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We calculate the finite wave-vector intersubband collective excitation spectra in wide parabolic wells

at low two-dimensional electron densities where only the lowest quantum subband is occupied by elec-

trons. We use a self-consistent time-dependent local-density approximation to calculate the linear

response of the system, comparing our density-functional results with the noninteracting time-dependent

Hartree approximation to estimate the magnitudes of exchange-correlation corrections to the collective-

mode dispersion. We predict a qualitatively new phenomenon at low electron densities where, in the

presence of exchange-correlation effects, it becomes possible for the collective charge-density excitation

(i.e., the intersubband plasmon mode) to lie below the intersubband quasiparticle continuum. As the

electron density is lowered, the charge-density excitation passes through the intersubband single-particle

Landau continuum, eventually going below the intersubband single-particle excitations. In this low-

density regime (0. 1 —0.2X 10" cm ), the collective and the single-particle intersubband excitations are

strongly resonantly coupled, leading to an experimentally observable line-splitting phenomenon in the

far-infrared-absorption and inelastic-light-scattering spectra. We calculate the far-infrared-absorption

spectra self-consistently and find the interesting result that at a critical density even the long-wavelength

intersubband charge-density excitation is Landau damped because it is essentially degenerate with the

single-particle excitations. We provide detailed numerical results for the intersubband collective charge-

and spin-density excitation spectra and the associated far-infrared-absorption spectra for realistic

GaAs/Al„Ga& „As parabolic quantum-well structures, comparing some of our results with the corre-

sponding results for wide square-well structures. We also provide a theoretical comparison between the

self-consistent density-functional theory of intersubband linear response with the corresponding di-

agrammatic perturbation-theory approach.

I. INTRODUCTIQN

A. Background

During the past 20 years elementary excitations in
two-dimensional electron systems confined near semicon-
ductor surfaces and interfaces have been widely studied'
both theoretically and experimentally. During the 1970s,
far-infrared-absorption spectroscopy was used extensive-
ly' to study electronic excitations in silicon inversion (and
accumulation) layers whereas during the last 10 years the
focus has been on confined electron layers in GaAs sys-
tems. Both far-infrared-absorption spectroscopy and
inelastic-resonant-light-scattering spectroscopy have been
used extensively to study the elementary excitation spec-
tra in single-layer GaAs heterojunctions and quantum
wells as well as in GaAs/Al„Ga, „As multilayer super-
lattices. Very recently, there has been substantial in-
terest ' in the optical properties of parabolically
confined electron layers in wide GaAs/Al„Ga, ,As
quantum wells (where either a variation in the alloy con-
centration x or an introduction of short-period superlat-
tices within the GaAs layer causes a quadratic variation
of the bulk band-gap discontinuity along the growth
direction leading to a parabolic one-dimensional external
potential confining the electron gas). In this paper, we re-

port on a detailed zero-temperature calculation of the ele-
mentary charge-density and spin-density intersubband ex-
citation spectra in parabolic quantum wells in the ex-

treme quantum limit, i.e., when only the lowest subband
is populated by the electrons. For the sake of comparison
and completeness, we also provide some results for the
corresponding excitation spectra in more well-studied
square quantum-well structures. All our calculations em-

ploy experimentally realistic system parameters for
GaAs/Al„Ga, As quantum-well structures.

In the presence of a confinement potential along the z
direction (throughout this paper, we take the x-y plane to
be the plane of confinement of the two-dimensional elec-
tron gas), which is parabolic for the systems of our in-

terest, the elementary excitations of the system can be di-
vided into intrasubband modes for motion along the x-y
plane and intersubband modes for motion along the z
direction. This separation of the elementary excitation
spectra of the confined system into intrasubband and in-
tersubband modes is, in general, strictly valid" only in
the long-wavelength limit. The distinction remains ap-
proximately valid, however, even at finite (but, not too
large) wave vectors because the coupling between the two
types of excitations is, in general, small" in nonresonant
situations. In a symmetric well, however, the coupling
between intrasubband and intersubband excitations van-
ishes' as can easily be seen from parity considerations.
%'e consider only intersubband elementary excitations in
this paper neglecting all effects of intrasubband (i.e.,
purely two-dimensional) excitations. We also ignore the
coupling' of the electronic collective modes to the LO
phonons of the system which is allowed because the cal-
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culated energies of the intersubband modes we are in-
terested in are substantially lower than the LO-phonon
energies of GaAs (or Al„Gai As) and, therefore,
plasmon-LO-phonon coupling effects are negligibly small.
We also uncritically assume the effective-mass approxi-
mation (with isotropic parabolic subbands) throughout
this work which is, in fact, well valid for the conduction-
band electrons in GaAs quantum wells.

There are three different types of intersubband elemen-
tary excitations in the quantum wells of interest to us:
Single-particle electron-hole excitations (also referred to
as quasiparticle excitations), collective charge-density ex-
citations (i.e., intersubband plasmons), and collective
spin-density excitations. The single-particle excitations
have (A'= 1) energies equal to the subband energy
differences,

2

E,;(q) =EJ (k+q) E; (k.—) =E,; + +, (1.1)

formally quite simple, carrying out a real calculation
within the Feynman-Dyson many-body perturbation
scheme of Fig. 1 is exceedingly dificult if one has to in-
clude the exchange-correlation-induced self-energy
corrections in the calculation. While the many-body in-
tersubband quasiparticle excitation energies have been
calculated' ' for silicon inversion layer systems (and for
the ground subband of GaAs structures) within the
leading-order dynam. ically screened GR' approximation,
no theoretically consistent calculation of the intersub-
band response functions which goes beyond the simple
random-phase approximation (RPA) really exists. There
have been some attempts' ' at including vertex correc-
tions in the theory by calculating the ladder-bubble dia-
grams approximately, but in our opinion no satisfactory

where E;=E-—E,. is the subband energy difference, and,
k, q are conserved two-dimensional wave vectors in the
x-y plane of confinement. At zero temperature, the wave
vector k = ~k~ must be less than kz where k~ is the Fermi
wave vector in the occupied ground subband, and, there-
fore, the Landau continuum of single-particle intersub-
band excitations between the ground subband i =—0 and
an excited subband j=n is bounded by the parabolas
E„o+q /2m +kFq/m and E„o+q /2m —kzq/m. In
this paper, we are interested in intersubband transitions
between the occupied ground subband 0 and the first ex-
cited subband n=1 which leads to the lowest intersub-
band transitions Eio(q). In the presence of many-body
effects, the energies (and efFective masses) should corre-
spond to quasiparticles rather than noninteracting elec-
trons. The single-particle excitations are, therefore, by
definition at the single-particle energy differences between
the subbands.

The collective charge-density excitations are the inter-
subband plasmon modes of the confined electron layer
and, as such, are associated with the reducible response
function of the system. The collective spin-density exci-
tations, which can be probed by inelastic-light-scattering
spectroscopy, occur at the poles of the irreducible
response functions of the system. As is obvious from its
definition, the single-particle excitations arise from the
leading-order intersubband polarizability diagram [Fig.
1(a)] where the vertex correction associated with the exci-
tonic interaction between the electron in the excited sub-
band and the hole in the ground subband is ignored. The
exchange-correlation corrections to individual subbands
is included, however, through the renormalized Green's
function for each subband as shown in Figs. 1(b) and 1(c).
The spin-density collective modes are the poles of the ir-
reducible response function [Fig. 1(d)) where the vertex
correction [Fig. 1(e)] incorporates the effective excitonic
interaction. The reducible response function [Fig. 1(f)],
whose poles give the charge-density excitations, is formed
by dynamically screening the irreducible response func-
tion through the infinite series of ring diagrams.

