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When the energy difFerence between two electric subbands in a quasi-two-dimensional electron system
equals a LO-phonon energy, resonant scattering will occur. This leads to an enhancement of the scatter-
ing rate and, consequently, to a suppression of the conductivity. Changing the energy difference between
the electric subbands (e.g., through a gate) leads to a series of electrophonon resonances in the conductivi-
ty. A detailed study is made of this effect for different confinement potentials. We found that the
scattering processes where the emission of a phonon is involved are very important for the electropho-
non resonance and that the size of the effect decreases with increasing temperature.

I. INTRODUCTION

For temperatures T & 50 K, scattering with
longitudinal-optical (LO) phonons is the dominant
scattering process limiting the mobility of electrons in a
polar semiconductor' like GaAs. The effect of the elec-
tron LO-phonon coupling on the electrical properties is
influenced by the fact that the electrons are confined to
move in two dimensions (2D). For example, during a
scattering event the momentum in the z direction is no
longer conserved. This leads to an enhancement of the
one-electron effective electron-phonon interaction and
consequently to a lowering of the mobility. Recently it
was shown that the one-electron LO-phonon scattering
limited mobility in 2D is related to the three-dimensional
(3D) result by the relation p2D(a)=p3D(37ra/4), where

p„D is the mobility of an n-dimensional system and a the
electron-phon on coupling constant. Because 3'/4
=2.36) 1, the high-temperature mobility (p-1/a) of an
ideal one-electron 2D system is reduced by a factor 0.42
as compared to the corresponding 3D system. In real
systems the situation is more complicated: (1) We have a
two-dimensional gas of electrons (2DEG) such that
many-particle effects such as occupation effects, screen-
ing, electron-electron scattering, etc. , are important and
(2) the 2DEG has a finite width which will reduce the
effective electron-phonon interaction.

In most papers on electron transport in a quasi-two-
dimensional electron gas (Q2DEG), one assumes that
only one electric subband is occupied. In the present pa-
per we are interested in effects which are a consequence
of occupation of several electric subbands. In such a case
we predict that each time the energy difference of two
electric subbands equals the energy of a LO phonon
(ficoi o), there will be resonant scattering which leads to a
reduction of the mobility. Consequently, the conductivi-
ty is expected to oscillate as a function of energy
difference between the electric subbands.

In the present paper we investigate Q2DEG with
diff'erent confinement potentials: (1) the parabolic well
and (2) the square well, which both have the advantage
that all subbands can be included in the calculation; and
(3) the triangular well, which is often used to model het-

F

I

m n

I

I

(a) (bI

FIG. 1. (a) Applying a bias field (Fz), the energy separation
between two different electric subbands can be altered. (b) Elec-
trophonon resonance occurs when the energy difference be-
tween two electric subbands equals a LO-phonon energy AcuLo.

erostructures. By changing the strength of these poten-
tials, the energy difference between electric subbands can
be altered. In a real device the relative position of the
electric subbands can be altered by applying a bias field
on, e.g., a heterostructure. This was recently realized in
Ref. 5 in a graded quantum well, which is schematically
depicted in Fig. 1(a). One applies a small electric field I'„
along the interface in the x direction and a bias field F,
perpendicular to the layer in the z direction. By changing
the bias field and observing the variation of the conduc-
tivity in the x direction, this electrophonon resonance
effect was measured. The energy levels between two
different electric subbands are altered by changing F, .
To measure the electrophonon resonance effect, F,
should be changed around the value I', =nFO (FO =92.5

kV/cm for GaAs). The corresponding energy diagram
for the two lowest electric subbands is shown in Fig. 1(b)
for two different values of the electric field F, .

