates
Arrhenius-like behavior. The non-Arrhenius behavior of ( X )

salol (Ref. 47) and (+) glycerol (Ref. 7) may be approximated by
the empirical VTF law, dashed curves.

Figure 7 is a semilog plot of 1/w as a function of re-
duced average DCD size,

s ( T) /s ( T~ ) = [ ( Ts 8)Ts ]/[( T 8)T ] . — —

Salol exhibits a constant slope, with relatively rigid exci-
tations (B=38 and wo = 1.4 X 10' sec ', solid line).
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FIG. 7. Semilog plot of inverse asymptotic relaxation rate as

a function of s( T)/s( T~ ) = [(Ts —0)T~ ]/[( T 0)T']. T—he
model predicts constant slope (8) in [1n(1/w„)—1n(1/too)]
=B[s(T)/s(T )s]. Both ( X ) salol (Ref. 46) and (+) glycerol
(Ref. 7) exhibit regions of linear behavior, indicating that net
response may be characterized by temperature dependent s, and
a constant microscopic relaxation rate: wo =1.4X 10" sec ' in
salol (solid line), and No =5 X 10 sec ' for T (240 K (solid line)
and mo=7X10' sec ' for T~240 K (dashed line) in glycerol.
Inset: log-log plot of Aln(m )/hT vs T. Over the available
temperature range, the slope is —4.9+0.4, consistent with 6
ln(u )/AT ( ~ 1/T ) expected from the model.

This intrinsic relaxation rate coincides with the observed
microscopic band at wp/2m = 1 THz. Glycerol has two
regimes of constant slope. A low-temperature regime
(T(240 K) of relatively soft excitations (wc =5X10
sec with B=27, solid line), and a high-temperature re-
gime of stiffer excitations (wo =7 X 10' sec ' with
B =49, dashed line). At low temperatures, wo is charac-
teristic of measured rotational jump frequencies, —10
sec '. ' At higher temperatures, wp is consistent with lo-
cal relaxation rates, —10" sec '. Since B ~D/sp, a
change in slope could be due to a change in the degrees of
freedom for the primary excitations or a change in the
minimum size for coherent relaxation. For T ~ 240 K we
find x /~ C

~

= (0.269+0.005)=0.5415/D, whereas for
T 24~0 K, x/ C~ =0.29+0.07; evidently, the increased
slope above 240 K is primarily due to a sharp decrease in
Sp.

Sometimes it is inconvenient (or impossible) to accu-
rately determine the net response of a sample. Fortunate-
ly, in liquids where T & T &)0, the Curie-Weiss law may
be approximated by the Curie law, y'(0)=4!T. If, in
addition, the temperature is still low enough that Debye's
T law remains valid, the model predicts relaxation rates
that vary as [ln(1/w ) —In(1/wo)] ~ I!T~. Indeed, a
log-log plot of Aln(w )/b ( ~ 1/T ) (inset of Fig. 7)
shows a slope of —4.9+0.4 for both salol and glycerol.
Figure 8 is a semilog plot of 1/w as a

FIG. 8. Semi-log plot of inverse asymptotic relaxation rate as
a function of [Ts/T] for ~ Agl-Ag2So4-Ag2WO4 (Ref. 57), ~
phenolphthalein (Ref. 28), 0 Se84-As»-Ge4 and Se47-As46-Ge7
(Ref. 18). Over a broad temperature range, the model predicts
[ln(1/w„)—ln(1/wo)] ~ 1/T . All systems show constant
slope, with intercepts that yield intrinsic relaxation rates of
wo =10 —10"sec ', see Table I.

function of (T /T) for several glass-forming liquids.
All data are consistent with s o- 1/T predicted by
the model, but these measurements are over too limited
a range to show deviations from Arrhenius' law
[ln(1/v ) —ln(1/vo)] ~ 1/T. Assuming Arrhenius
behavior, however, generally yields nonphysical attempt
frequencies (vo&)10 Hz), whereas Table I shows more
reasonable values for wp.

Statistical comparison between the temperature depen-
dence predicted by the model [ln(1/w„)—In(1/wo)]
~ y'(0) /T and the VTF law [ln(1/v )

—ln(1/vo) ]
~ 1/(T To) is ham—pered by the model's relevance to
the asymptotic relaxation rate, which is not as well
defined experimentally as the peak-absorption frequency.
Nevertheless, g deviations of w from the model, are
comparable to deviations of v from the VTF law:

g /yy&„=0.39 and 3.7 for salol and glycerol, respective-
ly. Although Tp is often suggestively close to the
Kauzmann temperature ( Tk ), many measurements indi-
cate physically unreasonable Tp (Tk. The model pro-
vides equally good agreement with the data, without in-
voking this additional adjustable parameter; evidently Tp
is superAuous, with no physical significance, and v is an
artifice of the intrinsic relaxation rate and a most prob-
able domain size.

