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The constitutive equation for Frenkel exciton polarization in a bounded medium is derived from
both macroscopic Lagrangian theory and microscopic coherent-wave theory. The result corresponds
to the Hopfield and Thomas model previously thought to apply to the Wannier exciton. We show
that the Frenkel exciton must be regarded as a finite-volume object and so the change of the exciton
binding energy near a surface must be included in the optics problem of transmission/reflection
near its resonance (the so-called additional boundary condition or ABC problem). The combination
of the exciton polarization equation and the wave equation is then solved by a new mathematical
method in wave-vector space (k space). We show that the truly macroscopic nonlocal susceptibility
must contain surface terms that previous macroscopic theories did not include. We obtain a different
solution to the problem with this theory that requires no boundary conditions. By transforming
to real space, we also derive the ABC needed for a macroscopic real-space approach and point
out the important (but often confused) difference between macroscopic and microscopic boundary

conditions.

I. INTRODUCTION

The need for an “additional boundary condition”
(ABC) was first proposed by Pekar! in 1957 when deal-
ing with optical transmission/reflection near an exciton
resonance. The problem arises from the fact that the res-
onant wave-vector dispersion? in such a region leads to
the existence of two transverse waves (for a given direc-
tion, frequency, and polarization) in the medium rather
than the usual one. Use of Maxwell’s boundary condi-
tions is then insufficient to determine all of the unknown
wave amplitudes. While early work was based on the
introduction of extra assumptions (in the framework of
macroscopic theory),137® later work attempted to derive
the needed boundary condition from either macroscopic
approaches®® or microscopic approaches!®™6 (also see
references therein; comprehensive reviews of these works
can be found in Refs. 17 and 18). In spite of a vast
number of works that have been published in thirty-five
years, it seems fair to say that much controversy remains
concerning the correct form of the ABC.?

The longstanding controversy in this field results from
the innate complexity of including a surface in the pres-
ence of wave-vector dispersion. The so-called dielectric
or Hopfield and Thomas (HT) model* that is an exten-
sion of the classical resonant oscillator model can de-
scribe the linear nonlocal susceptibility originating from
the translational motion of the center of mass of an ex-
citon in the bulk medium, but not necessarily near the
surface.2722 Hopfield and Thomas introduced the con-
cept of an exciton-free layer or “dead layer” to describe
the surface region throughout which they take the ex-
citon polarization to be zero.* Therefore, there is no
wave-vector dispersion included in this region. Most
work, microscopic or macroscopic, follows this simple ap-
proximation to the surface layer. However, Stahl and
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Balslev29722 suggest that such a treatment may be in-

adequate to understand all the problem’s complexities.
They also demonstrate more fully that the “no escape”
boundary condition alone suffices to solve for the exciton
polarization and electric field from a microscopic calcu-
lation. The Stahl-Balslev coherent wave solution can, in
principle, provide not only the transmission and reflec-
tion coefficients but also the link between microscopic
and macroscopic solutions through the surface layer. On
the other hand, the “dead layer” model breaks this link,
which makes the deduction of the macroscopic boundary
condition from the microscopic solution very difficult.
The full complexity of the problem can be understood
as follows. For the Wannier exciton that is studied most,
the phenomenology of the exciton-polariton problem is
altered from a macroscopic one in an infinite medium to
a mesoscopic one in a bounded medium.2? This can be ar-
gued clearly from a symmetry analysis. The translational
invariance symmetry possessed by an infinite medium al-
lows the separation of the center-of-mass motion of the
exciton from its internal motion. Therefore, the center-
of-mass motion of the exciton in the bulk, which is the
mechanism of the wave-vector dispersion, is independent
of the internal structure of the exciton. Since the exciton-
polariton wavelength is much larger than the lattice con-
stant of the crystal, the corresponding wave-vector dis-
persive phenomenon is macroscopic. However, this is no
longer true for a Wannier exciton in a bounded medium.
The internal structure of the Wannier exciton is distorted
when its position is within a few of its radii below the
surface of the medium. This distorted internal structure
of the Wannier exciton, whose size is comparable to the
exciton-polariton wavelength, affects its center-of-mass
motion and so must be considered. The nature of this
combined quantal and electromagnetic interference near
the surface is mesoscopic. This explains why a macro-
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scopic model for the optics problem of a Wannier exciton
may have limited accuracy.?!

Like the Wannier exciton case, the internal structure
of a Frenkel exciton (tightly bound, small size) enters the
optics problem. Unlike the Wannier exciton case, the mi-
croscopic approach can hardly be used because the short-
range interaction between the electron and hole is so com-
plex that the calculation of the Frenkel exciton wave func-
tion is impracticable even in an infinite medium. How-
ever, the optics problem is still a macroscopic problem
since the size of the Frenkel exciton, though we show
that it must be considered, is much smaller than the
exciton-polariton wavelength. We prove this point from
a first-principles derivation of the constitutive equation
of the exciton polarization based on the coherent wave
theory.292! Though the essential approximation of this
model of the Frenkel exciton is that electron and hole
must occupy the same atomic site, we show that, con-
trary to the general belief, the Frenkel exciton still must
be treated as a finite-size object when its wave-vector
dispersion is considered.

Since the optics problem of the Frenkel exciton is still
macroscopic, we show that the continuum version of the
constitutive equation can also be derived from an ex-
tended macroscopic Lagrangian theory that can describe
inhomogeneous dielectrics (of which a bounded dielectric
is a special case).?32¢ This is understandable because it
makes no difference, in principle, whether a description
of a long-wavelength phenomenon is based on classical
lattice dynamics or quantum mechanics. The construc-
tion of the Lagrangian of a dielectric is as general as
possible with only constraints on symmetry. Therefore,
all the conservation laws are automatically satisfied in
our theory. However, as general as it is, the classical
treatment necessarily involves many unknown numerical
constants that describe material properties such as effec-
tive mass, charge density, etc. On the other hand, the
quantum-mechanical derivation gives more specific form
and interpretation to the material parameters.

We develop a new mathematical method operating in
k space to solve the macroscopic problem effectively and
consistently.?24'25 One of the advantages of our method
is that it can account for the finite-size effect of the
Frenkel exciton near the surface of the medium on the
long-wavelength optics problem while ignoring the detail
of its internal structure. When the macroscopic k-space
constitutive relation is derived by this method, we find
it must contain surface terms which originate from both
motional wave-vector dispersion and the change of ex-
citon binding energy in the surface layer. These surface
terms can be interpreted as the average values of the cor-
responding physical quantities in the macroscopically in-
finitesimal but microscopically finite surface layer. This
is easily understandable because a macroscopic theory,
by its nature, cannot describe physical quantities in de-
tail on an atomic scale, especially near a surface. These
surface terms are the only possible form that can be used
to modify the macroscopic nonlocal constitutive relation
so as to reflect the lack of translational symmetry of a
bounded medium. The presence of these surface terms
in our k-space method enables us to obtain a complete
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solution to the optics problem without resorting to a de-
tailed microscopic solution in the surface layer, which is
an important characteristic of this new method.

The solution in our k-space method arises in a quite
different manner from conventional methods in optics.
The dispersion relations for both medium and vacuum re-
sult from requiring the Fourier transformed electric field
wave equation to be finite at the poles of the electric field
in the complex k plane. Then the functional form of the
electric field transform is determined from the knowledge
of its poles. The transmission and reflection coefficients
are determined by requiring the coefficients of the various
powers of k in the transformed wave equation to vanish
after the poles are eliminated. Interestingly, no boundary
conditions are needed or used in our method of solution,
simply because the k-space transform has no discontinu-
ities. Also interesting is that the surface exciton polar-
ization (it is an average value of the exciton polarization
in the surface layer, not the microscopic surface exciton
polarization) is found along with the transmission and
reflection coefficients. This allows our theory to account
for the surface layer effects on the long-wavelength op-
tics. Because of the newness of the entire procedure of
the k-space method its fundamentals are presented first
in the preceding paper?® as applied to the local optics
problem of Fresnel reflection and transmission. While
the method is only an alternative method there, its in-
herent ability to handle surface effects in a wave-vector
dispersive phenomenon make it an essential choice here.