This new electrophonon resonance effect is the electri-
cal equivalent of the magnetic magnetophonon resonance
effect. A recent review of the magnetophonon and elec-
trophonon resonance effects was given by Peeters and
Devreese. The magnetophonon resonance effect was pre-
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dieted by Gurevich and Firsov and has been observed ex-
perimentally, " e.g., in the magneto resistance of a po-
lar semiconductor and in the subband splitting of a
metal-insulator-semiconductor (MIS) structure. Under
the action of a magnetic field, the magnetophonon reso-
nance occurs when the condition NAco, =ficuzo is satisfied
(co, is the cyclotron frequency). The magnetophonon res-
onance has been studied theoretically, ' which is based on
a force-balance equation' for the magnetotransport in a
2D-electron system. Less much work has been done on
the electrophonon resonance effect (EPR). ' ' In Ref.
9 the subband splitting in a MIS structure, i.e., an n-
inversion layer on p-Insb, was electrically tuned by vary-
ing the electron density. The electrophonon resonance
effect was then observed when a strong quantizing mag-
netic field perpendicular to the interface is applied in this
manner, providing a "zero-dimensional" energy-level
structure. In Ref. 15 a Monte Carlo simulation was per-
formed for a quantum wire in high field transport, and
resonant intersubband optic-phonon scattering was found
when the subband spacing is equal to the LO-phonon fre-
quency. The electrophonon resonance was studied' for a
graded quantum well by applying a momentum-balance
equation approach which was based on the Boltzmann
equation. Recently, Kastalsky et al. presented the ex-
perimental evidence of the electrophonon resonance in a
AlGaAs/Al„Gai As triangular quantum well (TQW).

In the present paper we study the electrophonon reso-
nance effect in different two-dimensional semiconductor
systems. The aim of this study is (1) to study the electro-
phonon resonance effect in a Q2DEG with different
confinement potentials and (2) to calculate the conduc-
tivity as a function of the confinement-potential parame-
ters. We limit ourselves to a one-electron system because
at the high temperatures we are interested in, Fermi-
Dirac statistics is of minor importance. In Sec. II the
scattering of electrons by LO phonons is discussed. We
will neglect all other scattering mechanisms which will be
of secondary importance for the considered temperatures.
The numerical results for the conductivity near the elec-
trophonon resonant scattering is discussed in detail in
Sec. II. In Sec. III we present the detailed calculation of
the conductivity versus the confinements as function of
(1) the width of the quantum well for the square well
case, (2) the electric field for the triangular-well case, and
(3) the resonant frequency of the harmonic oscillator for
the parabolic-well case at different lattice temperatures.
An approximation to calculate the conductivity near the
electrophonon resonances is presented. Also, the
infIuence of electron LO-phonon emission and absorption
scattering is studied, as well as the contribution from the
difference electric subbands on this electrophonon-
resonance effect. Our conclusions are summarized in Sec.
IV.

quantized into discrete levels and the energy spectrum be-
comes

E„(k)=E„+Eq,
where

cOL~
A,„(x)=a N +1 8[x(x+1—x +x„)]Xp+ 1

+ oo G'„(q, )
X dq,

(q, +b+q, +a+)' (2a)

where x„=E„/ficoLo is the subband energy in units of the
LO-Phonon energy (A'co„o), Lo=(iri/2m*coLo)'~ is taken
as the unit of length which equals 39.5 A for GaAs,

No = 1/(e —1)

is the LO-phonon occupation number, a+ = ~x—x„+ 1 i/Lo,

b+ =4[x+—,
' —(x —x„)/2]/L o,

8(x) is the 8 function, a is the Frohlich coupling con-
stant, which is 0.068 for GaAs, and the upper (lower) sign
refers to absorption (emission) of a LO phonon. In Eq.
(2a) we defined the form factor

G „(q, ) = f dz P* (z)g„(z)e (2b)

For the special cases of (i) zero energy, i.e., x =x =0, and
(ii) at resonance, i.e., x =x =x —x„+1, Eq. (2a) is
defined as

o +„G „(q, )

+1Lp p —
q +Q~

(2c)

In order to calculate the scattering, we have to specify
the confinement potential. We consider three different
kinds of confinement potentials.