While the many-body diagrams (Fig. 1) defining the in-
tersubband elementary excitations are conceptually and

(b)

(d)

FIG. 1. Many-body diagrams for the intersubband elernenta-

ry excitations: (a) the intersubband leading-order polarizability
(gives the quasiparticle continuum); (b) the renormalized sub-

band Green's function with the thin line being bare Green's
function; (c) the self-energy with the leading contributions com-
ing from the Hartree "tadpole" diagram, the "GR ' diagram,
and the "68'I"' diagram including the first-order vertex correc-
tion; (d) the interacting irreducible intersubband polarizability
(gives the collective spin-density excitations) and the ladder
series of vertex corrections; (e) the ladder integral equation for
the vertex function', and (f) the reducible intersubband polariza-
bility (gives the collective charge-density excitations) as sum of
the ring diagrams. The dashed and the wiggly lines are the (un-

screened) direct intersubband Coulomb interaction, and the
(dynamically screened) exchange-correlation interaction, respec-
tively. (In the TDI DA, one approximates the wiggly line as a
static, local interaction. ) In the RPA, one neglects all vertex
corrections [i.e., uses (a) for the irreducible polarizability] and
includes only the Hartree self-energy diagram [the first diagram,
the tadpole, in (c)].
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diagrammatic evaluation of intersubb and response
beyond RPA has been carried out because all the existing
calculations' ' involving intersubband vertex correc-
tions neglect self-consistency in the wave functions.

The most widely used technique ' ' for calculating
intersubband response in confined semiconductor struc-
tures has been the self-consistent local-density-functional
theory where the subband energies and wave functions
are calculated by self-consistently solving Poisson's equa-
tion and the one-electron Schrodinger-like Kohn-Sham
equation of the density-functional theory with the
exchange-correlation potential approximated in the
local-density approximation (LDA). The intersubband
response functions can then be calculated in a linear-
response calculation using the self-consistent LDA sub-
band wave functions and energies. This self-consistently
coupled linear-response LDA calculation can be referred
to as the time-dependent local-density approximation
(TDLDA) in the same spirit of the RPA being the time-
dependent Hartree approximation. This (i.e., the
TDLDA) is the main technique we adopt throughout this
paper for our calculation of finite wave-vector intersub-
band response in realistic parabolic quantum wells. We
also provide some representative diagrammatic RPA
(and, Hubband approximation) results for the purpose of
comparison between diagrammatic and TDLDA calcula-
tions.

There has been a great deal of recent interest ' in the
optical properties of parabolic quantum wells. A particu-
larly significant aspect of parabolic systems is that at
long wavelengths optical absorption is unaffected by elec-
tron interaction effects and occurs only at the bare sim-
ple harmonic frequency of the unperturbed well. This ex-
act result (for a perfectly parabolic system) asserting that
the long-wavelength charge-density collective mode is the
same as the bare subband energy difference is a general-
ized version of Kohn's theorem which states that in an
electron gas within a jellium model the long-wavelength
cyclotron resonance is unaffected by electron-electron in-
teraction effects. The experimental GaAs/Al„Gai As
parabolic quantum-well systems are, of course, not per-
fectly parabolic systems. But, it turns out that they
obey the generalized Kohn's theorem very well (better
than 1%) and, in fact, the insensitivity of the long-
wavelength magneto-optical absorption frequency in par-
abolic wells to the electron density in the system is well
established experimentally. Thus, exchange-correlation
many-body corrections do not affect the long-wavelength
intersubband charge-density collective mode in parabolic
wells. It therefore becomes an interesting issue to investi-
gate the extent to which exchange and correlation correc-
tions affect the finite wave-vector energy dispersion of
charge-density collective modes in parabolic wells. A
complementary issue, the exchange-correlation correc-
tion to the long-mauelength intersubband charge-density
excitation in realistic (i.e., imperfect) parabolic wells, has
recently been investigated theoretically. In this paper,
our goal is to extend. the calculation to finite wave vectors
and also to compare the results for the parabolic we11
with those for the square well.

The insensitivity of the long-wavelength optical transi-

tion energy to electron-electron interaction effects in a
parabolic well ' is based on the simple fact that a para-
bolic confining potential allows the separation of the
many-body Hamiltonian into center of mass and relative
coordinates with the electron-electron interaction term
depending only on the relative coordinates. Since the
long-wavelength (i.e., q=O) external radiation can couple
only to the center-of-mass coordinates, the long-
wavelength response of the many-body interacting para-
bolic system is exactly the same as that of the bare system
(i.e., with only one electron in the well), and the collective
charge-density excitation energy at q =0 is the bare
harmonic-oscillator energy. This exact theorem, while
being quite useful in checking the numerical accuracy of
a particular computational scheme, is not helpful in
determining the exchange-correlation corrections to the
intersubband charge-density excitation energy at Pnite q
where the many-body Hamiltonian is not separable into
center of mass and relative coordinates (due to the bro-
ken translational invariance associated with finite q) and,
therefore, the collective mode is affected by exchange and
correlation. One of our goals in this paper is to calculate
quantitatively the full wave-vector-dependent dispersion
of the intersubband charge-density excitation. Not unex-
pectedly, we find that at finite q the intersubband charge-
density mode in parabolic wells is significantly affected by
electron interaction effects, and the exchange-correlation
correction is comparable to that in square-well systems
(where no generalized Kohn's theorem applies even at
q=O). We emphasize that most of our calculations are
for experimentally realistic GaAs/Al Ga, „As parabolic
wells, and not for ideal infinite parabolic wells (to which
the Kohn's theorem applies rigorously).

We also explore the generic issue of the extent of
exchange-correlation corrections on the collective inter-
subband mode dispersion in semiconductor quantum
wells. There has not been any detailed general theoretical
study of this subject. We concentrate on low two-
dirnensional electron densities in most of our calculations
because it is well known that exchange-correlation effects
are relatively less important in GaAs systems at higher
two-dimensional densities (above 10" cm ). We find that
at low densities there are significant deviations in our
TDLDA-calculated collective-mode dispersion compared
with the RPA results, showing that exchange-correlation
corrections on the intersubband collective-mode disper-
sion can be substantial ~

Some remarks about notations and units are in order
before we discuss our calculations. We take A = I
throughout this paper. All wave vectors (denoted mainly
by q or k) are conserved two-dimensional wave vectors in
the plane of confinement of the electron layer. The elec-
tron gas has a two-dimensional electron density of X~ per
unit area, with all the electrons occupying only the
ground subband of the system. The quantities E„and k~
denote the two-dimensional Fermi energy and Fermi
wave vector, respectively, in the ground subband. The
bare parabolic well is characterized by a simple harmonic
frequency co0 which is, by definition, also the bare sub-
band separation before the inclusion of electron interac-
tion effects. The curvature of the well A@0 is related to the
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potential height 6 and the width R'of the well via the re-
lationship

In the density-functional calculations (Secs. II—IV) we
find it convenient to express the two-dimensional density
in the units of the usual dimensionless r, parameter
where the length is measured in units of the effective
two-dimensional Bohr radius az =co% /2me, where co is
the lattice dielectric constant. In our density-functional
calculations (Secs. II—IV) we express energy (or frequen-
cy) in atomic units with the energy measured in effective
Ry =e /2az. For GaAs/Al Ga, „As structures 1

Ry —=5.8 rneV and az —=98.7 A.
The rest of this paper is organized as follows. In Secs.

I B and I C we briefly discuss a many-body diagrammatic
perturbation approach to calculating the collective inter-
subband modes, pointing out the difhculty of including
the exchange-correlation effects within the diagrammatic
approach. In Secs. II—IV we describe our TDLDA
theory for intersubb and response and present self-
consistent density-functional numerical results for collec-
tive spin-density and charge-density intersubband excita-
tions. We conclude in Sec. V with a brief summary.

B. Diagrammatic RPA

The simplest possible approximation is to neglect all
vertex corrections to the irreducible response function so
that the irreducible intersubband polarizability is given
by the bare bubble. Within this approximation scheme,
the single-particle excitations and the collective spin-
density excitations are identical. The intersubband col-
lective charge-density excitations are obtained by sum-
ming all the intersubband bubble (or the ring) diagrams

I

2

V & s(q)= f dz f dz'P (z)P&(z')Pr(z')P&(z)e

where the Hartree self-energy shift for each subband
must be included in each individual subband Green's
function to preserve the Ward identity (and current con-
servation). This is the diagrammatic version of RPA
which is just the time-dependent Hartree approximation.