While our new method is unusual in many aspects, its
physical concept is straightforward. In the optics prob-
lem we detect the optical electric field that is far away
from the surface which then has the same wavelength as
that in an infinite medium. That part of the electric field
corresponds to the part of the Fourier transform of the
electric field around the bulk exciton-polariton wave vec-
tor (in the long-wavelength region). On the other hand,
short-wavelength (evanescent) parts of the electric field
at the surface are not detected. Therefore, only the long-
wavelength part is our main concern, which can be stud-
ied separately from the short-wavelength part in k space.
Conceptually, our k-space method is very close to the
method used in quantum scattering theory where only
asymptotic solutions are of interest. The method there
is mostly done in k space so that asymptotic solutions
can be obtained without considering the “near field” so-
lutions if the scattering potential is complex but short
range. The difference is that our method deals with a
“scattering potential” made by the medium on one side
of a surface and vacuum on the other while the method
there deals with a localized scattering center. Because
of this difference the mathematical procedures have little
similarity.

Foley and Devaney?” previously worked in wave-vector
space on the exciton-polariton problem. They began
with a translationally invariant exciton susceptibility in
the constitutive relation used in previous macroscopic
work®™® and obtained the same result. Because of the
translationally invariant kernel they were able to use the
Weiner-Hopf technique of solution. Since we derive and
use a nontranslationally invariant exciton susceptibility,
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we cannot use this technique. In fact, our method has
little in common with the Weiner-Hopf technique even
though both are carried out in k space. Notably, our
Fourier transformation is done in the entire space while
that used by Foley and Devaney in their application of
the Weiner-Hopf technique is done in the half-space oc-
cupied by the matter, which causes their formulation
to contain values of electric and magnetic fields at the
surface. This is the reason why the impedance bound-
ary condition must be used in the Foley-Devaney work?2”
while there is no need of any type of boundary condi-
tion in our method. There is also a conceptual differ-
ence between the Weiner-Hopf technique and ours. The
Weiner-Hopf technique, just as other techniques devel-
oped in Refs. 6-9, is a mathematically rigorous method
for the restricted class of (or more precisely, translation-
ally invariant) kernels. On the other hand, our k-space
method is developed for, and makes explicit use of, the
long-wavelength approximation. The macroscopic so-
lution produced cannot describe field variations within
the surface layer but can include the layer’s effect on
the long-wavelength solution. Another wave-vector-space
method using the factorization technique has been ap-
plied to the study of surface polaritons.?® 3° Each of
these studies?®*3° uses impedance boundary conditions.

Macroscopic approaches®® of the early 1970s solved
the original problem posed by Pekar, that is, that
Maxwell theory did not seem to provide enough boundary
conditions thus requiring an ABC. These works cleverly
found an additional condition, equivalent to an ABC,
by either an extinction theorem type of development or
conversion of the second-order differential equation to a
fourth-order equation. These works, however, began by
assuming a constitutive relation for the nonlocal exciton
polarization that used a translationally invariant (that
is, bulk) susceptibility even though the presence of a sur-
face breaks that invariance. This limitation was real-
ized and is called the “dielectric approximation.” It was
thought to be necessary to make the macroscopic prob-
lem tractable even though it was later shown to violate
energy conservation.3!

Our approach differs from these previous macroscopic
treatments in several ways. While they work in real
space, we work in k space. While they use Maxwell
boundary conditions and a deduced ABC, we use no
boundary conditions. While they assume a constitutive
relation, we derive it. While they simply cut off the sus-
ceptibility at the body boundary, we apply a cutoff at
the more fundamental level of material properties such as
mass, charge, and restoring force constants, which leads
to the surface terms in the susceptibility. While their sus-
ceptibility is translationally invariant, ours is not. From
the form of the susceptibility that we derive, we see no
way to anticipate its form. Thus we believe that start-
ing with a constitutive assumption cannot succeed in this
problem. These differences lead to an altered solution to
the problem.

Another important finding from our theory is that the
macroscopic HT model corresponds only to Frenkel ex-
citons in a bounded medium. This is supported by the
derivation of the constitutive equation of the Wannier ex-
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citon polarization from coherent wave theory,?%2! which
cannot be reduced to an equation comparable to the HT
model. Unlike other conventional microscopic theories,
it involves a complex exciton polarization function which
depends on the coordinates of both the electron and hole
directly. Though, this theory has not provided a solution
to the three-dimensional Wannier exciton case, it clarifies
conceptually the complexity of the problem and shows,
in Stahl and Balslev’s words, that the coupling between
quantum waves in electron-hole space (internal coordi-
nates) and electromagnetic waves in center-of-mass space
must be considered without loss of coherence. Compared
with the numerical solution for the one-dimensional Wan-
nier exciton case by coherent wave theory,?! our solution
is analytical and three dimensional for the Frenkel exci-
ton. Therefore our approach demonstrates this coherent
coupling.

Though our k-space method uses no boundary condi-
tions to obtain the complete solution for the optics prob-
lem, it can derive the macroscopic ABC that is needed
in a real-space treatment for a Frenkel exciton case by
transformation of the k-space equation. This transfor-
mation helps to reveal the important difference and con-
nection between macroscopic and microscopic boundary
conditions, a distinction which often appears confused in
this field. From this analysis, it can be seen why us-
ing Pekar’s boundary condition microscopically is quite
different from using it macroscopically.

II. MACROSCOPIC DERIVATION
OF THE DIELECTRIC MODEL
IN A HALF-SPACE MEDIUM

A. Preliminary

Since the optics problem of transmission/reflection of
a Frenkel exciton is a macroscopic problem, as men-
tioned earlier, we can base our theory on a general La-
grangian formulation of long-wavelength dynamics of a
general dielectric crystal interacting with the electromag-
netic field.?® The Lagrangian formulation has been suc-
cessful in describing all the long-wavelength modes of
mechanical motion, both optic and acoustic, of a homo-
geneous dielectric from an entirely deductive derivation.
Unlike most other macroscopic theories which start from
assumptions on the dynamic equation and constitutive
relations relevant to the problem, this theory starts from
a Lagrangian describing the matter, the electromagnetic
field, and the interaction between matter and electro-
magnetic field. The original Lagrangian is microscopic in
nature but a long-wavelength limit is performed on the
Lagrangian. The construction of the Lagrangian is as
general as possible while obeying the symmetries needed
to produce the conservation laws. Expansion of the La-
grangian density to the appropriate order of relevant field
variables and their derivatives allows consideration of any
order of nonlinearity or wave-vector dispersion. The de-
duced constitutive relations contain, and only contain,
the allowed symmetry properties. An example is given by
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a study of optical activity (the lowest-order wave-vector
dispersive optical effect).3?

In this paper we extend the Lagrangian formulation to
describe an inhomogeneous dielectric crystal as prepara-
tion for handling general wave-vector dispersive phenom-
ena in a bounded dielectric. Besides the kinetic energy
the matter Lagrangian contains the stored energy de-
scribing the binding forces of the crystal which are short-
range (contact) forces. The coefficients in the expansion
of the stored energy can be labeled by the index of a unit
cell to reflect the inhomogeneity of the dielectric crystal.
In the continuum limit, these coefficients (material pa-
rameters) can be expressed as functions of position coor-
dinates. Also the interaction between the matter and the
electromagnetic field involves only the long-range macro-
scopic electromagnetic field and so can be expressed in
a multipole expansion. The multipole moment densities
are local quantities and can be expressed as functions of
position coordinates. Therefore, the Lagrangian formu-
lation can be extended to describe a general inhomoge-
neous medium where the material properties vary spa-
tially. Bounded media are special inhomogeneous media
where the material properties have abrupt changes near
a surface, but constant elsewhere. This theory provides
us a deductive basis to examine and hopefully resolve
the controversy in the ABC problem at the macroscopic
level.

B. Lagrangian density

The Lagrangian density consists of three parts: the
matter Lagrangian, the electromagnetic field Lagrangian,
and the field-matter interaction Lagrangian. For an op-
tical phenomenon as studied here, the motion of the con-
tinuum center-of-mass coordinate is negligible and may
be dropped. Therefore the deformation of the crystals
can be neglected. The distinction between material and
spatial position coordinates vanishes.?®> The Lagrangian
density used is then the Lagrangian per unit volume in
ordinary space.