Once the intrinsic relaxation rate and temperature-
dependent net response of a particular substance have
been determined, Eqs. (1) and (2) describe observed
behavior with only the single adjustable parameter that
governs the spectrum of response. For example, Eq. (2)
may be rewritten

J (xe ' ' )[[1 (cot/W„)]/—[I+(co/8' ) ][dx
x(~)=

T—0 f [
—(x —x) ]d
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TABLE I. Fitting parameters for various glass-forming liquids. vo is the apparent attempt frequency,
assuming the VTF law for salol and glycerol, and Arrhenius' law for the other substances. wo is the in-

trinsic relaxation rate, and B the slope, in the model expression
[ln(l/w„) —ln(1/wo)]=B[s(T)/s(T )], assuming [s(T)/s(Ts)]=[(Tg —0)Ts/(T 0)—T ] for salol
and glycerol, and =[(T /T) ] for the other substances. D is the apparent degrees of freedom for the
elementary excitations. Also shown are the Curie (N) and Weiss (0) constants for the dielectric
response of salol and glycerol.

Ref.

45

18

57

vo (Hz)

3 X 10'

4x10"
1p68

1030

1025

1p48

Salol

Liquid

Glycerol

Phenolphthalein
Sc84-As i 2-Gc4
Sc47 As46-Ge7

AgI-Ag2SO4-Ag2WO4

&240 K
&240 K

wo (sec ')

1.4x10"
5X 10
7x1O"
1 x 1O"
3x 10
1X 10'
8 x10'

38
27
49
42
19
21
26

N(K)

1040

2 7500

21

82

where x =
~
C (0.5415/D) and

—&[&(T)r&(& )] g/~w =woe e

Using the values in Table I, and C as the only adjustable
parameter, Fig. 9 shows excellent agreement with mea-
sured dielectric absorption of salol and glycerol over a
wide temperature range, and more than 13 orders of mag-
nitude in frequency. The magnitude of C (inset) exhibits
a maximum at a temperature ( Tc) about 50 K above T .

-0'
200 y (K) 320

Presumably, the maximum in ~C~ indicates an optimal
balance between thermal energy (which drives dynamical
correlation) and entropy (which drives randomness).
Above Tc, correlations drop rapidly as entropy prevails.

The behavior near Tc signifies abrupt changes in the
spectrum of response, which may be related to the
dynamical anomalies reported for various glass-forming
liquids at 3S—90 K above T . "' An ergodicity-breaking
transition above T was predicted by mode-coupling
theory (MCT), but we emphasize that our model of ex-
ponentially relaxing domains is incongruent with MCT.
It is possible that MCT could be relevant to the interac-
tions between DCD's (indeed, in Fig. 7, the change in wo
of glycerol suggests intermolecular rotations below Tc,
and intramolecular relaxations above Tc), but it is not
clear how MCT could explain the correct distribution of
exponentially relaxing domains. Even for glycerol at
T ) Tc ( ~ 240 K, where the diminished dynamic range
of the data increases the uncertainty), we find
1 —8=0.6+0.5 and g = 1.06+0.07 affirming all assump-
tions of our model. Furthermore, using our model, there
is clear evidence for a well defined ergo-dicity breaking
transition at T, =T .

CQNCI. USIONS

1
1

1P ~pl
v (HZ)

1
1

1P' 1p

FIG. 9. Log-log plot of dielectric absorption as a function of
frequency for (a) salol (Ref. 45) and (b) glycerol (Ref. 7). At
high frequencies, the data demonstrate unambiguous deviation
from the empirical KWW stretched-exponential [frequency-

dependent form of e "~ ', dashed lines]. Solid curves are the—{f/~)f

best fits to Eq. (3), using values from Table I, and C as the only
adjustable parameter. Inset: the magnitude of the dynamical-
correlation coefficient for both ( X ) salol and (+) glycerol ex-
hibits a peak at temperature Tc Tg + ( 50 K) and rapid de-
crease above T&.

A thermodynamic model for a Gaussian distribution of
independently relaxing domains gives excellent agree-
ment with observed dielectric susceptibility of salol and
glycerol over more than 13 orders of magnitude in fre-
quency. The quality and range of these data permit
quantitative confirmation of all assumptions of the mod-
el. As a function of temperature, the model predicts
that observed relaxation rates should vary as
[ln( 1/w „)—ln( 1/wo ) ] ~ s. Changes in the average
domain size may be deduced from the measured net
response normalized by the expected intrinsic response,
s ~ y'(0) /T3. Over a broad temperature range above Ts,
s ~ 1/T . In contrast to the Arrhenius law ( —1/T), the
model yields excellent agreement with observed relaxa-
tion rates, and physically meaningful values for wo,
without resorting to the three adjustable parameters of
the VTF law. Thus„non-Arrhenius response may be
characterized by temperature-dependent dynamically
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correlated domain size, and a constant intrinsic relaxation
rate.
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