For the two-subband model, where we concentrate on
the optical transitions between the occupied ground sub-
band (0) and the first excited subband (1), the collective
charge-density excitations are given by the poles of the
reducible intersubband polarizability function which is
the geometric series formed by the irreducible intersub-
band bubble diagrams. Equivalently, the collective
charge-density excitations are given by the zeros of the
intersubband dielectric function E&p(q, co),

io(q, co)=1 Voioi(q)Pio(q, co)=0 (1.2)

+ nadir nadir)0 1 0 q+
2kFqUF

(1.4)

with X&"0 being the Hartree, or the direct Coulomb self-

energy corrections to the two subbands (which are
nonzero in this problem only by virtue of the broken
translational invariance in the z direction). The quantity
coo in Eq. (1.4) above is the bare subband separation
coo EI ] Eo of the empty parabolic well or, equivalently,
coo is the simple harmonic frequency of the parabolic
confining potential V~(z) =—,'mcooz .

The matrix element V,p, p(q) is the intersubband
Coulomb interaction matrix element which for purely
parabolic confinement is given„ in general, by

where the irreducible intersubband polarizability func-
tion P,o(q, co) is given by (fi= 1)

P&o(q, co)= (a —a+++a+ —1 —Qa —1),k~ 2 2

q

(1.3)

2~+~y tgf

2r+&&ipt

il
2

a —5+P —y

(1.5)

where L is the associated Laguerre polynomial, and a, P,
y, 5 are subband indices, I =(I/mcop), and E is the
background dielectric constant. [P (z), etc. are the sub-
band wave functions which for the parabolic potential
case are the simple harmonic-oscillator eigenfunctions
and (2me /c. „q)e ~~' '

~ is the two-dimensional Fourier
transform of the Coulomb interaction. ]

Before presenting our numerical results for the inter-
subband charge-density mode dispersion based on the
solution of Eq. (1.2), we make a few remarks regarding
the diagrammatic RPA calculation. (1) The intrasubband
and intersubband charge-density excitations are totally
decoupled even at finite wave vectors for the symmetric
parabolic potential well. This is true for all symmetric

0+1Vsao+ 2%scoioa 2+ +

Xq +0(q ),

2m(2', o+ 3Nsa p )

4m ao

I

potentials where the single-particle subband wave func-
tions are parity eigenstates leading to the vanishing of the
Coulomb matrix element that couples intrasubband and
intersubband excitations. (2) Doing a straightforward
long-wavelength expansion of Pip(q co) and V&pip(q) in

Eq. (1.2) it is possible to show (after some algebra) that
the intersubband charge-density dispersion, up to 0(q ),
is given by

(~m+2&s~io~o) 2&sroioa, q
2= 2
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where X& is the two-dimensional electron density in the
system, co,o is the subband energy separation including
the Hartree self-energy corrections, i.e.,

+ydir ydir~io ~o i 0 (1.7)

a„= f dzII)0(z)p, (z)n! o

X f dz'Po(z')P, (z')

x([z+z'i" ' —Iz —z'[" ) .

The first two terms (within parentheses) in Eq. (1.6) com-
bine to produce the generalized Kohn's theorem result
0)]o+2N+c0 &Oa o

=coo which is exact for the perfectly par-
abolic well (and is an extremely good approximation for
real parabolic wells). Note that co,o ( =coo+XI"—Xo") is
actually well below coo because X&" is substantially larger
than X&", but the depolarization shift term 2Xzco, oao
arising from resonance screening associated with the sum
of all the intersubband ring diagrams brings the long-
wavelength intersubband charge-density frequency back
to the bare frequency coo. The direct self-energy correc-
tion exactly cancels the depolarization shift correction in
a parabolic well. Thus, the generalized Kohn's theorem
holds in every order of perturbation theory provided the
self-energy and the polarization diagrams are consistent
with each other (i.e., they satisfy the Ward identity).
Thus, RPA response calculation demands that the
single-particle Green's function be calculated in the self-
consistent Hartree approximation. There have been ear-
lier analytical calculations leading to results similar to
our Eq. (1.6), but these results neglected Hartree self-
energy corrections and are, therefore, not current con-
serving. For parabolic confinement, use of the RPA
without the Hartree correction will lead to a violation of
the generalized Kohn's theorem. A second point to note
about Eq. (1.6) is that it predicts a negative long-
wavelength dispersion for the intersubb and charge-
density excitation mode arising from the negative linear-q
term. In fact, Eq. (1.6) predicts that the intersubband
collective charge-density excitation mode has an energy
minimum at a finite value of the wave vector. (3) The
single-particle Green's function entering the RPA calcu-
lation should be the self consistent Hartr-ee Green's func-
tions and, thus, in addition to renormalizing the bare sub-
band energies by the direct self-energy correction, we
should also renormalize the wave functions (in calculat-
ing, for example, the Coulomb matrix elements) and use
the self-consistent Hartree wave function in our calcula-
tion. In the spirit of the leading-order perturbation
theory, we have used the bare (simple harmonic oscilla-
tor) wave functions in our numerical calculations of Eq.
(1.2) presented below, finding that this is adequate to

and the positive definite quantities a„s in Eq. (1.6) are the
expansion coefficients of V,o,o(q) in powers of q,

Vioio(q)=ao —aiq +a2q —a3q +
with

preserve the generalized Kohn's theorem to better than
1&o relative accuracy which is sufficient for our purpose.

In Fig. 2 we show the numerically calculated [by
directly solving Eq. (1.2)] RPA intersubband collective
charge-density excitation dispersion for an infinite para-
bolic well system with r, =10 and coo/E~=6. 0. (These
parameters correspond to a fairly typical wide parabolic
well which has a potential height of 150 meV at a width
of 4100 A.) For other values of coo, we get similar qualita-
tive behavior. In the inset of Fig. 2 we show the calculat-
ed dispersion for r, =4.3. The generalized Kohn's
theorem is obeyed to better than 1% in these numerical
RPA results and the finite wave-vector minimum in the
dispersion, while being shallow, is clearly visible in both
the results. The finite wave-vector dispersion minima in
the collective intersubband charge-density mode arise
from an interplay between confinement and nonlocal
e6'ects which makes the leading-order correction to the
collective-mode energy negative. Note that this intersu-
band minimum, already showing up in RPA, is not a
many-body e6'ect and is related to similar negative disper-
sion shown by surface-plasmon modes in metals. While
the negative dispersion in metallic surface plasmons has
been experimentally seen, we do not know of any direct
experimental observation of the dispersion minima in in-
tersubband collective charge-density excitations in quan-
tum wells. The minimum decreases in size (and moves to
lower wave vectors) as the electron density is decreased.
It also goes down with increasing coo. This minimum, be-
ing extremely shallow, may be difficult to detect experi-
mentally.

I1.25— I I

1.20—
cD

3 o'II

1.05

1.15—

1.05—

0.95 I I

0.2 0.4 0.6 0.8 1.0
k/kp

FIG. 2. The lowest intersubband charge-density excitation in
a parabolic well within the diagrammatic RPA for r, =10 and
coo=6EF. The inset shows the same for r, =4.3. The dispersion
is plotted up to the critical wave vector where the collective
mode enters the single-particle continuum and becomes
damped.

C. Going beyond RPA

As emphasized earlier, going beyond RPA and includ-
ing exchange and correlation e6'ects in the intersubband
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response calculation is very difficult to accomplish di-
agrammatically. We have carried out two very simple
model calculations of intersubband response going
beyond RPA within the diagrammatic approach.