The matter Lagrangian is the difference of the kinetic
energy and potential or stored energy. The kinetic en-
ergy of the center-of-mass or acoustic-mode motion can
be dropped. The remaining kinetic energy can be ex-
pressed in terms of internal coordinates.?? The internal
coordinates, which in combinations describe optic modes
of the crystal, are denoted by yT¥ = Y” + y¥, where Y”
are the spontaneous or constant parts that exist in the
natural or unperturbed state of the crystal and y” are
the parts that vary in response to some external influ-
ence. A mass m” and a charge ¢ are associated with
each yT".

The stored energy is taken as the most general form
consistent with the theory conserving energy, momen-
tum, angular momentum, and parity (the last being true
only to a high degree of approximation).2® In the ab-
sence of wave-vector dispersion these arguments lead to
the simple conclusion that the stored energy can be ex-
pressed as a series expansion in yT¥. To account for
wave-vector dispersion, the spatial derivatives of the in-
ternal coordinates such as Vy" are also included in the
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series expansion. The terms in the stored energy series
expansion linear in yT” give rise to a spontaneous elec-
tric field in the internal motion equation. We assume
extrinsic surface charge nullifies the spontaneous electric
field (the extrinsic natural state) if the crystal is pyro-
electric. For this reason, the linear term in the stored
energy may be dropped. For example, in order to ac-
count for the linear optical activity,3? only bilinear terms
such as yT¥VyT? need be retained.

The internal coordinates can describe either ionic mo-
tion or electronic motion in a dielectric. Since the elec-
trons in the medium have much lighter effective masses
than ions, the wave-vector dispersive terms are always
important to these electronic internal coordinates. We
introduce a coordinate y* that describes the exciton po-
larization. This coordinate describes the relative motion
of electron and hole coordinates. It is characterized by
an effective mass m** and a charge density ¢°*. Since we
concentrate on its resonance behavior, the second-order
wave-vector dispersive terms are important. Besides the
bilinear term yz*y;%s we keep the quadratic term YikY5a
and another term y{*y$%, that gives the same form of
bulk wave-vector dispersion in the dynamic equation of
the exciton polarization in the bulk. For simplicity, we
assume the coordinate for the exciton polarization is iso-
lated, that is, the exciton polarization coordinate does
not couple to other optic modes because its resonant fre-
quency is far from their resonant frequencies. Thus the
matter Lagrangian density Ljs tailored to the model we
study is

1 s
Lo =5 > meugl — Y (ME vl + Lifwrulh)
v vp
—Najiys kY51 — Oiint¥s Vs ks (1)
where the summation variables p, v include the exciton
mode. All the material parameters (m”, M, *, etc.) are
assumed to be functions of the spatial coordinate x to
describe the inhomogeneity of the medium.
The electromagnetic field Lagrangian density Lp is
given by the difference of the electric- and magnetic-field
energies,

Lr =3 (B? - B?), (2)

where the Lagrangian variables are the vector potential
A and the scalar potential ® given as usual by

E =-V&— 0A/dt, (3)
B=VxA. (4)

The interaction Lagrangian density L; is expressed in
general as

lej'A_qQa (5)

where j is the current density and q the charge density.
Because of charge neutrality in a dielectric, only the di-

electric charge and dielectric current remain. They are?®
¢° =-V.-P+VV:Q, (6)
j=0P/ot — OV -Q/dt+ V x M, (7)
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where

P= Z quy Tu, (8)

1 v v
Q=D yTy™, 9)
m7
1 v v
M=_3 ¢y™ xy™, (10)
uv

are polarization, quadrupolarization, and magnetization
respectively, and VV - Q is an alternative notation for
V - (V - Q). By rearranging terms in the Lagrangian
density and dropping perfect time derivatives and diver-
gences (which cannot affect the equation of motion) the
interaction Lagrangian density becomes

Lr=P-E+M-B-E-(V-Q). (11)

The formulation is completed by defining the total La-
grangian density £ as

L=Lym+Lr+Lr (12)

and regarding it as a function of all the internal coordi-
nates y”, the vector potential A, and the scalar potential
®.

C. Dynamical equations

The Maxwell-Lorentz equations are readily obtainable
from the Euler-Lagrange equations for ® and A. The
derivations of these equations are presented in detail in
Refs. 23 and 32. They are

V-D=0, (13)
V x H - 0D/dt =0, (14)

where the electric displacement D and magnetic intensity
H are defined as

D=¢E+P-V-Q, (15)
H = (1/p0)B — M. (16)

The remaining two equations of the four Maxwell equa-
tions are implied by Egs. (3) and (4). They are

V.B=0, (17)
V x E + 8B/ot = 0. (18)

The derivation of the dynamical equations for the in-
ternal coordinates other than that for the exciton polar-
ization is also given in Refs. 23 and 32. Since we are
only interested in the wave-vector dispersion of the exci-
ton polarization, we can drop the wave-vector dispersion
terms in the dynamical equations for ordinary ionic in-
ternal coordinates, which then become

meg +2Y MEY, —q"Ei =0, v#ex.  (19)
M

The constitutive equation for the exciton polarization
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follows from the Euler-Lagrange equation for y**,

d oL oc d oL d? oL

doL oL d . @0
d oy~ oy dz; Oy dmdar Oy, D)

If we neglect the terms from the magnetization and
quadrupolarization in Egs. (13) and (11) for simplicity
since they yield only optical activity terms that are not
essential to the resonance wave-vector dispersion of exci-
tons, we obtain

mYe* = ¢ E; — 2M Y5 — Lijey5h — Oijri¥s e
+d (Ljany$™) /dor + d (2Nirjiy$i) /dzs
~d? (Oijiys™) /darda, (21)

where all the material parameters are functions of spa-
tial coordinates in a general inhomogeneous medium of
which a bounded medium is a special case. It is not dif-
ficult to see that if we ignore the tensorial notation and
regard all material parameters as constants, Eq. (21) has
the same form as the equation of the dielectric model in
the paper of Hopfield and Thomas* (see Sec. II of Ref.
4). Note that the last two terms containing N and O
have the same form only if these material parameters are
constants, rather than functions of spatial coordinates.

III. QUANTUM-MECHANICAL DERIVATION
OF THE CONSTITUTIVE EQUATION
FOR THE FRENKEL EXCITON POLARIZATION
IN A HALF-SPACE MEDIUM

A. Coherent wave theory for the Frenkel exciton

Stahl and Balslev?! introduce the coherent wave the-
ory as a general formalism for the electrodynamics of
the semiconductor band edge. While the conventional
Elliot-like treatment33 requires a two-stage calculation in
which the exciton wave function is calculated and then
applied to the linear response formulation to obtain the
exciton polarization response, this theory starts from the
creation and annihilation operators of the electron and
hole from which the complex exciton polarization opera-
tor can be constructed. Therefore, the constitutive equa-
tion for the complex exciton polarization operator can be
derived from the Heisenberg equation directly.

Since the optics of transmission/reflection of a Frenkel
exciton system is still a macroscopic problem, we can ap-
ply the long-wavelength approximation to the constitu-
tive equation for the complex exciton polarization. Sub-
sequently, we can obtain the macroscopic exciton polar-
ization response or susceptibility by using our k-space
method without the need for a microscopic calculation of
the Frenkel exciton wave function in a bounded medium.
Such a calculation is impractical anyway and its avoid-
ance while including its microscopic effect on the macro-
scopic problem is a very important advantage of the k-
space method.