A. The parabolic well

Ei, = (A /2m )(k +k )

is the kinetic energy for free-electron motion in the xy
plane and E„are the electric quantum levels arising from
confinement with corresponding wave functions f„(z).
Ridley studied' the scattering rate of electron LO-
phonon coupling through applying the momentum-
conservation approximation (MCA). In this present pa-
per we will not use this approach to calculate the scatter-
ing rate. Applying Fermi's golden rule to the Frohlich
Hamiltonian, we find that the scattering rate for an elec-
tron which is in subband n and has a kinetic energy
x =E& IAcoLo is given by

II. THE SCA'l=I'ERING OF ELECTRONS
BY LO PHONONS IN A QUASI-2D SYSTEM

One of the main merits of the parabolic-well case
V(z) =m 'cooz /2 is that all electric subbands can be in-
cluded in the calculation. The wave functions are'

In a quasi-two-dimensional electron system, the elec-
tron motion along one direction (taken along the z axis) is

—1/4

g„(z)=(2') ' e ~ H (g)
Lo +2"n ~

(3a)
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with the corresponding energies

E„=A'coo(n +—,'), n =0, 1,2, . . . , (3b)

B. The square well

For a square well of infinite height, the eigenvalues

x„=E„/fico„o =co( n + —,
' ),

xn n EO (5a)

where co0 is the resonant frequency of the harmonic oscil-
lator, co=coo/coLo, g=S z/(v 2Lo), and H„(x) are the
Hermite polynomials.

The scattering rate is given by

2acoLo
A,„(x)=,

& N +1 O{x[x+1—co(m —n)]]

q!X dyp! 0 (+4+ bL 2+ 2/@+ & 2L 4 /~2)1/2

(4)

and envelope wave functions are known analytically, '

1/2
2

Q„(z)= z
sin n 7T

L
(5b)

where L is the width of the square well and the energy
difference between two electric subbands n and m is
Eo!m n~fir—oLo, with Eo =(~Lo/L)

The scattering rate for an electron in subband n with
an in-plane kinetic energy x =Ez/AcoLo becomes

where p = ma{xm, n ], q=min{m, n [, a =[co(m n)—
+1]/Lo, and

b =4[x+—,
' —co(m n)/2—]/Lo,

and

n n+m
L„(x)=g ( —1)' . x'/i!

i=0

are the Laguerre polynomials.

~nm
%~I o

where

m. a ~r.o N 0

No+1

X0{x [x+1—Eo(m n) —] J

3

X gI„"'
ACOLo

—1/2
~4I„'"(x)= 4B„(x)+2B„(x)~(m+n) + (m+ n) 4A„(x)—
4

—1/2
~4

I„' '(x) = 4B„(x)+2B„(x)n.(m n) + —(m n) 4A„—(x)—
4

(1+5 „),
g„(x,8)[ A „(x) cos8+B„(x) ]

'~2

[A„(x)cos0+B„(x)+m.(m+n) /4] [A„(x)cos8+B„(x)+sr(m —n) /4]

with

g„(x,g) = 1+g exp[ —2Q A„(x)cosH+B„(x)]
f„(z)=Ai

1/3
2m eI', E„

Z
eI',

(7a)

and

where g = 1 for m + n =3, 5, 7, . . . ,

and q= —1 for m +n =2 4, 6, . . .

A„(x)=~ {x[x+1 Eo(rn —n )]—]'~ /(2Eo),

B„(x)=sr [x+ ,' Eo(m —n )/2]—/(—2Eo) .

C. The triangular well

where the eigenenergies are approximately given by

E„=(A' e F, /2m )'~ [3n(n+ —')/2] ~, n =0, 1,2, . . . .