One is a simple Hubband approximation to the local-
field corrections in the intersubband response. In this ap-
proximation scheme, one is solving the ladder vertex in-
tegral equation for the irreducible polarizability in a very
crude fashion. The intersubband charge-density mode in
the Hubbard approximation is formally given by the
same equation as in RPA [i.e., Eq. (1.2)],

1 Vpipi (q)P io (qq )p) =0

where the irreducible polarizability P io(q, co) is related to
the corresponding bare polarizability P,p(q, co) of the
RPA calculation by the formula

Pio(q, pi)
Pip(q, pi) =

1+Voioi(q)G(q)Pio(q co)

with the local-field correction G (q) approximated by

about 10—20%%uo) of the generalized Kohn's theorem, mak-
ing suspect similar calculations' ' carried out in the
context of other systems. Another model calculation
where we approximate the electron-electron interaction
entering the exchange self-energy diagram and the corre-
sponding ladder vertex diagrams by a short-ranged static
interaction led to results very close to the Hubbard-
approximation results. This is not surprising because the
Hubbard approximation is essentially an approximate
solution of the ladder vertex equation where the wave-
vector dependence of the three-point vertex function is
approximated by a static short-range local interaction.

Clearly, a computationally efficient diagrammatic
many-body calculation which can include exchange-
correlation effects in the theory of intersubband response
has not yet been developed. It is, indeed, a very difticult
task because it involves solving a set of coupled integral
equations (Fig. 1) involving both wave-vector and fre-
quency integrations. We therefore turn to the density-
functional TDLDA theory which is discussed in Secs.
II—IV.

G(q)=
2( 2+ k 2 )1/2 (1.12)

1.25—

1.20—
C&

II3 cf'

1.05

ll

1.10—
t

0 0.2 0.4 0.6 0.8 1.0
k/kF

1.05—

1.00

0.95
0

I

0.2 0.4 0.6 0.8 1.0
k/kp

FIG. 3. The same as in Fig. 2 for the diagrammatic Hubbard
approximation as explained in the text.

We show our calculated intersubband charge-density
mode dispersion within the Hubbard approximation in
Fig. 3 using the same parameters as those for the RPA
results of Fig. 2. Qualitatively, the Hubbard approxima-
tion results are similar to the RPA results except that the
dispersion minimum is somewhat deeper. Note that the
local-field correction G(q) vanishes in the q —+0 limit,
and, therefore, the generalized Kohn's theorem is
preserved in the Hubbard approximation.

%'e also attempted a many-body calculation by includ-
ing the Hartree-Fock exchange self-energy in our calcula-
tion. A non-self-consistent Hartree-Fock calculation us-
ing the full Coulomb interaction in the exchange self-
energy, however, led to a rather strong violation (by

II. SELF-CONSISTENT LOCAL-DENSITY-FUNCTIONAL
THEORY

A. Electronic structure

Before we present our theory of intersubband response
and optical absorption in a quantum well, it is instructive
to highlight first some of the technical aspects of the
method used to calculate self-consistently the electronic
structure of a quantum well.

In the density-functional theory, an electron is as-
sumed to move in an efFective potential,

V,f(z) = V~(z)+ VH(z)+ V„(z), (2.1)

where V~ (z) determines the shape of the confining
quantum-well potential, VH(z) is the electrostatic Hartree
potential due to the average charge density of the other
electrons in the well, and V„,(z) describes exchange and
correlation effects in the density-functional formalism
due to Hohenberg, Kohn, and Sham. The exchange-
correlation potential energy is, in general, an unknown
functional V„,[n(z)] of the electron density n(z). In
practice, however, the simplest and most widely used ap-
proximation to V„,(z) is the so-called local-density ap-
proximation (LDA). In this approximation, one replaces
the functional V„,[n (z) ] with a function V„,[n (z) ]
=p„,[n pn(z)], where p„, is the exchange correlation
contribution of the chemical potential of a homogeneous
electron gas of density no equal to the local electron den-
sity n(z) of the inhomogeneous system. LDA has been
found to work surprisingly well in calculating the elec-
tronic structure of confined electronic systems. There are
many good reviews of this technique, and we refer the
reader to them for further details. The exchange-
correlation potential V„ for LDA has been parametrized
by several authors and in our work we adopt a standard
parametrized form originally due to Hedin and
Lundqvist,
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V„,(z)= — 1+0.7734x ln 1+—1

where a=(4/9~)'~, x =x (z) = r, /21, and

(2.2)
parabolic wells of the type shown in Fig. 4. In the calcu-
lations described in the rest of this paper, the subband en-
ergies and wave functions are those obtained by a self-
consistent solution of Eqs. (2.1)—(2.7).

r, = r, (z) = [ 4ma~n (z)]'~' (2.3)

A2 dz + V,r(z) g„(z)=E„g„(z) .
2m dz

(2.4)

Equation (2.4) is formally the same as Schrodinger's
equation in the Hartree approximation, but now the po-
tential energy V,&(z) includes also exchange and correla-
tion effects through V„,(z) in the LDA approximation.

The Hartree potential energy VH(z) satisfies Poisson's
equation,

VH(z) 4me
[n (z) —nI(z) ],

dz ~p
(2.5)

where nI(z) is the density of the positively charged donor
impurities producing the electron gas, and n (z) is the z-
dependent electron density determined from the subband
wave functions through

max

n(z)=2 g N„~g„(z)~ (2.6)

(The exchange-correlation potential above is given in
units of the effective Rydberg ).This form for V„, has
been very successful in calculating the electronic struc-
ture of GaAs/A1As heterojunctions.

We assume the effective-mass approximation and con-
sider the electron effective mass m to be constant
throughout the quantum well. This allows the z-
dependent degrees of freedom to be decoupled from the
ones in the x-y plane (where the electron motion is as-
sumed to be free). In this case, the electronic subband
wave functions g„(z) and the quasiparticle energies E„
for the nth subband are identified with the solutions of
the Kohn-Sham equation,

B. Collective intersubband modes
in the TDLDA theory

By definition, the single-particle intersubband spec-
trum for transitions between the ground (n=0) and the
first excited (n = 1) subband is given by (A'=2m = 1)

E,o(k, q)=E, (k+q) —Eo(k)=E,O+q +2k q

where E,p
=E& —Ep is the energy difference between the

LDA calculated subband bottoms. For each value of
q = ~q~, E,o(k, q) denotes a continuum of single-particle
transitions (the so-called intersubband Landau continu-
um) bounded by the parabolas E&o +q

—2kF q and
E&p +q +2kF q. When an intersubband collective mode
enters the Landau continuum, it becomes damped due to
the emission of electron-hole pairs and loses its coherent
collective character. In our theory, which neglects multi-
ple electron-hole pair emission, the collective modes are
undamped (except for a small collisional damping by im-
purities) outside the single-particle Landau continuum.

There are a number of equivalent ways of obtaining the
intersubband collective modes in the density-functional
theory within the LDA. The conceptually easiest is
perhaps to note that in the LDA, the effective exchange-
correlation interaction is approximated by a local (i.e., q-
independent) and static (i.e., co-independent) interaction
V„, which provides the self-energy correction for the in-
dividual subbands through the self-consistent calculation
and must, therefore, be included in the intersubband
response calculation as a static and q-independent vertex
correction given by the matrix element U,', ',

with n, ,„ is the highest occupied subband in the system,
N„ is the occupancy of the nth subband and the factor of
2 coming from spin. (In all our calculations the total
electron density is low enough so that only the ground
subband is occupied. )

In our calculation we concentrate on a truncated para-
bolic quantum well given by

300

250—

200—

150—

100—

s= 3..1 x 10» t:~-'-

6

V (z) =az 8 —
~z~ + V 8 ~z~—

8' 8
P 2 0 2

(2.7) 50—

where a is the curvature of the parabolic well given by
a=46, /W, with 6 the height of the parabolic portion of
the well at the edge of the well. Vp is the barrier height
above the edge of the parabolic portion (Fig. 4). In Fig. 4
we show the typical results for a wide parabolic well of
width 8'=1600 A, 6=150 meV, and Vp=130 meV. We
see that for an electron density of Nz=1. 1X10" cm
the renormalization of the well is quite substantial. All
our density-functional calculations are based on finite