The coherent wave theory is based on the tight-binding
model of a two-level quantum system, which is a suit-
able model to describe the lowest exciton branch in a
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semiconductor or insulator. Since a full development
of the theory is given in Ref. 21, we present here only
a brief description of the model with emphasis on our
application of it to a bounded medium. The quantum
system consists of a nondegenerate upper s state (spin
degeneracy is neglected) denoted by |c,7) and a three-
fold degenerate lower p state denoted by |v, A, j) at each
atomic site j with A denoting the sublevel. For spinless
p states, A corresponds to the direction of polarization.
The ground state of the system consists of one electron
at every atomic site in a p state. If an electron is ex-
cited into the |c, j) state from the |v, ), j) state, the sys-
tem now contains a missing |v, A, j) state. A hole, in
the terminology of semiconductor physics, is said to be
created. A set of Fermion operators, ¢! and dij, c; and
d»j, which are the creators and annihilators of the elec-
tron and hole, respectively, at the atomic site j is intro-
duced. The Hamiltonian of the simplest model that only
allows the electron and hole to be created or annihilated
on the same atomic site can be written as

hw
HM = Tg Z (cjc; - Zd)qdi]) , (22)
J A

where the energy level spacing (gap) between the two
states is Fy = hwgy. Such an electron-hole pair described
by Eq. (22) is the so-called Frenkel exciton. The justifi-
cation of assuming such a Frenkel exciton is as follows.
Since a real Frenkel exciton is tightly bound and small
in size, the probability of the electron and hole not be-
ing at a same atomic site is very small. Therefore, no
significant error is introduced by omitting that part of
the wave function corresponding to other sites. Also, if
that part needs to be accounted for, we can treat 5 by
a Taylor expansion around the center-of-mass coordinate
of the exciton as long as the size of the exciton is much
smaller than its bulk exciton-polariton wavelength.

It is assumed that there is no electric dipole moment
in either the upper s state or lower p states, but in the
transition a dipole is produced. The component A of the
dipole moment of atom j is represented by the operator

T = Po (d,\jcj + dL-C;) ’ (23)

where po is the transition dipole matrix element. The
interaction Hamiltonian with the electric field component
A at site j, E\j, is then given by

Hy = —ZﬁAjE)‘j. (24)
Aj

For the sake of simplicity, we assume the electric field
is polarized in one of the A directions so that it excites
only that component of the dipole moment. Thus we can
drop the A notation. A convenient set of variables which
may be used in studying the dynamics of the quantum
system under the influence of the electric field consists of
the following four quantities:

st — cldl

3 ;d;,  creator of a Frenkel exciton at site j;

8; = c;jd;, annihilator of a Frenkel exciton at site j;
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n; = c;cj,

) electron number in state |c, j);

D; = d;r-dj, hole number in state |v, 7).

The actual exciton polarization is then expressed as
PP =po (31 +73;) /2 (25)

To account for the mobility of a Frenkel exciton, a
hopping term that describes the transfer of the Frenkel
exciton as an entity from one site to another is also added.
The hopping Hamiltonian can be written as

Hy = T;x8)5k, (26)
jk

where T is the “hopping matrix.” It is not difficult to
see that the diagonal matrix element T;; does not corre-
spond to hopping but rather to the Coulomb interaction
between the electron and hole. Thus it represents the
exciton binding energy in the model. The total Hamilto-
nian is then

H=Hpy +Hy + Hy. (27)

Our Frenkel exciton model is simplified considerably
compared to a more sophisticated one in Ref. 34 (how-
ever, deeper understanding of the exciton problem should
be based on Ref. 34). In particular, the assumption that
restricts the electron and hole to the same atomic site al-
lows the Frenkel exciton polarization to be expressed as
a function of the atomic site j rather than as a function
of electron-hole coordinates.

In a low excitation case where the densities of the elec-
tron and hole (the expectation values of 7; and p;) are
very small, the dynamic equation for 5; can be approxi-
mated as?!

X - 2 ~ i
8; +wgs; + ﬁ ZTjksk = —pf{l . (28)
’ k

While in Ref. 21 the sum is over the atomic sites k of
an infinite medium, we restrict the atomic site indices j
and k in Eq. (28) to a half-space medium. We assume
the material medium fills the z > 0 half-space with a
boundary plane at z = 0. Our formulation can retain
the form of Ref. 21 if instead of a restriction on the range
of j and k, each §; is multiplied by a unit step function
O((R;).) defined by

_J1ifz>0
e<z)_{0ifz<0. (29)

B. The macroscopic constitutive equation

In the continuum limit of Eq. (28) §; is replaced by
its expectation value s (x), a density function. Then Eq.
(28) takes on the form
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‘ipoN
B (30)

O (2) [ (%) + iwgys (x)] + © (2) % /T (x,x') s (x') © () dx’ = © (2)

where N is the density of Frenkel excitons in the medium. Since T (x,x') is of short range, it is reasonable to express
it as

T (x,x') =T(x,x+ (x' —x)) = exp (— |x' — x| /a) T'(x,x + (x' — x))

T (x,%x) + (x' — x) - iT’ (x,x")

~ exp (— |x' — x| /a) e

x/=x

+»1‘(x'—x) (x' —x): & T' (x,x)
2 T ox'Ox’ ’

’ (31)

where a is the effective “hopping” range of excitons and is about the same order of magnitude as the lattice constant
of the dielectric crystal. Under the flat-band approximation to the half-space medium, 7" (x,x’) is a constant even
near the surface. Therefore we can neglect 9T (x,x’) /0x’ and other higher-order derivatives in the above expansion.

This gives T (x,x’) = T' exp (— |x’ — x| /a). By changing the dummy variable x’ to x” = x’ — x in the integral of Eq.

(30), it can be reexpressed as

)

h

where the Taylor expansion on s (x + x'') with respect to
x is used.

The coefficient of s (x) without the factor i/k in Eq.
(32) can be evaluated as

=7 / dx’ exp (~ [x'| /a) © (2 + ')

oo +oo
= 27r/ pdp/ dz'e=VPH(E)?/a
0 —z

/2 oo
= 8T'7a® — 47rT'/ sin0d0/ e~ "/%r2dp
0 2/ cos6
+oo —y
= 4T 7a® {2— e~?/e (2+f) —25/ Ldy]}.
a a z/a Yy

For example, the above integral at z = 0 is half of what
it is at z = 400 . Thus the integral must have the form

I =4T"7a®{2 — e */°[1 4+ ay(z/a) + ---]}. (33)

As seen from the Fourier transform, the first- and higher-
order terms of z/a lead to higher-order effects (in terms
of a) to long-wavelength optics apart from contributing a
normalized factor on the first term. Therefore the zero-
order moment in Eq. (32) yields a term #(I/k)O(2)s (x)
in Eq. (30). When combined with the term 1w ©(z)s (x)
we can see that the coefficient I actually represents the
exciton binding energy in a bounded medium. Thus the
resonant energy of the exciton in the medium is

mQ(z) = k [wg —wy (1 - fe*z/a)] 0(z), (34)

where Aw, = —8ma®T" is the bulk exciton binding energy,

1+x"- _(9_ + lxnxu .

i /T (x,x') s (x') © (/) dx’ = %T’ /exp(— x"| /a)s (x +x") © (z + ") dx"

r ot

82
Ox0x

ax '3 ) s(x)O(z+2")dx", (32)

r

and £ is the effective change of the exciton binding energy
at the surface under the flat-band approximation. It can
also be used to account for effects caused by a surface
electric field, an extrinsic atomic layer, etc.

The first-order moment in Eq. (32) yields a term of
Vs (x) type. This is a linear wave-vector dispersive term
and is usually omitted for simplicity in studying the
exciton polarization. The second-order moment in Eq.
(32) yields a second-order wave-vector dispersive term
of VVs (x) type. This term, a second-rank tensor, cor-
responds to the kinetic energy of the translational mo-
tion of the exciton in the medium. Its coefficient, also a
second-rank tensor, can be interpreted as the reciprocal
of the effective-mass tensor of the Frenkel exciton. Again,
for the sake of simplicity, we limit ourselves to studying
only the case where the effective mass is isotropic. There-
fore the effective mass can be defined through

ﬁz

Mo AT’/exp (—z/a)z?dx x —T'a® o hwpa®. (35)
Note that the dependence of the effective mass on z leads
to terms proportional T’a® or higher, which contribute
only higher-order effects to the long-wavelength optics
problem and so are neglected. From the above analysis,
Eq. (30) can be simplified as

O (2) § (x) +12(2)s (x) — iéhﬁ@ (2) V25 (x)

poN

=1

0 (2)E (x). (36)

Equation (36) can be converted to the dynamical equa-
tion for the exciton polarization P®*. It is related to the
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real part of the complex exciton amplitude s, as seen in
Eq. (25), and in the continuum limit can be expressed as

P (x) = pols (x) + s* (%)] /2 . (37)

‘We follow the procedure as given in Ref. 21 to deduce the
dynamical equation for P** (x). The complex conjugate
of Eq. (36) is

o* . * i 2 %
0O (2) §* (x) —i(2)s" (x) + 22M® (2) V2s* (x)
= —i@ﬁA—/O(z)E(x). (38)
By adding Eqgs. (36) and (38) and making a time deriva-

tive of the sum we obtain

|

15 379
O (2) (5 +§%) + [ﬂ(z) - e v2]

x (5— &%) = 0. (39)

By subtracting Eq. (38) from Eq. (36) we get

O(2)(5— &) +i [Q(z) - %@ (2) Vz] (s + 5*)

= 2#’0;‘/ ©(z) E. (40)

Finally by eliminating § — 5* in Eq. (39) with Eq. (40)
we obtain the constitutive equation for P** (x)

@(z)azP;"(x,i&)/(?i&2 + Q(2)’Pg(x,t) — (ﬁ/ZM){Vz[Q(z)P;"(x, t)] + Q(z) V2P (x,1)} = paNQ (2) By (x,t) /B,

where only the lowest-order correction of each term is
retained. This equation is easily recognized as the bulk
equation of the HT model (see Sec. II of Ref. 4) if the
dependence of the exciton binding energy on the spatial
coordinate z is neglected. This shows that the macro-
scopic HT model applies to Frenkel excitons in a bounded
medium.