The exact eigenvalues can be obtained by replacing n +—',
by 0.7587 and 1.7540 for the two lowest subbands, re-
spectively. In practical calculation one is often forced to
approximate Eq. (7a) through variational wave func-
tions ' in order to keep the numerical calculations tract-
able. For the lowest subband (n =0) and the first excited
subband (n =1), the wave functions are, respective-
ly,

For the half-triangular-well case the eigenfunctions
are Airy functions ' go(z) = (b o /2)'~ ze
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and

g, (z)= A (2/bo )' z (1 B—z)e (7c)

which equals 92.5 kV/cm for GaAs.
The different scattering rates A,„(x)corresponding to

the two lowest subbands are now given by

with

ho=2(3eF, m'/2A' )'
&o

A,*(x)=2aboLooiLo N +1 O[x(x+1)]
p

6
~
—0.754bp c4 —0.47b p and B=0.292bp, where F, is

the "electric field" defining the well V(z) =eF,z(z )0),
~ (z(0). For convenience we introduce the unit of
electric field

with

X fn /2 cos 0
o D+(1, 1, 1,0,0,x, 8)

(Sa)

Fo =~Lo(2m *ficoLo)' /e,
xo=Eo/ficoLo=boLoA o,

Ao=0. 708 12, F, /Fo =boLo/6, and the function

D+(y, 5, i), n', n, x8)=yboLo sin 8+5boLo[x+ —,'+(x„,—x„)/2]sin 28+i) cos 8,
p cos 8(1+a3cos 8+a~ cos 8+a5 sin 28)

A, »(x)=2aboLoa'LoBo N +1 8[x(x+1)] d8
p 0 D+(ai, a2, 1, 1, 1,x, 8)

(Sb)

with Bp =7.251 515, a, =0.323 210, a2 =0.568 516,
a3 =0.751 937, a4= —1.525 256, a5 = —0.899 859, and

xi Ei /AcoLo boL oA

Ai =1.238073 .

The above expressions (Sa)—(Sb) are the intralevel scatter-
ing rates. The interlevel scattering rates are

rate: (1) the electron kinetic energy in the xy plane and (2)
the subband the electron is in. By changing the electron
energy, or (and) the electric subband, one alters the al-
lowed scattering processes.

To limit the number of parameters, we introduce the
total scattering rate for an electron in a given subband n:

(9)

and

1Vp

A, ~io(x ) =2aboLocoLoCo
0

XO[x(x+1—x, +xo)]

X cos Osin 0
o D~(cl, c2,Bio 1,0,x, 8)

&p
Aoi(x)=2aboLD~LOCD N +1p

(Sc)

This scattering rate is plotted in Figs. 2(a) —2(c) for
diFerent subband indices n as a function of the total elec-
tron energy E =E„(k)=E„+Ei,for a lattice temperature
of T=220 K. We show the results for (a) the parabolic-
well case with coo=coLo, (b) the square-well case with
width L/Lo=m. (i.e., L =124 A for GaAs), and (c) the
triangular-well case with electric field

F, /Fo=1/(6Ao )=0.28

XO[x (x+1+x,—xo)]

X
m/2 cos Osin 0

o D~(c„cz,Bo, ,O, l, x, 8)
(8d)

with Cp=1.703 169, c& =0.951 559, c2 =0.769 129,
Bio=(xi xo+1), and Boi =(xo xi+1) .

From the above expressions for the scattering rates for
a Q2DEG, one notices that if the conditions x ~ 0 and
x+1—x +x„~0 are satisfied, the electron with an in-
plane energy x in subband n (with corresponding
confinement energy x„) will interact with a LO phonon
and give a nonzero contribution to the scattering rate.
The electron is scattered into subband m (confinement en-
ergy x ) with translational energy x+1—x +x„by ab-
sorbing (upper sign) or emitting (lower sign) a LO pho-
non. There are two factors influencing the scattering

(i.e., F, =25.9 kV/cm for GaAs). Each step in the total
scattering rate corresponds to the threshold of a new
scattering channel, given by (1) E/ficoLo=x„, which is
the condition that electric subband n is occupied by elec-
trons; and (2) E/ficoLo=x +1, which is the condition
that electron LO-phonon emission (absorption) occurs.
The steps are the finite discontinuous jumps after which
the scattering rate decreases with increasing energy until
the next channel opens up.