-800
f f

800

FIG. 4. Calculated potential and charge-density profile in a
parabolic quantum well. Solid curve shows the self-consistently
calculated potential of the well, dashed-dot-dot curve corre-
sponds to the potential of the bare, empty well, and the dashed
one represents the self-consistent charge-density profile for an
electron density of N~ = 1.1 X 10"cm
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U„', ' = J dz I dz'g, (z)go(z)

BV„
X 5(z —z')g, (z')go(z')

dn z

= Idz g, (z) '~go(z) ~' (2.8)

The inclusion of a static q-independent ladder vertex
correction in the intersubband polarizability is easy to
carry out. The vertex integral equation for the irreduc-
ible polarizability P&o(q, co) within this simple LDA
ladder approximation forms a geometric series which is
easily solved to give

P)o(q, co)
P(o(q, co) = 1+U„', ' P, (oq, co)

(2.9)

where P,o(q, co) is the leading-order intersubband polari-
zability bubble (with no vertex correction) given by the
same equation as Eq. (1.4) except that the subband ener-
gies entering P,o ( q, co ) are the LDA subband energies
which include exchange-correlation corrections in addi-
tion to the Hartree corrections.

The reducible polarizability function is formed as usual
by summing the infinite series of ring diagrams to give

P~o(q, co)
P 10

1 —Vioio(q)pio(q ~)
' (2.10)

where V&o,o(q) is, as before, the matrix element of the
Coulomb interaction (2me /E q)e ~~' '

~ between the
LDA subband wave functions. Using (2.9) in (2.10) we
get

P~o(q co)
P 10'(q»= ioio

1 —(V,o,o(q) —U„', ' )P, (q, co)

The poles of the response function P&p P[p and, P '&0'

define, respectively, the single-particle excitations, the
collective spin-density excitations, and the collective
charge-density excitations for the intersubband transi-
tions between the lowest ground subband and the first ex-
cited subband.

Thus, the dispersion of the collective intersubband
spin-density and charge-density excitation modes are
given, respectively, by the following equations in
TDLDA.

P&o(q, co) =P&o(q, co) in the absence of vertex corrections.
So far, we have only considered a two-subband model

in discussing intersubband collective-mode dispersion (be-
cause all our numerical results are for this situation). But
a generalization to multisubband case is formally
straightforward by interpreting various quantities enter-
ing the above equations as matrices. Thus, the intersub-
band spin- and charge-density collective modes are given,
respectively, by the following determinantal equations in
the multisubband situation:

and,

I
1+U..PI =0,

~1 —( V —U„, )P~ =0,

(2.14)

(2.15)

where 1 is the unit matrix, and, P, V, U„, are, respective-
ly, the matrices representing the leading-order polariza-
bility, the Coulomb interaction, and the exchange-
correlation vertex correction. We mention that, instead
of using the diagrammatic many-body approach adopted
here, one can also derive the formal equations for inter-
subband collective-mode dispersion by using the equation
of motion for the density matrix in the self-consistent-
field approach of Ehrenreich and Cohen, or, equivalent-
ly, by using a time-dependent perturbation calculation'
as was done by Ando. We believe that our diagrammati-
cally inspired ladder vertex equation approach is concep-
tually the simplest technique at obtaining the collective-
mode dispersion.

We conclude this section by pointing out that the
dynamical structure factors defined by ImP and ImP '

define, respectively, the inelastic-light-scattering intensity
of the spin-density and the charge-density excitation
spectra. Noting that we can write P' ':—c 'P where
E= 1 —( V —U„, )P, we can identify s as the intersubband
dielectric matrix for the system. If the exchange-
correlation-induced self-energy and vertex corrections are
neglected by putting V„and U„, to be zero, we get the
usual RPA dielectric function c.= 1 —VP.

The preferred experimental technique for studying
the optical properties of parabolic quantum wells has
been the far-infrared-absorption spectroscopy. We,
therefore, develop a theory for the finite wave-vector op-
tical absorption in the parabolic wells in the next section
before presenting our numerical results.

1+U„', P)o(q, co) =0, (2.12)
III. THEORY OF OPTICAL ABSORPTION

IN A QUANTUM WELL

and

t Vioio(q) U' ' jPio(q ~)=0 . (2.13)

Note that if we put V„,=—0 which, in turn, makes
U„', ' =0, our theory becomes the time-dependent Har-
tree theory which is exactly the same as the diagramrnat-
ic RPA discussed in Sec. I (except that the wave func-
tions are self-consistent Hartree wave functions in the
current case). Note that within the time-dependent Har-
tree theory, there are no collective spin-density excita-
tions distinct from the single-particle excitations because

In this section we develop a theory for the intersub-
band optical absorption at finite wave vectors in a quan-
tum well. As we mentioned in Sec. I, the peaks of the ab-
sorption correspond to the collective charge-density
modes of the system and, consequently, must be deter-
mined from the poles of the appropriate response func-
tion. Our main goal is to calculate the conductivity of
the electron gas at finite wave vectors and then look for
its poles. In our theory, we are going to incorporate reso-
nance screening (sum of the ring diagrams) eFects and ex-
citonic vertex corrections in the LDA approximation.
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We use self-consistent single-particle wave functions and
quasiparticle energies that include exchange and correla-
tion effects, as described in Sec. II.

Intersubband optical absorption of a confined electron
gas has been studied theoretically ' ' in the past by a
number of authors mainly in the limit of zero wave vec-
tor. Ando reported' a theory of optical absorption of an
electron gas in space-charge layers on semiconductor sur-
faces by taking into account exchange and correlation
effects in the LDA approximation. We generalize Ando's
absorption calculation' to finite wave vectors, and recov-
er his results in the limit of zero wave vector.

In our model we consider an electron gas in a quantum
well (e.g., parabolic, or square) of total areal density Ns.
Intersubband transitions correspond to motion of the
confined electrons along the direction of the confinement
(taken to be the z axis). Such transitions, therefore, can
couple only to the component of the electric field of the
radiation perpendicular to the electronic sheet. At zero
wave vector, this is the only way the charge in the well
can absorb infrared radiation (we neglect scattering of the
electrons by impurities and phonons). Because we are in-
terested in the intersubband optical absorption we take
the electric field D of the radiation to be polarized along
the z axis. We use the dipole approximation in describing
the interaction between the external radiation and the
electrons, and neglect retardation effects. This is a good
approximation since the thickness of a typical quantum
well is much smaller than the wavelength of the light
with frequency resonant with the self-consistent subband
separation in the well. We assume the external perturba-
tion (radiation field) is given by

co„(k +q) =E„(k+q) —Eo(k),
k2

E„(k)=E„+
2m

(3.5)

(3.6)

where

with

CO+CO~ + l 5 +
gUF 2kF

(3.8)

co„=E„—Ep . (3.9)

The quasiparticle energies E„are calculated in the LDA.
The effective perturbing potential H'(q) in Eq. (3.3) is

given by

H'(q)=eDz+EVH(q, z)+AV„, (q, z) . (3.10)

The change 5V~(q, z) of the Hartree potential is given by
the solution of Poisson's equation with the change in the
charge density An as the source term

V (AVH(q, z)e'q') = — hn (q, z)e'q',; .r 4me

Cp
(3.11)

and fo(k) the Fermi factor. II„(q,co), which is closely re-
lated to the polarizability I' of Secs. I and II, can be cal=
culated analytically to give

m kF
II„(q,co)= (a —a+++a+ —1 —Qa —1),

2~&s q

(3.7)

iq'r i cotDe (3.1)
which is solved to give

The vectors q and r are in the x-y plane of the electronic
sheet. The external perturbation modifies the density dis-
tribution of electrons, and, consequently, the Hartree and
the exchange-correlation potentials as well. The change
of the electron distribution is given by the form

2 2

V~(q, z) = f dz'e ~~' ' ~b, n (q, z') .
Bpg

(3.12)

For the change b, V„,(q, z) of the exchange-correlation po-
tential we have

b, n (q, z)e''i' (3.2)

and after applying standard time-dependent perturbation
theory we get

av„5 V„,(q, z) = hn (q, z),
dn z

(3.13)

bn (q, z) = 2' g g„(z)g—o(z)II„(q,co)(n~H'(q) ~0} .
n&0

(3.3)

In the above, we consider only the lowest subband popu-
lated in the ground state and study transitions to excited
levels n. In Eq. (3.3) we have

II„(q,co)= f z fo(k)
1 d k

Ns (2~)z

1

co —ai„(k +q)+i5

d j (q, z) = —( i'co)( e)b, n (q,z)——
dz

(3.14)

or

where the exchange-correlation potential V„, is taken in
the LDA approximation in the parametrized form sug-
gested by Hadin and Lundqvist [Eq. (2.2)]. As we men-
tioned above, EV~(q, z) takes into account resonance
screening effect whereas b, V„,(q, z) is the excitonic
correction.