Hopfield and Thomas used a microscopic quantum-
mechanical argument when considering the boundary
condition for the macroscopic dynamic equation of the
exciton polarization (see Sec. III of Ref. 4). Their
microscopic theory is rather phenomenological. When
they considered a Frenkel exciton, the surface effect
contributed by the internal motion was completely ne-
glected. This is the most important difference between
their model and ours. We show later that the internal
motion effect cannot be neglected even for our Frenkel
exciton model (the smallest exciton there can be).

Hopfield and Thomas also considered a similar model
for Wannier excitons by adding an effective potential con-
tributed by the surface. They argued that the repulsive
potential becomes very large at the surface and produces
the “dead layer” needed to explain their data. However,
the coherent wave theory shows that center-of-mass mo-
tion and its quantal interference near the surface from the
internal motion must be solved together for Wannier ex-
citons. The concept of lumping the internal motion effect
on the center-of-mass motion into an effective potential
cannot be justified from a first-principles derivation.2!
Even for Frenkel excitons, the effective potential formu-
lation is not sufficient as seen in the constitutive equation
(41) that we derive. Furthermore, the potential term in
that equation can be regarded as a modification of the ex-
citon binding energy, as used in many other theories.}3 715
The exciton binding energy should approach a finite neg-
ative number at the surface as shown in our derivation
and in Ref. 35 for Frenkel excitons, not a very large pos-

(41)

itive number. It is well known that an exciton with pos-
itive binding energy corresponds to an unbound exciton
continuum. Its polarization cannot be described by a
classical resonant oscillator. Therefore to use a large pos-
itive effective potential to modify the dynamical equation
of the extended resonant oscillator is not very meaning-
ful.

When compared with the dielectric model derived
macroscopically in the previous section, we can see that
Eq. (41) has the same form as Eq. (21) except that the N-
type term is missing. We find that if we include the linear
wave-vector dispersive term (previously dropped), an N-
type term is present in Eq. (41), the quantum-mechanical
version of the dynamical equation of the polarization of
the Frenkel exciton. This is not surprising since the
macroscopic theory is completely general in the sense
that the N-type term includes, but not necessarily only
includes, second-order terms of linear wave-vector disper-
sive terms. On the other hand, the quantum-mechanical
derivation gives specific form and interpretation to the
material parameters. We can attribute this to the fact
that we have a more specifically (microscopically) defined
system in the quantum-mechanical treatment.

One important finding of our quantum-mechanical
derivation is that the finite hopping range a of a Frenkel
exciton that determines the mobility of the exciton also
determines the change of the exciton binding energy near
the surface. In other words, if the wave-vector disper-
sion originating from translational motion of the exciton,
though small in the Frenkel exciton case, is included in
a model for studying the exciton polarization, then the
change of the exciton binding energy in the surface layer
must also be included. In fact, as shown in a later sec-
tion, they contribute comparably to surface layer effects
in long-wavelength optics. Our finding agrees conceptu-
ally with the finding from the coherent wave study of a
Wannier exciton case?! that the interference of the in-
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ternal structure of an exciton (reflected by the change
of its binding energy in our case) with its center-of-mass
motion near the surface must be considered consistently.

IV. WAVE-VECTOR-SPACE METHOD

A. The dynamic equations in k space

Unlike the equation of a local long-wavelength optic
mode, the dynamic equation for the Frenkel exciton is
a partial differential equation. Therefore, from a real-
space solution method point of view there is a need for
a boundary condition in order to obtain a unique solu-
tion to this equation. The information needed to de-
duce such a boundary condition is, as generally believed,
contained in the partial differential equation of the in-
homogeneous medium that the surface represents. For
example, the Maxwell equations are also partial differ-
ential equations. The Maxwell boundary conditions can
be obtained directly from the Maxwell equations by ap-
plying either Gauss’s theorem to a small volume element
(pill box) or Stokes’s theorem to a small loop enclosing
the boundary.?® However, if wave-vector dispersion is in-
volved, those conventional methods are no longer useful
because an indeterminate surface quantity arises (see the
Appendix).

The problem is caused by abrupt changes of material
properties in the surface transition layer on an atomic
scale. As a result, the field variables such as the elec-
tric field and polarization also experience rapid changes
there. A detailed microscopic description of field vari-
ables in this macroscopically infinitesimal but microscop-
ically finite layer is extremely complicated and difficult to
obtain but unnecessary for an optics problem of transmis-
sion/reflection. There one detects only the optical elec-
tric field that is far away from the surface region, and
has the bulk wavelength. Therefore, only the part of the
electric field spectrum in k space around the bulk wave-
vector is of interest. In contrast, the rapid change of the
electric field near the surface is mostly contributed by the
short-wavelength part of the wave-vector spectrum. In
this section, we show from our k-space method that the
short-wavelength part of a field variable has a very small
effect on its long-wavelength part if the surface transi-
tion layer is very small compared to the bulk wavelength
of the field variable. In fact, we can show that the sur-
face layer effect is completely negligible in a local optics
problem, which is why the Maxwell boundary conditions
can be derived in real space without need for detailed
]
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solutions in the surface transition layer. However, in the
nonlocal optics problem of a Frenkel exciton system, the
surface transition layer effect is not negligible when the
problem is treated consistently.

To account for the surface layer effect in real space,
the full microscopic solution must be obtained based on
a proper microscopic boundary condition. (A macro-
scopic real-space method is no longer useful because, by
its nature, it cannot describe any detail on an atomic
scale, especially in the surface transition layer.) If the
microscopic problem is fully solved, then the transmis-
sion and reflection coefficients can be obtained from the
asymptotic part of the solution. Thus the correspond-
ing macroscopic boundary condition can be derived (in-
versely) but is not necessary. Also the usefulness of deriv-
ing the macroscopic boundary condition from the micro-
scopic solution depends on whether the microscopic solu-
tion can be obtained analytically. In k space, the surface
effect on a long-wavelength optics problem is translated
into a short-wavelength effect on the long-wavelength dy-
namics. In the case of a Frenkel exciton, the surface effect
is small, and thus can be treated perturbationally. That
is the distinct advantage of our k-space method over any
real-space method.

We now apply our new k-space method introduced in
the preceding paper?® to the exciton problem. While the
familiar problem of Fresnel reflectivity was used to illus-
trate the strikingly different method of solution that the
k-space method uses, that application to a local optics
problem does not exhibit one of the special features of the
method, that is, its handling of the surface effects that
a nonlocal optics problem, such as the exciton problem,
inherently has.

The various dynamic equations are transformed to k, w
space. For example, the four-dimensional Fourier trans-
form to k,w space of an internal coordinate is

1 . .
vy (kw) = —3 /y” (x,t) e~ HexFiwt gy dt (42)
(27)
and its inverse transformation is given by
vy (x,t) = /y" (k,w) e®*~t gk dw. (43)

Similar transformations can be given for E and B fields.
Also, similar expressions apply to material quantities
such as m”, ¢¥, Mi"j" except the time or frequency de-
pendence does not occur.

