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Stability of multishell fullerenes
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We investigate the equilibrium geometry of very large carbon clusters with special emphasis on
nested multishell fullerene derivatives of spherical, cylindrical, and conic shape. For cluster sizes
above 20 atoms, we find spherical shapes to be most stable. For very large sizes, a transition from
single-shell fullerenes to multishell structures, locally similar to graphite, is energetically favored by
the weakly attractive interaction between the shells.

The discovery of the C60 molecule and its subsequent
synthesis in bulk quantities has opened a Pandora' s
box of carbon structures never imagined before: spher-
ical hollow graphitic spheres (single-shell fullerenes),
single-shell and multishell graphitic capped cylinders,
collapsed fullerenes, and topologically complex three-
dimensional bulk graphitic structures. Most recently,
multishell carbon fullerenes, have been synthesized in dif-
ferent ways, among others in an intense electron beam.
Multishell structures have also been previously observed
in carbon needles.

As of now, no information is available regarding the
relative stability of these structures. Here, we report cal-
culations of the formation energy and equilibrium geome-
try of single-shell and nested multishell fullerene spheres,
capped tubes, and cones. Our results indicate that spher-
ical shapes are most stable for cluster sizes above 20
atoms. At very large sizes, a transition from single-shell
fullerenes to multishell structures, which locally resemble
graphite, is energetically favored by an attractive inter-
shell interaction.

The key to the understanding of multishell fullerenes
and their relative abundancies is the formation energy
with respect to graphite. For a given number of atoms,
the stability of the difFerent structures is given by a deli-
cate balance between the destabilizing local bending en-
ergy which favors single-shell large structures, and the
stabilizing intershell interactions which favor structures
with multiple nested shells. We will show that sufFiciently
precise estimates of both the bending and the intershell
energy are embarrassingly simple to get by applying con-
tinuum elasticity theory to the difFerent structures. A
similar approach had been used previously to address
graphitization in carbon blacks. The structural energies
obtained in this way for known single-shell structures are
in very good agreement with those based on complex
electronic structure calculations.

The energy involved in bending a thin plate, such
as a graphite monolayer, can be obtained within the
framework of continuum elasticity theory. This ap-
proach is superior to using local potentials which are
known not to reproduce the correct flexural rigidity of
graphite monolayers. The structures which we will con-
sider, shown in Fig. 1, are spheres, capped cylinders, and
capped cones (in the shape of ice cream cones) with single
or multiple walls. All carbon atoms are threefold coor-
dinated, so that no additional edge terms occur when

relating the energy. of these structures to graphite.
Let us consider a small rectangular plate lying in the

x-y plane. The rigidity of the plate per unit length
with respect to bending is given by the bending moments
M+ ~ My p

which are defined by

M = D(l/B + n/By),
My ——D(1/R„+n/R ) . (1)

Here, R and R„are the radii of curvature in the x-z
and y-z planes, respectively. D is the Hexural rigidity
and o. is a combination of elastic constants. In isotropic
materials, o, is equal to the Poisson's ratio, and in hexag-
onal graphite, n = (Cq2C3s C,s)/(CggCss —C,s).
Continuum elasticity theory and local density approx-
imation calculations for graphite suggest the values
D = 1.41 eV and o. = 0.165. For a cylindrical sur-
face bent in the x-z plane, we obtain M = D/R and
My ——nD/B, where R is the local curvature. For a
spherical surface area, we use M = M„=D(1+ n)/R,
where R is the sphere radius.

The bending energy per area, AEb/A, associated with
the deformation of a thin plate, can be calculated by inte-
grating the bending moments over the plate distortions.
For a (single-shell) cylinder, we find

'(b)

(c)

FIG. 1. Schematic cross section of multishell C fullerenes:

(a) multishell fullerene, (b) fullerene tube, and (c) fullerene
cone.
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AEg(cylinder) = nDL/R (2)

for very large L values, where edge effects can be ne-
glected. This energy is inversely proportional to the ra-
dius of curvature R and, for constant R, proportional
to the number of atoms or the total cylinder length L.
The analogous calculation of the energy associated with
bending a graphite monolayer into a spherical fullerene
with the radius R yields

AEs(sphere) = 4mD(1 + n) = e(sphere),

independent of the sphere radius.
In order to test this universality, we calculated

the formation energies for various single-shell spherical
fullerenes using our previously developed tight-binding
formalism, and compared our results to other avail-
able data. ' These calculations suggest that spherical
fullerenes with n & 20 atoms are more stable than finite
graphite Hakes. On the other hand, the binding en-
ergy per atom in a finite-size fullerene is lower than that
in an infinite graphite monolayer (which has no dangling
bonds and contains no bending energy). The calculated
cohesive energies for nearly spherical cage structures with
20—94 atoms, displayed in the inset of Fig. 2(a), sup-
port the above postulated size-independent formation en-
ergies of spherical fullerenes, and yield AEb(sphere)
e(sphere) 22 eV. The above quoted values for D and
n lead to a very similar result, e(sphere) = 20.6 eV,
shown in Fig. 2(a). Deviations from this constant value,
shown in the inset of Fig. 2(a), are indicative of the re-
laxation energy in free fullerenes, which results primarily
from relaxations and consequent faceting around the 12
pentagons in an otherwise hexagon-based structure. As
we shall see, perfectly spherical shells are likely to occur
in the multishell structures, which can be obtained by
carefully annealing nested multishell polyhedra. Perfect
sphericity results from maximizing the attractive inter-

action between neighboring shells at the expense of bond
stretching.