The induced charge density, because of the perturba-
tion, induces a current, which through the continuity
equation becomes

with

1

a) —co„(k q)+i5—(3.4)
j (q, z) =i cue f dz'b n (q, z') . (3.15)

Substituting for b, n (q, z) from Eq. (3.3) we finally get for
the induced current
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j(q, z)=2icoeNs g II, (q co)(nlH'(q)IO& with
n&0

X dz „z 0z (3.16)
z p= f dzzg„(z)gp(z) (3.23)

The induced current is related to the induced polariza-
tion P (q, z) = (i leo)j (q, z) and the total electric field in the
z direction of confinement is given by

The next step is to calculate the matrix element
(nlH'(q)lo) of the eff'ective perturbation H(q) given by
Eq. (3.10). It is

E(q,z)=D — j(q, z) .4+i .
CO

The absorption of radiation per unit area is

P- —,'Re f dzj(q, z)E*(q,z),

(3.17) & nlH'(q) IO) =eDz, p+ (n I
~ VH(q z) I 0 &

+(nlrb, V„,(q, z)IO) .

Using Eq. (3.12) for the Hartree term, we get

(3.24)

and using Eq. (3.17) we get

P- —,'Re f dzj(q, z)D . (3.19)

We want to calculate the two-dimensional conductivity'
which is the response function of the system. In the
linear-response theory we have'

(nlrb V~(q z)lo) = 2' —g II (q, co)S„(q)
m&O

x (mlH'(q) Io)

with

(3.25)

j(q, z) =o„(q,co)6(z)D, (3.20)

where the electron layer is replaced by a polarizable sheet
at z=O. In the language of the diagrammatic perturba-
tion theory 0„(q,co) in Eq. (3.20) corresponds to the re-
ducible response function of the system as discussed in
Secs. I and II A. With the use of Eq. (3.20) the absorp-
tion per unit area becomes proportional to

S„(q)= f dzg„(z)gp(z)

X f dz'e i~' ' ~g„(z')g (z') .

(3.26)

For the exchange-correlation matrix element we have,
P- —,'Reo „(q,co)D

whereas, the conductivity becomes

cr„(q,co)=—f dzj (q, z)

(3.21)
(nlrb, v„,(q, z)lo) = 2N g II (q,—oi)(mlH'(q)lo&

m&0

X f dzg„(z)g (z)gp(z)

—2i coeNz
z„pII„( q, co)(n H'(q)lo)

n &0

(3.22) Using Eqs. (3.24) —(3.27) we finally get

XCV

Bn
(3.27)

4 2

(nlH'(q)lo) =eDz„p 2' g II (q, co—) S„(q)f dzg„(z)g (z)gp(z)
"' (mlH'(q)lo),

m &0
(3.28)

If we now define the matrices

~n ~m

and

a„(q)=2' S„(q)4me 1 1

E,0

1/2

(3.29)

I

we finally get the matrix equation

I A„(q,co)—co 5„1un (q, co)=(2m'„)'~ z„p,
m &0

(3.32)

P„=—2N~
1 1

~n ~m

1/2 where

and set

av„,
X f dzg„(z)g (z)gp(z) (3.30)

A„(q, co) = nm

+co„(a„(q)—P„)co (3.33)

II„(q,co )
u, (q, co) = (2m)'" & nlH'(q) lo &, (3 31)n & D ( )

and co„ is given by Eq. (3.9). With the help of Eqs. (3.32)
and (3.33), Eq. (3.22) for the conductivity finally becoines
(we have put the iii back in this equation)



1554 I. K. MARMORKOS AND S. Das SARMA 48

g2
o„(q,co) =Nse ( i co)

m

The dispersion relation of the collective intersubband
modes in this case is given by the solutions of the equa-
tion

X g g u„(q, co)[A„(q,co)
n &0 m)0 1+II„(q,co)fico„[cz„„(q)—P„„]=0. (3.40)

—(A'co) 5„]u (q, co) .
(3.34)

Ãse2 f„(q,a~)
o„(q,co)= ( iso) —g 2m „&0 CO „CO 2SCO/7

where

(3.35)

The above equation is our final formula for the conduc-
tivity of the confined electron gas. Unfortunately it is not
very useful for practical purposes as it stands, since the
matrix A„(q, co) in Eq. (3.34) is nondiagonal and we sum
over all (in principle infinite) subband indices n and m.
We therefore define a matrix U such that A = U ' A U is
diagonal. Because A is symmetric, U is an orthogonal
matrix. After some cumbersome matrix algebra we can
rewrite Eq. (3.34) in the simpler form,

II„(q,co) =
CO CO„

2 2

CO +CO„+ +
2m (~2 ~2 )2

Xq +0(q ) .

3CO +CO„

(~2 ~2 )3

(3.41)

From Eqs. (3.29) and (3.30) we also have

In the rest of this paper we are going to study in detail
solutions of Eq. (3.40). When we are out of resonance
contributions from other subbands may be important,
especially in wide quantum wells and at high densities.
In this case Eq. (3.35) should be used.

We consider brieAy the q —+0 limit of our results.
From Eq. (3.6) we have for the q ~0 liniit of II„(q,co),

A'co„=( A„„(q,co))'

and the oscillator strength f„(q,co) is given by

(3.36) a„(q)= 2Xs
(a„'„'—a„'„"q +a„'„'q a„'„'q +— )

COn
l

(3.42)

f„(q,co) =
r

, A'co

)0 h

' 1/2

z oU „(q,co)

2

(3.37)
and

2Ns
nn (3.43)

In Eq. (3.37) we have introduced a phenomenological re-
laxation time ~ which arises from impurity scattering in
the system. The resonance occurs at the frequencies
CO =COn.

If we now concentrate on the situation where the radi-
ation frequency co is close to co„we can neglect contribu-
tions from other subbands. This two-subband approxi-
mation is a very good approximation in high-mobility
samples, where the width of the resonance is narrower
than the intersubband spacing. In this case we can write
Eq. (3.35) as

with

and

C0 V!

X I dz'g„(z')go(z')
0

X ( [z +z'[ +' —[z —z'['+')

(3.44)

( i)Nse co-
o„(q,co) =

m

f„(q,co)

co „co 2l colr
(3.38) av„,

A,„„=—2 dz „z z 0z (3.45)

with

f„(q,co) = A'co„z„o . (3.39)

Using now Eqs. (3.41), (3.42), and (3.43) in Eq. (3.40), we
finally get for the intersubband charge-density dispersion
in the limit of long wavelengths up to order q,

m

2m [2co„+3Ns (a„'„'—A,„„)]
q

—0(q ). (3.46)

The above formula is in agreement with Ando's result for
q=0 and with Tselis and Quinn for finite q. It is also
very similar to Eq. (1.6) derived in Sec. I, with the only
difference being that we now include exchange and corre-
lation effects and calculate single-particle wave functions

I

and energies self-consistently. Note that the approach we
followed to derive Eq. (3.46) is very diff'erent from that in
Sec. I where we explicitly calculate diagrams in perturba-
tion theory. From Eq. (3.46) we see that the eFect of the
exchange and correlation, even within our LDA theory,
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persists to all orders in q. To avoid misunderstanding we
mention that in the numerical results we present in the
next section, we are using the full formula (3.40) which
incorporates the full q dependence and not just the
leading-order corrections.