The dynamic motion equation (19) can be transformed
into to k,w space as

wZ/m" (k - K') g (', w) dK' — 2Z/M;j“ (k — k') g (K, w) dk’ + /q" (k—K) B (K,w)dk' =0. (44
u

Similarly, the dynamic equation for the exciton motion (21) can be transformed to k,w space as

wz /mex (k - kl) yfx (k,7 w) dk’ -2 / Mij (k - k,) y;x (k/, w) dkl —1 / [k;LiJ‘[ (k - k/) - lejil (k - k’)] y?x (kl, w) dk’

-+ / [Oijlm (k — kl) k;k;n + Ojilm (k —_ k’) klkm] y;x (kl, w) dkl — 2]6[ / k»:nNiljm (k — kl) y;x (k’, w) dk’

+ / ¢ (k — k') E; (kK',w) dk’ = 0. (45)
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We also need to transform the Maxwell equations into
k space. Under our approximation that neglects magne-
tization and quadrupolarization, Egs. (15) and (16) are
simplified to H = B/uo and D = ¢E + P. With these
two equations and Eq. (18) we can eliminate B in Eq.
(14) and rewrite it as

V xVxE~—(1/c?)8*[E + (1/)P] /0t* =0,  (46)

which is the wave equation for the electric field. Its k, w-
space transform is

€0 {szi (k,w) + c? k x k x E (k, w)]z}

+w22/q" (k — kK)o (k',w)dk' =0. (47)

Note that in Ref. 24 we prove that all the dynamic
equations and the Maxwell equations can be obtained
from a total Lagrangian density in k,w space by apply-
ing the Hamilton variational principle to every field vari-
able in k,w space. Thus, that approach is equivalent to
the procedure of transforming the real-space dynamical
equations as presented here.

B. Perfectly abrupt surface model
of a half-space medium

As seen in the last subsection, the dynamic equations
in k space for an inhomogeneous medium are generally
integral equations which contain convolutions of a Fourier
transform of a material parameter with a Fourier trans-
form of a field variable. Integral equations are usually
more difficult to solve than differential equations. How-
ever, for an optics problem in a half-space medium, these
dynamic equations can be reduced to algebraic equations
by the mathematical theorem we introduced in the pre-
ceding paper.2®

We assume the material medium fills the z > 0 half-
space with a boundary plane at z = 0. An arbitrary
material property of a perfectly abrupt surface model
M (x) has a mathematical expression of

M (x) = MO (z), (48)

where © (z) is the unit step function defined in Eq. (29).
Its Fourier transform is
1 1

o) = sir b —in’

where 7 is an infinitesimal positive quantity. Thus the
Fourier transform of the material property M(x) is

1 1

M () = 5o MO (a) 8 (ky)

(49)

The two delta functions for k, and k, are due to the
fact that the translational invariance is still preserved in
the T and ¥ directions. The two delta functions make
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the convolution of the material parameter with an arbi-
trary field variable, say f(k), in the Z and ¥ directions
straightforward. Therefore we only need to deal with the
convolution in the Z direction.

In the preceding paper?® we proved a theorem applying
to the convolution of the transform of a material property
as given in Eq. (49) with the transform of a physical wave
field f(k;). It is

Y e 1
ol B ey A CAL LS AL COPINC)

where
flke) = £ (k) + 7O (k2), (51)

and f(+) (k,) and f(=) (k,) are the parts of f(k,) having
poles in the upper and lower half complex k. plane, re-
spectively. As discussed there, poles in the upper (lower)
half-plane occur at the propagation constants of the phys-
ical wave field inside (outside) the medium. Also, poles
do not occur on the real axis in order to have finite trans-
forms.

By using this theorem, we can calculate the convo-
lution of an arbitrary material parameter with an arbi-
trary field variable in wave-vector space for the half-space
medium. It has the form of

/M (k — k') f (K, w) dk’

) 2mi k., — k. —in
= MfD) (ky, ky, ko, w) . (52)

Since the integrals in the dynamic equations for the
internal and exciton motions, Egs. (44) and (45), and
the wave equation (47) have the same form as that of
Eq. (52), the use of the theorem allows us to carry out
the integrations analytically for the perfectly abrupt sur-
face model of a half-space medium. We then obtain the
algebraic forms of these equations. As shown in the pre-
ceding paper, the equations themselves provide all the
information needed to determine the functional forms of
the field variables.

C. Gradual surface model

Consider next a material property that is not perfectly
abrupt at the surface, but rather varies gradually from its
bulk value to a surface value. In general we can describe
such a material property by

M (x) = MO (2) [1 + ¢(2)], (53)
where g(z) is the profile function. Often it can be conve-

niently expressed by an exponentially decaying function
as in Eq. (34),
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g(2) = —Le %/, (54)
since for a thin surface layer, its detailed form is not im-
portant to the long-wavelength dynamics as seen later.
Here a is the effective distance that the material prop-
erty is affected by the surface and the dimensionless pa-
rameter £ describes the extent over which the material
property is affected. The k-space transform of the mate-
rial parameter M in Eq. (53) is

8 (kz) 6 (ky) (k iin Tk fi/a)- (55)

Since in long-wavelength dynamics, we are only inter-
ested in the Fourier transform in the spectrum |k| < 1/a,
its convolution with a field variable can be treated per-
turbationally by expanding it about i/a. We carry out
the convolution of the second part in Eq. (55) with f(k)
as

LY sayar
21ri/k——k’——i/af(k)dk

M

2

M (k) =

Q

237;/(1 —ika + ik'a) f (k') dk’

(a/27) (1 — ika) f© + (a®/2r) (8f/82)", (56)

I

which introduces the surface values of f(® and

(8f/0z)?,
1O = [ yar, (57)
(0f)82)@ = / ik' f (k') dk'. (58)

In evaluating the surface terms, a singularity problem
may be encountered. However, the problem originates
from the extension of the integration limits from the first
Brillouin zone of the medium to infinity. Extending the
integration limits does not introduce any significant er-
ror to a long-wavelength problem because the dominant
part of the k-space transform is concentrated in the zone
center. In our case, we do not really care about the de-
tailed functional description of the short-wavelength part
of a field variable but only about its effect on the long-
wavelength part. Knowing the fact that the integration
must converge, we can use a series expansion to express
the short-wavelength part and invoke a soft cutoff wave
vector k., < 1/a to limit the integration range, if neces-
sary.

Introducing the cutoff also makes interpreting the sur-
face terms physically meaningful. For example, the unit
step function ©(z) that we introduced to describe a per-
fectly abrupt surface model is not defined at z = 0. It
has an infinite slope at z = 0, too. However, this function
is a mathematical idealization of an abrupt surface. In a
macroscopic theory the surface transition layer is taken
as macroscopically infinitesimal but microscopically finite
and O is the function value there. After introducing
the cutoff wave vector, it becomes well defined
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ke
@ - 1 1
27t J_p. k—1in

= (’P/ Lak+ /imS(k)dk)

1 1 1 1
=_— —dk 4 = = =, 59
2m‘P/k *t373 (59)

dk

where P denotes the Cauchy principal value. The result
here of 1/2 is an average value of the function just outside
the medium and just inside the medium.

We further look at the spatial derivative of the ©(z)
function at z = 0. It can be calculated as

(0) k .
00 1 < ik k
(82 ) 2mi J_p k—1in k w’ (60)

which means ©(z) rises from 0 to 1 in a span that is about
7 /ke. Therefore the reciprocal of k. can be interpreted
as a measure of the thickness of the transition layer be-
low the surface. Speaking in mathematical language, a
long-wavelength formulation in wave-vector space cannot
describe any detail that is spatially smaller than w/k.
because of the need for invoking the cutoff wave vector.
Interpreting this statement physically, it simply means
that our macroscopic theory is not intended to describe
any feature (especially near the surface) on the scale that
is spatially much smaller than the wavelength of the op-
tical wave we are interested in. Nevertheless, our wave-
vector-space method can include the effect of the tran-
sition layer on the long-wavelength dynamics, which is
shown in Eq. (56). It is not difficult to see the effect is
small since the terms in Eq. (56) are proportional to ka,
which is assumed small. The smallest term kept in Eq.
(56) is proportional to (ka)2. In an ordinary local optics
problem, a can be allowed to approach zero so that the
surface layer effect can be totally neglected. However,
in the Frenkel exciton problem a, the effective range of
the change of exciton binding energy near the surface,
albeit small, cannot be allowed to approach zero because
it also stands for the hopping range of the Frenkel exci-
ton. Letting a = 0 would imply an infinite exciton mass
by Eq. (35). An exciton with no mobility would have no
wave-vector dispersion.