An independent test of our approach is the formation
of infinitely long carbon cylinders from a graphite mono-
layer. Our results for the bending energy AEg (per "car-
bon ring" perpendicular to the axis) as a function of the
cylinder radius, presented in Fig. 2(b), are in a much bet-
ter agreement with previous ab initio results than those
based on semiempirical Tersoff and Tersoff-Brenner
potentials.

A useful quantity is the formation energy per atom,
given by AEg/n, which decreases with increasing cluster
size to the graphite monolayer value AEg/n = 0. In
general, the bending energy per atom, AEb/n, can be
calculated from continuum results by assuming that the
surface area per atom A t is the same as in graphite,
which holds especially well for large fullerene structures.

We also used our tight-binding formalism to determine
the bending energy for infinitely long single-shell cylin-
ders of difFerent radius R. In agreement with Eq. (2), we
found that the bending energy obeys the universal behav-
ior AE~(cylinder) = e(cylinder)L/R, with e(cylinder) =
7.53 eV. For the capped cylinder, which we call the tube
[see Fig. 1(b)], we obtain AEg(tube) = AEb(cylinder) +
AEg(sphere), hence

AEb(tube) = e(cylinder)L/R+ e(sphere) . (4)

The results for tubes with a fixed mantle length L = 10 A
are shown in Fig. 2(a). These results and the expression
in Eq. (4) suggest for the equilibrium mantle length L =
0, corresponding to a sphere. The occurrence of fullerene
tubes in carbon arcs can be explained by the stabilization
of these highly polarizable structures by the presence of
a strong external electric field.

Finally, we investigated the stability of single-shell
capped cones [see Fig. 1(c)] which are often seen as ter-
minators of fullerene tubes. We consider cones with no
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FIG. 2. (a) Energy of formation b, Et t ——AEz for single-shell C fullerenes of different shapes. Results for spheres are shown
by the solid line, results for tubes and cones by dashed and dotted lines, respectively. Our predictions for spheres compare
well with published AEb values for the most stable C fullerene isomers of Ref. 12 (~), Ref. 13 (o), and Ref. 14 ( ), which
are given in the inset. (b) Bending energy AEt, of an infinitely long carbon cylinder (per "carbon ring" perpendicular to the
axis) as a function of the cylinder radius r. Ab initio results (data points) (Ref. 15) are compared to data based on the present
continuum elasticity scheme (solid line), the Tersoff (dotted line) (Ref. 16), and Brenner (Ref. 17) (dashed line) potentials. (c)
Energy of formation per atom AEt t/n for inultishell C fullerenes with n, shells. Results are given for spheres (solid lines),
tubes (dashed lines), and cones (dotted lines). All energies are given with respect to a graphite monolayer; the graphite (bulk)
value is indicated as a reference in (c). The length L of the straight mantle in tubes and cones is L = 10 A. ; the cone opening
angle is y = 60'.
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The results for cones with a fixed mantle length L = 10 A
and opening angle p = 60' are shown in Fig. 2(a). These
results and the expression in Eq. (5) again suggest the
equilibrium mantle length to be L = 0, corresponding to
a sphere.

Once the bending energies for single-shell structures
are established, we can calculate the total formation en-
ergy of fullerene structures with n, shells from

AEtot ——) AEb(shell i) + E;, . (6)

E;, is the intershell attraction, which consists of the at-
tractive van der Waals —dominated energy E g~, and
an anisotropy energy E; associated with the structural
strain resulting from shell distortions and from an im-
proper nesting of aspherical shells. The latter inter-
action is responsible for freezing out the rotational de-
grees of freedom of the individual shells in the multi-
shell structure. One contribution to E; is the energy

chirality, formed from closed carbon rings perpendicular
to the cone axis, which can be obtained by cutting a sec-
tor with opening angle o. out of a graphite sheet, and
reconnecting the edges. The symmetry of the graphite
lattice limits the sector opening angle to o. = ri 60 and
the opening angle of the cone, as defined in Fig. 1(c), to
p = 0', 19.2, 38.9', 60', 83.6, 112.9, and 180 (the first
value corresponding to the cylinder, and the last to the
8at graphite sheet). Noticing that the bending energy of
a cone mantle is locally related to that of a cylinder, we
obtain for the bending energy of capped fullerene cones