In the present paper we are interested in the electro-
phonon effect where the width of the Q2DEG is varied in
order to bring the energy levels in resonance with the
optical-phonon energy. The scattering rate of an electron
in subband n and with given kinetic energy

E =iri /(2m')(k +k )
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is depicted in Figs. 3(a)—3(c) for (i) E&=0 and (ii) a
nonzero kinetic energy (E&=A'cozo) as a function of the
width of the Q2DEG for T=220 K and the three
different confinement potentials. For a triangular well,
increasing the electric field implies decreasing the width
of the 2DEG. This is similar to the parabolic potential
case when increasing the confinement frequency coo im-
plies decreasing the width L —1/+coo. In order to un-
derstand these figures, we remark that the electron state
~kn, ) can be changed in three possible ways after in-
teracting with a LO phonon: (1) the electron can stay in
subband n and gain (lose) an energy ficoto by absorption
(emission) (for x=E/Acoto&1, the emission process is
not possible), (2) the electron cari be scattered to a lower
subband m and gain an energy x„—x +1 (for
x &x +1—x„ the LO-phonon emission process is not
possible), and (3) scatter to a higher subband m and lose
an energy x —x„+1. This process is only possible when
x & x —x„+1. For cases (2) and (3) the energy
difference between the two subbands is of importance.

When the electron kinetic energy is smaller than a LO
phonon, i.e., x (1, the electron LO-phonon interaction,
as shown in Figs. 3(a)—3(c), strongly depends on the ener-

gy difference between the two subbands. The step in-
crease (decrease) in Figs. 3(a)—3(c) corresponds to the
opening up (closing) of a scattering channel by changing
these parameters. Notice that the total scattering rate in-
creases (decreases), especially for lower subbands, with
increasing energy difference between the two subbands
when ~x~ —x„~ is smaller (larger) than 1. At the point
~x —x„~=1, the scattering rate I „exhibits a step de-
crease. The reason is that when ~x —x„~ & 1, the
enhancement of the energy difference between two sub-
bands is equivalent to a suppression of the electron kinet-
ic energy, which leads to an increase of the total scatter-
ing rate, while for the case of ~x —x„~ ) 1, an enhancing
energy difference between the two subbands is equivalent
to an increase of the electron kinetic energy.

When the electron kinetic energy x ~ 1, the steps in j. „
are relatively weak. This is illustrated in Figs. 3(a)—3(c)
for Ez =Picot o. Note from Figs. 3(a)—3(c) that in this case
the total scattering rate always keeps increasing with in-
creasing value of the electric subband index n, except at
the step change which corresponds to ~E E„=2k'co to-
where a scattering channel opens up for electrons in sub-
band n which is able to absorb a LO phonon and go to a
higher subband m.

III. THE ELECTROPHONON RESONANCE
EFFECT IN THE CONDUCTIVITY

FICr. 2. The scattering rate 1 „=g A,„ for an electron in

subband n is plotted as a function of the total electron energy
E=E„+Ek at the temperature T=220 K for (a) a parabolic
we11 with a resonant frequency of harmonic oscillator
cop/togo 1 for the subbands n =0, 1, 2, 3, and 4, (b) the square
well with a well width L/Lp =m. (i.e., L =124 A for GaAs) for
the subbands n = 1, 2, and 3, and (c) the triangular well with an
electric field F, /Fp=1/(6Ap )=0.28 (i.e., F, =25.9 kV/cm,
Ap=0. 708120 for GaAs) for the subbands n =0 and 1. For
GaAs, Aco&o =36.6 meV, cozo =5.56 X 10' s ', and
nx */m, =0.0665.