We also need to emphasize that the value of a field
variable f(07) = f(z — 0,z > 0) can be interpreted as
the field variable just outside the transition layer in the
medium. As seen later, it can be understood as the bulk
component of the microscopic solution of the field vari-
able evaluated at z = 0. (Note that the bulk components
are characterized by the bulk wavelength which is much
larger than the thickness of the surface layer. Thus it
makes no difference to evaluate it just outside the sur-
face layer or at z = 0.) Generally speaking, f(0™) is not
equal to the surface term f(®) either mathematically or
physically as shown later.

By now we have shown why the effect of a jump of
a material property or a field variable in the transition
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layer of the surface is small in the long-wavelength optics
problem and how this effect can be accounted for per-
turbationally in our wave-vector-space method. Because
a physical property both inside and outside a material
is accounted for simultaneously by its Fourier transform,
one can understand why there is no need for boundary
conditions in the framework of our k-space method.

V. APPLICATION OF THE k-SPACE METHOD
TO A FRENKEL EXCITON

A. Susceptibility of the Frenkel exciton model
in a half-space geometry

We now apply the mathematical method introduced
in the preceding paper?® and expanded in the previous
section to the constitutive equation in k space for the
Frenkel exciton polarization in a half-space medium. In-
stead of using the general expression for every material
parameter in Eq. (45), we use the more specific and some-
what simplified Frenkel exciton model obtained from co-
herent wave theory in Sec. III. By defining ey®* = P**
as the exciton polarization and comparing Eqgs. (41) and
(21) we obtain the following relations between the mate-
rial parameters from the macroscopic Lagrangian theory
and the coherent wave theory. They are

Qo 1

(k,)? N
1 z P (kL) dk, =
2M 2mi | k, -k, —in ° (k) k.

/

_ A%
T oM
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hQo 1

2M 27wi

|
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2M;;(z)/m®* = [Q(z)]2 dij

O,-J-kl(z)/mex = — (Z) (ﬁ/2M) Jijdkl,
eq*™ (2)/m™* = Q(=)pEN /1,

Lijr(z) =0,

Nijkl(z) = 0,

where Q(z) is given in Eq. (34) and expresses all the spa-
tial dependence of the material parameters of this model.
The k-space transform of Q(z) is

1 Qo Eu)b
i [k e - i/a] » (61)

wg — wp is the bulk exciton resonant fre-

Q (k) =6 (ks) 6 (ky)

where Qg
quency.

The first part of Eq. (61) corresponds to the Fourier
transform of the unit step function (multiplied by Qo)
and its convolution with P**(k, w) or E(k,w) can be done
similarly to Eq. (52) . The second part of Eq. (61) corre-
sponds to the gradual surface model of Eq. (55) and its
convolution with P**(k,w) or E(k,w) can be done anal-
ogously to Eq. (56). By using these techniques, Eq. (45)
can be reduced to an algebraic equation. Note that the
second part of Eq. (61) is responsible for the appearance
of some of the surface terms in the reduced equation. The
wave-vector dispersion terms in Eq. (45) also lead to sur-
face terms. For example, one of the terms is calculated
as

kz
—k, — k. + ——=2 ) P (k') dk/
/ ( z _+_ kz . k’z . ZT]) P‘L ( Z) z

(8.Pfx/82)(0)
2m

ik, Pgx (©
2m

+ +K2Pex () (kz)} ’

where the dependence on k., ky, and w is no longer displayed.
After some algebraic manipulations, we obtain the transformed exciton polarization equation to be

Qo k? 2N Qolwpa
2 2 0 ex (+) _ 0. PN no(+) SlotWpra _ ex (0) ex (0)
[Qo w? S ] P ) (k) — QPO B (k) + =2 [(1 ik,a) P 4 0 (OPF</0z) ]
L [zk pex© 4 (ap.“/az)<°>] _ PN bwye {(1 — ikya) B; © + a(8E~/6z)(0)] =0. (62)
2w 2M L% : 27h B : '

We keep all the surface terms up to the second order of a. Terms that are of higher orders, such as the convolution
of the second part of Eq. (61) with the second-order wave-vector dispersive terms, are neglected. This is because its
coefficient h%/M o hwpa? is already a second-order term [see Eq. (35)].

From Eq. (62) we obtain the constitutive relation of the susceptibility for the Frenkel exciton polarization in a

half-space medium as

P (k) = cox™ (k) B; P (k.) -

where

co kob(") + kb

K2 k2, (63)

2w
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bV = (i/eokon) {8 (2P — coxex @) +a[(28 + 1/2) (9PF*/92) — Beoxex (9E:/02)*] } (64)
b = (1/e0) [(28 - 1/2) PO — Beoxex )| (65)
r
In the above equations, x**(k) = xexkd/(k* — k2) K(k)=14xp+ xexké/(kf —kZ,) (68)

is the bulk exciton susceptibility, ko = (MQo/ h)l/ 2
kex = ko [(w? — 92) /922, xex = PEN/(€0hS), B =
£ (wp /) (kqa)?, and ko = w/c. Equation (63) shows
that the susceptibility of the Frenkel exciton in a bounded
medium must have surface terms in addition to the bulk
part. In Sec. VD we show that the surface terms persist
when the exciton polarization is transformed to the spa-
tial representation. Those surface terms are necessary
in the constitutive relation to reflect the lack of trans-
lational invariance of a bounded wave-vector dispersive
medium.

There are two origins of the surface terms. One is
due to the wave-vector dispersion resulting from exciton
motion. The other surface terms are due to the change
of exciton binding energy in the transition layer near the
surface, which enters through Q(z) and leads to the terms
proportional to 8 in Egs. (64) and (65). The two origins
play comparable roles in Eq. (65) but the latter one plays
a larger role in Eq. (64). We conclude that the surface
layer effect is essential in treating the optics of a Frenkel
exciton.

B. Wave equation for normal incidence

For the sake of simplicity, we only discuss the nor-
mal incidence case here assuming k, = k, = 0 and
E, = E, = 0. The discussion of the general oblique
incidence case can be found in Ref. 24. We also use
the perfectly abrupt surface model for charge densities
of the local (nonexcitonic) internal coordinates in Eq.
(47). Similarly to the procedure to reduce the constitu-
tive equation for the exciton polarization, Eq. (47) can
be reduced to

eo (k2 — k2) Ey (k.) + P, P (k,) =0, (66)
where P, () (k,) = Pt (D) (k,) + Pg* (¥) (k) is the total
polarization of the medium, P} ) = D vtex Y ) is

the background polarization and E, (k.) is Ez(,+) (kz) +

ES(,—) (k) [there being no convolution with ©(z) here].

By using the normal mode technique in Refs. 23 and
32, we obtain P} () (k;) = eobe,SJr) (k2). By using this
equation and Eq. (63), Eq. (66) becomes

[k2 — & (k) k2] ESY) (k.) + (k2 — k3) ES7) (k.)

+ (k2/2mi) (koby) + kzb(yz)) /(K2 — k%) =0, (67)

where

is the bulk dielectric constant. The poles of the elec-
tric field can be obtained directly from Eq. (67). If we
let k., approach one of the poles of E;,H (kz) in the up-
per half complex k, plane, E§,+) (k.) approaches infinity.
However, the other terms in Eq. (67) that do not have
poles in the upper half complex plane of k£, remain finite.
The equation cannot be satisfied unless the coefficient of
E,S_H (k) vanishes at the pole so that the term remains
finite. In other words, the zeros of the coefficient of a
field variable in k space determine the poles of that field
variable. Therefore k2 — k (k,) k% = 0, or

(k2) = [(1 + xo) k2 + k2] k2 + (1 + x5) k2R3
—Xexk3k2 =0, (69)

gives the locations of the poles for E?SH (k.) and is the
dispersion relation of the medium. The two pairs of so-
lutions k, = £k; and +k; correspond to two distinct
transverse waves of the same frequency and electric field
polarization in the bulk. Similarly, as k, approaches the
poles of El(,_) (k) in the lower half complex k, plane, the

necessary vanishing of the coefficient of Eéﬂ) (k) gives
its poles at k, = ko (vacuum dispersion relation).