It is worthwhile to point out the connection between
results in this section with those in Secs. IIB and IB
which were obtained on the basis of a diagrammatic
theory. Equation (3.40) for the collective modes in this
section are identical to those derived for the intersubband
charge-density excitation in Sec. II B (and those obtained
within the RPA in Sec. IB except that p„„=O for the
RPA calculation because there is no vertex correction).
The a and the p terms of Eq. (3.40) correspond, respec-
tively, to the V' ' direct Coulomb term and the U„', ' ex-
citonic vertex correction term in Eq. (2.13). The a and
the p corrections (i.e., the direct Coulomb and the vertex
correction) have been referred to as the depolarization
shift and the excitonic correction, respectively.

IV. RESULTS

In our study, we assume occupation only of the lowest
subband in the well and consider only excitations be-
tween the ground and the first excited subbands.

We start presenting our numerical results by showing
in Fig. 5 as a function of electron density the long-
wavelength charge- and spin-density excitation energies.
We also show the quasiparticle energy difference between
the lowest two subbands in various approximations: (1)
neglecting other electrons in the well (bare subband sepa-
ration), (2) considering interactions with other electrons
in the Hartree approximation, and finally, (3) including
exchange and correlation effects in LDA. These results
are for the parabolic quantum well of Fig. 4.

The coincidence of the bare subband separation with
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FICi. 5. Long-wavelength (q=O) charge-density excitation in

both RPA and TDLDA (both are shown by the solid line, can-
not be distinguished separately) and spin-density excitations
(dashed-dotted) as a function of density. Also, the bare subband
separation (dashed-dot-dot), subband separation in the Hartree
approximation (dashed), and the LDA subband separation (dot-
ted). The above results correspond to the parabolic well of Fig.
4

the long-wavelength charge-density excitation, with and
without vertex corrections, throughout the density range
we studied shows how well the generalized Kohn's
theorem is obeyed in our parabolic system. The small de-
viation of the collective charge-density excitation energy
from the bare subband separation at high densities arises
from the deviation at the well edges of our realistic well
from perfect parabolicity. These deviations from perfect
parabolicity are more important at higher densities be-
cause the electron gas better "feels" the edge of the well
at higher densities. We also see that exchange-
correlation effects partly cancel contributions of the Har-
tree term and bring the subband separation closer to the
bare one, in agreement with previous work on the elec-
tronic structure of GaAs-based quantum wells. It is
worth noting in Fig. 5 that at low densities (we investi-
gate densities down to 8 X 10 cm ) exchange-
correlation efFects become relatively more significant and
bring the quasiparticle energy difference above the bare
subband separation. We will soon see that this can have
significant consequence for the low-density collective-
mode dispersion. At low densities the quasiparticle ener-
gy difference in the Hartree approximation becomes
quantitatively almost identical to the spin-density excita-
tion energy at zero wave vector because the vertex
correction and the self-energy correction cancel each oth-
er. The spin-density excitations are not affected by the
depolarization shift, which, therefore, is set equal to zero
in their calculation [a„„=O in Eq. (3.40)], and, at low
densities, the Hartree term in the quasiparticle energy
difference is not that important.

In Fig. 6 we show the dispersion relation of intersub-
band plasmons (i.e., the charge-density excitations) aris-
ing from collective transitions between the two lowest
subbands for the parabolic well of Fig. 4 as a function of
wave vector for different electron densities in the well.
We also plot the boundaries of the single-particle excita-
tion spectrum given by E, Eo+qUF+—q /2m. We clear-
ly see the minimum in the dispersion at experimentally
accessible densities ( —10" cm ) that we first encoun-
tered in our many-body RPA calculation of Sec. I. For
the electron density of 1.1X10" cm the minimum is
0.5-meV deep and should be observable in resonant
Raman-scattering experiments. As we decrease the den-
sity, the minimum becomes more shallow and the
plasmon disappears into the particle-hole continuum at
smaller wave vectors. At densities around 1.5 X 10'
cm the quasiparticle energy difFerence for the lowest
two subbands coincides with the bare subband separation
(the Kohn mode) and we do not see any plasmons, since
the collective modes is now completely (i.e., even at long
wavelengths) inside the single-particle continuum. For
our discussions, we consider this density as the boundary
between the high- and the low-density regimes. As we
decrease the density even further, the quasiparticle ener-
gy difference becomes higher than the plasmon energy
and we recover the long-wavelength plasmon below the
Landau continuum, which becomes Landau damped at
finite wave vectors. An interesting feature that accom-
panies this behavior of the collective mode is that, as the
quasiparticle energy difference crosses the bare subband
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separation, a change in the curvature of the plasmon
dispersion relation occurs. This could be attributed to
the following. As is well known, the collective modes
correspond to the coherent excitation of the system
whereas the single-particle excitations are incoherent. As
the single-particle excitation is only slightly above the
collective mode, it "forces" the plasmon down in the fa-

miliar level repulsion manner. In other words, at reso-
nance, the coherent mode tends to become more favor-
able than the incoherent one, when both are close in ener-
gy. Even though this change in curvature of the collec-
tive mode is small, it is accompanied by a large variation
in the critical plasmon wave vector for Landau damping
as we vary the electron density. Therefore, we believe
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FICx. 6. Dispersion relation of the collective intersubband charge-density excitation (thick lines) between the lowest two subbands
of the parabolic well of Fig. 4 as a function of wave vector for various densities as shown. We show results in RPA (dashed lines) and
in TDLDA (solid lines). The boundaries of the corresponding single-particle excitation continua are also shown (thin lines).
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that experiments probing simultaneously the energy and
the wave vector of the collective mode can detect this in-
teresting many-body effect. Resonant Raman-scattering
technique, for example, is particularly well suited to
study this phenomenon, which is a direct manifestation
of the interplay between the single particle and the collec-
tive excitation spectra of a confined electron gas. It is
also interesting to note that the RPA gives results quanti-
tatively similar to TDLDA, particularly at small wave
vectors. %'e also see that, although RPA and TDLDA
give similar results for small wave vectors, they predict
quite different critical wave vectors for the onset of the
Landau damping of the intersubband plasmon.

In Fig. 7 we show our TDLDA results for the intersub-
band spin-density excitation spectrum associated with the
transitions between the lowest two subbands in the para-
bolic well of Fig. 4. From our results in Fig. 7 we see
that as we decrease the electron density the curvature of
the spin-density dispersion changes gradually whereas the
maximum wave vector for which the mode is well defined
increases slightly. Our results can be easily tested experi-
mentally using Raman scattering in the cross-
polarization configuration.

For the sake of comparison with the parabolic well re-
sults, we show in Fig. 8 the intersubband plasmon disper-
sion for a 400-A-wide square well. In the same figure we
also show the boundaries of the single-particle excitation
continuum defined by E, —Eo+qv~+q /2m. We see
that at moderate densities we do get a minimum in the
dispersion relation as deep as the one found for the para-
bolic well. As we decrease the density, the minimum be-
comes shallower, and, in general, we get the same qualita-
tive behavior as in the case of parabolic wells. If we de-
crease the width of the square well down to 200 A, we do
not get any appreciable dispersion minima (Fig. 9). These
results make clear that the minimum we predict in the
dispersion relation of intersubband plasmons at finite
wave vectors is a general characteristic of the confined
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electron gas independent of the shape of the well provid-
ed the well is wide enough. The depth of the minimum
and the form of the dispersion are determined by the de-
tails of the competition between the strength of the in-
teraction which tends to reduce the energy of the system,
and the strength of the confinement which tends to in-
crease the energy of the system.
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FIG. 7. Dispersion relation of the spin-density excitations as
a function of wave vector for different densities. We plot the
dispersion up to the maximum wave vector for which the mode
is well defined. Results correspond to the parabolic well of Fig.
4.
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FIG. 8. Dispersion relation of the TDLDA collective
charge-density excitations (thick lines) as a function of wave

0
vector for difFerent densities in a square well (width 400 A,
height 75 Ry). Thin lines correspond to the boundaries of the
single-particle excitation continuum.
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Finally, in Figs. 10—1
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but a purer sample with a higher mobility of 200 000
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phenomena associated with the interplay between the col-
lective and the single-particle excitations discussed above.