In the relaxation-time approximation, the conductivity
g&ven by257 26

(10)

where f„(E&)is the electron energy distribution function
for the electric subband n, I „(k) the total scattering rate
for an electron in subband n with momentum k, and
v„=8k /m' the electron average velocity along the elec-
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are plotted as function of (a) the resonant frequency of the harmonic oscillator at a temperature T =220 K for the subbands n =0, 1,
2, 3, and 4 for the parabo1ic-well case; (b) the width of the quantum we11 at a temperature T =220 K for the subbands n = 1, 2, 3, and
4 for the square-well case; and (c) the electric field at the temperatures T =77 and 220 K and for the subbands n =0 and 1 for the
triangular-well case. For GaAs, Lo =39.5 A, F0=92.5 kV/cm.

tric field. For the nondegenerate case and at relatively
high temperature, f„(E&) is a Maxwellian distribution,

f (E )
R P P&„PF-g —

~
—P&„—

27Tm

with P= 1/k~ T. In this case the conductivity becomes

each scattering process. In so doing, the energy depen-
dence of a specific scattering process is neglected. In this
case the conductivity then takes the simple form

Po PoE„ /ssls0Lo-
e

ao Zo

Op o
' r(x) '

Xg e '' a+
I „(a) '

Po

—POE„ /Aco~o
where Zo=g„e ' ";oo=e /(4m m'coLoQ), with
0 the surface area; po=kcozo/k~ T; and x =Ek/ficoLQ

The integral in Eq. (12) has to be calculated numerical-
ly. Special care has to be taken at the discontinuities in
the total scattering rate I „(x)=Q„A,„(x). Therefore,
the conductivity is written as

Op

(13)

where 0+a; (a;+& and

0, initial

a;= . 1, n=m
(E E„)/A'co +Lo1, n Wm .—

Equation (13) involves the numerical calculation of an
integral which makes this expression less transparent.
For this purpose it is instructive to approximate the total
scattering rate I „(x)by a constant I „(a;)=g A,(a, ) for

—Poa,.+,—e ' a +&+

(14)

A numerical evaluation of Eqs. (13) and (14) shows that
in the simple expression (14) the electrophonon-resonance
effect is more pronounced than in the nonapproximated
expression (13). Therefore, in the following numerical re-
sults we show the results corresponding to Eq. (13).

The numerical results for the conductivity and its first
derivative are shown in Fig. 4 for (a) the parabolic well as
a function of coo/aoLo, (b) the square well as a function of
the width L/Lo, and (c) the triangular well as a function
of the electric field F, /I'p for four different temperatures
T=77, 100, 140, and 220 K. Note the following.

(1) The conductivity oscillates as a function of the sepa-
ration between the electric subbands. For the
triangular-well case, only the two lowest subbands are
taken into account, and therefore only one oscillation is
found.

(2) When the energy difference between two subbands
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FIG. 4. The conductivity and the first derivative of the conductivity are plotted as a function of (a) cop/coi Q the resonant frequency
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is smaller (larger) than the LO-phonon energy RcoLo, the
conductivity decreases (increases) with increasing the en-

ergy difference between the subbands. The conductivity
attains a local minirnurn when the energy difference be-
tween two subbands equals Acu+Q.

(3) The electrophonon-resonance eff'ect is most pro-
nounced when the two lowest subbands are in resonance.
This is most clearly shown for the square-well case [Fig.
4(b)]. This is due to the n dependence of the subband
energy. For the parabolic-well case, shown in Fig. 4(a),
the electrophonon-resonance effect between the higher
subbands, i.e., Xcuo=cozQ, also shows up in the conduc-
tivity because of the linear dependence of the subband en-

ergy on the level number n.
(4) The first derivative of the conductivity shows the

electrophonon resonance in a more pronounced way.
The step changes in the derivative of the conductivity
correspond to the step changes in the total scattering
rate. Note that in Figs. 4(a) —4(c) the resonance ampli-
tude decreases with increasing temperature, which is op-
posite to the temperature dependence found for rnagneto-
phonon resonances. The physical reason behind this will
be given below.