needed to form a perfect sphere from a relaxed and
faceted fullerene. The comparison between the forma-
tion energies of relaxed fullerenes and perfect spherical
shells, given in Fig. 2(a), indicates that such energy dif-
ferences are typically + 2 eV per fullerene, and less im-
portant for larger fullerenes. Another contribution to E;
comes from the Coulomb energy, originating in a charge
redistribution on the fullerenes due to the presence of
pentagons. The corresponding intershell energy results
from a multipolar interaction between the shells, which
also suppresses the rotational degrees of freedom of C60
molecules in the solid. We estimate this energy to be

0.1 eV, based on the analogous efFect in solid C60,
where this energy has been found to be —0.05 eV. We
expect this energy not to increase in larger fullerenes due
to the constant number of pentagons in these structures.
Consequently, we expect E; not to exceed & 2 eV per
fullerene. In larger systems, this value is likely to de-
crease due to frustration in the case of imperfect nesting.

These expected values of E; are negligible when com-
pared to the van der Waals —dominated interaction en-

ergy E p~, which we estimate to be —65 eV for a typical
medium-size multishell fullerene of one thousand carbon
atoms. Our estimates are based on the assumption that
E g~ is proportional to the contact area A;, between
adjacent fullerene shells. This assumption has recently
been validated by ab initio calculations of the intershell
energy in a system of two concentric graphitic tubules.
Further assuming the same distance between fullerene
shells as the interlayer distance in graphite (d = 3.35 A),
suggested by recent observations ' and calculations, 2

we use the graphite value of the interlayer attraction per
surface area, AE„gw/A = 0.0248 eV/A. , also for other
multishell structures. Once A;, is known, we estimate
the intershell attraction using E;, = A;, (AE g~/A).

The formation energy per atom in multishell C iso-
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FIG. 3. (a) Equilibrium number of shells n, for C fullerene spheres, tubes, and cones, on a double-logarithmic scale. Results
for spheres are shown by the solid line, results for tubes and cones by dashed and dotted lines, respectively. The length L of
the straight mantle in tubes and cones is L = 10 A. ; the cone opening angle is rp = 60'. (b) The innermost radius R;„and the
outermost radius R „tof multishell spheres, based on the equilibrium number of shells n, for a given size n, shown in (a).
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mers is shown in Fig. 2(c). The different branches of
b, Et t/n correspond to different numbers of shells r4.
The equilibrium number of shells n, for a given cluster
shape [sphere, tube with a fixed I, cone with a fixed I,
and p (Ref. 21)j can be determined by minimizing AEt t
for a given total number of atoms (related to the total
shell area by A« ——nA t) and a fixed intershell distance
d. A crossover from n, to n, + 1 occurs when the gain in
the attractive intershell energy LE;, outweighs the extra
bending energy associated with the formation of a new
shell and the size reduction of the system. For spheri-
cal multishell carbon fullerenes the first crossover from
n, = 1 to n, = 2 occurs at n 660 atoms.

We find that also in the case of multishell structures,
the spherical shape is most stable and the conical shape
the least stable for all cluster sizes. For sizes beyond

1300 atoms, the binding energy per atom in multi-
shell structures is larger than in a graphite monolayer.
With increasing number of atoms, the equilibrium num-
ber of shells increases, and the binding energy per atom
approaches the value of bulk graphite.

In Fig. 3(a), we show the equilibrium number of shells
n, as a function of n for multishell fullerenes of different
shapes. We find an approximate scaling n, —Pni~s,
with P(sphere) —0.3. The values of P for cylinders and
cones are smaller, and depend on the mantle length and
the cone opening angle. For a given number of atoms

and shells, and a fixed intershell distance, the outermost
shell radius B „tis uniquely determined. The innermost
radius can then be obtained using B;„=R „t—(n, —1)d.
In Fig. 3(b), we plot R;„andB „tfor clusters of difFerent
shapes as a function of size n, assuming the equilibrium
number of shells n, given in Fig. 3(a). Due to the fixed
number of atoms, B;„andB „tdecrease abruptly when a
new shell is added. We notice that the innermost radius
scales as n ~, and the outermost radius as n ~ with
increasing cluster size, hence the structures approach the
density of bulk graphite with increasing size.

In summary, we investigated the equilibrium geometry
of very large carbon clusters with special emphasis on
nested multishell fullerene derivatives of spherical, tubu-
lar, and conic shape. For cluster sizes above 20 atoms, we
found spherical shapes to be most stable. At very large
sizes of several hundred atoms, we found a transition from
single-shell fullerenes to nested multishell structures, lo-
cally similar to graphite, to be energetically favored by
weakly attractive interactions between the shells.
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