The most interesting aspect of the absorption spectra
shown in Figs. 10—13 is the level splitting phenomenon
most apparent in Fig. 12, which arises from a resonant
many-body coupling between intersubband single-particle
and collective excitations. At low electron densities
( —1 —2X10' cm } and wide enough wells (we have
checked to ensure that the resonant level splitting occurs
also in square-well structures around the same electron
density regime), the resonant coupling produces a level
splitting (Fig. 12) in the far-infrared absorption spectra
even at rather long wavelengths (q= 1 —2X10 cm ') be-
cause the collective charge density excitation is almost
degenerate with the single-particle Landau continuum
even at long wavelengths around this density regime.
Note that above this critical density ( —1.5X 10' cm ),
the intersubband charge-density mode behaves as the
usual plasmon mode lying above the single-particle Lan-
dau continuum whereas below this density vertex correc-
tion pushes the collective mode below the Landau contin-
uum and we have a strange situation where the plasmon

S(q, co)= Reo „(q,a)),2g
&e cod

(4.1)

where d is of the order of the thickness of the electron
layer. From Eq. (4.1) we expect Raman-scattering exper-
iments, which basically probe the dynamical structure
factor of the many-body system, to reveal similar qualita-
tive features as that shown in Figs. 10—13. Thus, we can
take the numerical results of Figs. 10—13 as giving the
Raman-scattering spectra (up to an overall scale factor)
associated with the intersubband charge-density excita-
tions as well.

lies below the single-particle continuum. In the latter sit-
uation, it is perhaps more appropriate to think of the in-
trasubband charge density excitation to be a collective
coupled plasrnon-exciton mode —it is a plasmon in the
sense that it is the pole of a reducible response function,
but it is also in some sense a many-body exciton because
the vertex correction arising from strong intersubband
electron-hole interaction pushes the energy of the excita-
tion below the single-particle continuum, giving it sorne-
what of a bound state nature. We want to emphasize that
this resonant level splitting phenomenon is a pure many-
body phenomenon, arising entirely due to the vertex
correction on the polarizability inherent in the
TDLDA —in the RPA, the intersubband charge-density
excitation must always lie above the single-particle con-
tinuurn as is obvious from our results in Fig. 6. We be-
lieve that this predicted level splitting phenomenon
should be observable in both far-infrared absorption and
inelastic light scattering experiments at low
temperatures —our theoretical calculations use realistic
system parameters including a rather conservative esti-
mate of the impurity broadening which would tend to
wash out the resonance e8'ect.

We note that the real part of the conductivity (which is
proportional to the absorption per unit area} is also pro-
portional to the imaginary part of the density response
function which is essentially the dynamical structure fac-
tor of the system. For the two-dimensional electron sys-
tems the dynamical structure factor S(q, co) is related to
the conductivity (response function) through the formula

0.3
(&) (b)

V. SUMMARY

In this paper we develop a zero-temperature theory for
the intersubband elementary excitation spectra of wide
parabolic (and square) quantum wells in the extreme
quantum limit when only the lowest subband is occupied
in the ground state of the system. We use the self-
consistent TDLDA theory where the electronic structure
of the system is obtained by self-consistently solving the
LDA Kohn-Sham equation and the elementary excita-
tions are obtained from the poles of the suitable intersub-
band polarizability f~. nctions which are themselves calcu-
lated in a self-consistent-field linear-response calculation
using the LDA subband wave functions and energies.
We have also obtained the spectral weight of the elemen-
tary excitation spectra by calculating the dynamical con-
ductivity, or equivalently, the dynamical structure factor
of the system. In particular, we calculate the intersub-
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FIG. 13. The same as in Fig. 10 for N&=10' cm, and for
qadi =0.001 (a); 0.05 (b); 0.1 (c); and 0.2 (d).
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band optical absorption associated with far-infrared spec-
troscopy and the inelastic-light-scattering spectra associ-
ated with Raman-scattering spectroscopy. We use realis-
tic quantum well configurations for our calculations. We
concentrate on wide parabolic (and, square) quantum
wells and on low two-dimensional electron densities in
the system. We find that for wide enough wells, there is
an interesting and experimentally observable shallow
minimum in the intersubband collective charge-density
excitation (i.e., plasmon) mode at a finite value of the in-

plane wave vector. This minimum is not a many-body
efFect (in the sense a roton minimum is in the case of
superfluids or quantum Hall liquids), and exists both in
the RPA and the TDLDA theory. We argue that this in-
tersubband plasmon dispersion minimum has the same
origin as the negative surface-plasmon dispersion in
metal surfaces and arises from a competition between
confinement and nonlocal (i.e., finite wave vector)
response. Our most significant theoretical finding is a
subtle many-body coupling between the intersubband
single-particle continua and the intersubband charge-
density excitations which is a direct result of keeping the
excitonic vertex corrections in the theory and shows up
only in the TDLDA theory (and, not in the RPA). This
coupling causes even the long-wavelength intersubband
plasmon mode to be Landau damped at some critical
electron density ( —1 —2X 10' cm } and, below this criti-
cal density, the intersubband plasmon lies below the
quasiparticle Landau continuum because the excitonic
vertex correction actually becomes larger in magnitude
than the depolarization shift. Around the critical densi-

ty, the plasmon is strongly resonantly coupled to the Lan-
dau quasiparticle continuum, leading to an experimental-
ly observable line splitting of the intersubband charge-
density excitation peak. This predicted many-body reso-
nant plasmon line-splitting phenomenon should be ob-
servable both in inelastic light scattering and far-infrared
optical spectroscopies. We provide detailed numerical
results for the calculated intersubband charge-density,

spin-density, and quasiparticle excitation spectra, critical-
ly comparing TDLDA and RPA theoretical results so
that one can estimate the magnitudes of exchange-
correlation corrections on the elementary excitation spec-
tra of GaAs-based two-dimensional structures. We also
provide some comparison between parabolic well and
square-we11 structures.

We have also provided in this article the unified for-
malism for RPA and TDLDA theories of the elementary
excitation spectra in semiconductor quantum wells. In
particular, we have developed both the theories from a
unified many-body diagrammatic formalism as well as
from a self-consistent-field equation-of-motion approach.
The TDLDA theory includes LDA exchange-correlation
corrections both in the subband structure calculation and
in the self-consistent linear-response calculation whereas
RPA does not (of course, both calculations must include
the Hartree correction self-consistently}. In the many-
body language, the RPA includes only the Hartree self-
energy correction in the subbands whereas the TDLDA
includes both Hartree and LDA exchange-correlation
self-energies. In addition, the irreducible polarizability
(whose poles define the spin density excitations) in the
RPA is only the (Hartree-corrected) bare bubble whereas
in the TDLDA it is the ladder polarizability diagrams.
The ladder vertex equation for the irreducible polarizabil-
ity can be easily solved because LDA makes the drastic
approximation of taking the exchange-correlation poten-
tial to be static and short-ranged (in fact, zero-range 5-
function-like). The reducible polarizability (whose poles
define the charge density excitations) is given by the sum
of the "ring" diagrams in both the approximations (with
each ring being LDA vertex corrected by the ladders in
TDLDA and each ring being bare in RPA).
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