The influence of the absorption and emission scattering
processes on the electrophonon-resonance effect in the
conductivity can be studied by considering the situation
with lattice temperatures T=4.2 K and electron temper-
atures T, =77, 100, 140, and 220 K, such that the LO-
phonon occupation number No-—0 and only the LO-
phonon emission process is possible. After inserting
Po=ficoLolk&T, into Eq. (13), we found that the numeri-

thecal results for scaled conductivity
[cr(coo)/o (coo=0 Ol coro.), o (L)/cr(L =mL0 ), and
cr(F, )/0(F, =0.01FO)] practically coincide with the re-
sults in the case of T=T, . Thus the emission scattering
process is of paramount importance in the
electrophonon-resonance effect on the conductivity. And
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the absorption scattering (in the case of T=T, } only
leads to an overall reduction of the conductivity. The
emission scattering rate is much more strongly influenced
by changing the strength of the confinement potential, as
is apparent from Figs. 2 and 3. Thus the emission
scattering process is the main contributor to the
electrophonon-resonance effect in the conductivity and
this is also the reason why the electrophonon resonances
are more pronounced at low temperature. With increas-
ing temperature, the absorption scattering rate increases,
which leads to an enhanced background scattering rate
and to "relative" smaller electrophonon resonance. Also
the thermal broadening of the electron energy distribu-
tion contributes to the smoothing of the resonances. No-
tice that for the electrophonon resonance-effect the densi-
ty of state (DOS) has only a steplike behavior which has
to be compared with the singular nature of the DOS in
the case of the magnetophonon resonances. In the latter
the thermal broadening is more important and conse-
quently leads to a decreasing magnetophonon-resonance
amplitude with increasing temperature. The amplitude
of the electrophonon resonance in the conductivity
[bo =cr,„o—;„nad cr*=o(L =irLc), tr'=o(F,
=0.01F )o, o'=cr(to&=0 OlcoL.o) in Fig. 4] is plotted in
Fig. 5 as a function of temperature for the three different
confinement potentials.

IV. SUMMARY AND CONCLUSIONS

In conclusion, we have studied the electrophonon
resonance-effect in a quasi-two-dimensional electron sys-
tem in the absence of any magnetic field. By increasing
the energy difference between two electric subbands n

and nz, the total scattering rate for an electron with an
energy component Ek &iricoto in subband n increases (de-
creases) when the energy difference between two sub-
bands ~E E„i is small—er (larger) than the LO-phonon
energy ficoto. When ~E E„~=fico„o,—resonant scatter-
ing occurs which leads to a step change in the scattering
rate and this will inAuence the electric properties of the
2DEG. The conductivity was calculated in order to ob-

serve this effect. When the energy difference between
subbands m and n, iE E—„i, is smaller (larger} than
A'coLo, the conductivity decreases (increases) when this en-

ergy difference increases. At the point iE —E„~ =i)lcoLQ,
the conductivity has a local minimum. In the present pa-
per we studied the electrophonon-resonance effect by
considering three kinds of confinement potentials: (1) the
parabolic well, (2) the square well, and (3) the triangular
well.

We found that the electron LO-phonon emission
scattering is of paramount importance for the
electrophonon-resonance effect in the conductivity. The
amplitude of the oscillation decreases with increasing
temperature, which is opposite to the related
magnetophonon-resonance effect. The most dominant
resonance occurs for the lowest electrical quantum level.
Higher subbands lead only to small contributions to the
resonance structure.

The electrophonon-resonance effect was measured in
Ref. 5 using a graded quantum well. Unfortunately, the
measurements were not sufficiently systematic in order to
allow for a detailed comparison with our theoretical cal-
culation. We propose a similar experiment in which the
gate voltage is modulated such that the derivative of the
conductivity is immediately obtained. In this way the
electrophonon-resonance effect would show up in a much
more pronounced way.

In the present calculation for the conductivity, we took
the most simple situation of linear transport and a nonde-
generate electron gas. The nonlinear electrophonon-
resonance effects will be studied in a separate paper.
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