C. Transmission and reflection coefficients

Since the locations and types of the poles of the electric
field transform are known from the previous discussion,
we can write down its functional form. We also need
to take into account the required asymptotic forms, that
is, the absence of backward waves inside the medium.
Thus, for a transmission/reflection problem, the k-space
transform of the electric field has no pole at k, = —kq, or
—ky. Therefore, the functional form of the electric field
in k space is

E t t
(+) — =20 1 2
By = omi [k ki —in R ks in] (1)
E 1 r
(=) — _ =20 71
By 27ri|:kz—ko+i17+kz+ko+in]’ (71)

where r, t;, and t; are the amplitude reflection and trans-
mission coefficients, and Ejy is the source electric field

amplitude. Substitution of the functional forms of E!(,+)

and E,(,_) into the wave equation (67) yields a third-order
polynomial in &,
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(t1 4+ ta — 1 — 1) k3 + (kuty + kata — ko + kor) k2 — (k§t1 + k2t — k2 — ki — kgé?(f)) k,

where Ez(j) = b,(,i)/Eo (i = 1,2) is the dimensionless mea-
sure of bg). Since k, is the variable of the E-field trans-
form and so is arbitrary, the coefficient of each power of
k., must separately vanish resulting in four conditions

ti+ta—1—r=0, (73)
klt]_ + kztz - ko + ko’r = O, (74)

k3t + k3ty — k2, — kZr — k32 =0, (75)

kik3ty + kZkats — k2 ko + k2 kor — k3ol = 0. (76)

X

There are five unknowns, namely, 7, t;, ta, l_),f,l), and
53(,2) in the above equations. However we can evaluate
the surface terms in 51(,1) and 5!(,2) to provide us additional
equations since we already know the functional forms of
the exciton polarization and the electric field. By using
the constitutive relation (63) we have

P _ / P (k,) dk,

_ €0Xexkd Eo t1 " 2
2k:ex kex + kl kex + kZ
_ eoBokoby!)
2keyx ’

where [ k.dk./(k? — kZ,) = 0 is used since the integrand
is an odd function. This equation gives an alternate ex-
pression for I_)g(,l) and thus avoids the lengthly evaluation

of the derivatives of Py* © and E;O) present in Eq. (64).
With Eq. (65) we then obtain

B = — (anXex + 2keeaPx /Eo) Jeokoa, (77)
B = [(zﬂ ~1/2) P @ ﬂeoxexEy(o)] JeoEo,  (78)

where

— 2 t1 to
o = (kaa) ((kex P kz)a) :

Similarly, by using the functional form of the electric

- (klkgtl + k2kyty — k2 ko + k2 kor — kgzy)) =0, (72)

field, Egs. (70) and (71), we find
E® = /E(kz)dkz — Eo (t1 +t2), (79)

where Eq. (73) is used in the calculation. Note that the
technique of using a soft cutoff wave vector to eliminate a
divergent integral, as presented in Eq. (59), is also used
here. The surface value of the electric field equals the
magnitude of the electric field at either side of the sur-
face in this case. This is no surprise because in the nor-
mal incidence case the electric field has only a tangential
component which is continuous across the boundary.

Note also that, if BP;"(O) /0z and BELO) / 8z were eval-
uated by Egs. (58), it would bring in the soft cutoff wave
vector k. in the manner of Eq. (60). This can lead to
evaluating the implied value of k.. Not surprisingly it is
found that k. is of order of, but larger than, 1/a.

Since E,(,l) and 5&2) can be expressed as functions of ¢,
t2, and P~ (©) [see Egs. (77) and (78)], the four equations
(73)—(76) suffice to solve for the two transmissivities ¢;,
t2, the reflectivity r, and the surface exciton polarization
Ppx (©) After some algebraic manipulation and by using

(kf - kgx) (k% - kzx) = —Xexkgk?h (80)
which can be derived form Eq. (69), we obtain

t, to
k% - kgx * k% - kzx

2 Pex (0) C
= Y == (t; +t3), (81
coxekiBo k5 (171 ()

where
¢ =2B/(28 +3/2). (82)

Thus the complete solution to the transmission/reflection
problem can be found from Egs. (73), (74), and (81) as

t1 =2 (TL? - nzx + CXex) / (nl - n2) -Dv (83)
ty = —2 (n§ - nzx + CXex) /(TL]_ - n2) D7 (84)

r=— (14 X6+ (Xex + n1m2 — 1 —n2) /D, (85)



15 386

Py ©) = egxexCEo (t1+1t2) /2, (86)
D =1+ xp + {Xex + n1n2 + 11 + N2, (87)

where ny = ki/ko, n2 = ka/ko are refractive indices of
the two transverse waves, and nex = kex/ko is a conve-
nient symbol.

Our solution is significantly different from those ob-
tained by using boundary conditions listed in Ref. 19. In
the next subsection, we show that our solution is equiv-
alent to that which would be obtained using an inhomo-
geneous ABC by the real-space method. It also contains
the property of the surface, ¢, which is a function of £ and
a. £ is close to 1/2.3% Therefore by fitting to the experi-
mental data one can obtain the parameter a, the surface
layer thickness. With the parameter ( determined by
comparison to experiment the value of the exciton po-
larization at surface, Py* ©) is given by Eq. (86). This
result has not been obtained by any previous theory. As
explained earlier, Pg* © represents an average value of
the quantity in the surface layer in a macroscopic theory.

As seen from the above procedure, our k-space method
obtains the poles (dispersion relations) of the electric field
from the wave equation and subsequently the functional
form of the electric field. Just as with real-space meth-
J
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ods, the complete solution by our k-space method also
requires the knowledge of the asymptotic behavior of the
solution, which, in the case studied here is the lack of a
backward wave in the medium. However, in k space, both
parts of the electric field, E(*) (relating to the medium)
and E(7) (relating to the vacuum), appear in the same
equation. Therefore, there is no need to use a boundary
condition to connect the two at a surface, there being no
surface in k space. In fact, in the process of obtaining the
solution, our k-space method leads to conditions that are
equivalent to the Maxwell boundary conditions as seen
from Egs. (73) and (74). Further, the terms that include
the surface layer properties are also in the equation and
they are obtained simultaneously with the transmission
and reflection coefficients. This allows our theory to ac-
count for the surface layer effects on the long-wavelength
dynamics, an important accomplishment of this method.

D. ABC from spatial perspective

In order to interpret and compare the above solution
from our k-space method with that of previous macro-
scopic theories, we transfer the exciton polarization ex-
pressed in Eq. (63) into real space

. k b(l) kzb(z) )
P& (2>0) = ¢ / X (kz,w) B (ks,w) €= dk, — {-297; "—IZZ,nye”wdkz (88a)
_ 9 tleik1z tzeikgz
€oFo 2 131 t2 7(1) 7(2) | ikexz
~ o |Xexka pa— i) T koby") + kexbl? | etFex. (88b)
ex ex ex

The surface term in Eq. (88a) was absent from the cor-
responding equation in the real-space method.5™® Since
the corresponding equation formed an initial assump-
tion of that method, we see no way of anticipating
the form of the additional surface term from that ap-
proach. By using Egs. (75), (76), and (80) we find
kob" + kexb$?) + Xexkd [t1/ (k1 — kex) + t2/ (k2 — kex)] =
0, thus forcing the off-dispersion-relation exp (ikexz) term
to vanish identically outside the surface layer. This equa-
tion is the analog to the ABC of the real-space method
but needs significant reexpression to appear as a bound-
ary condition. An alternate algebraic procedure is to
obtain the ABC from the bulk form of the exciton polar-
ization that we now have

P;x (z>0)= €0Xexk?on[t1€iklz/(kf — kzx)
+tae*27 [ (k3 — k2)).  (89)

It only contains the two bulk waves allowed by the dis-
persion relation.

This reveals a subtle mistake in previous real-space
treatments.5 ® The corresponding nonlocal kernel in Eq.
(88a) of those theories yields an extended, off-dispersion-
relation wave [exp(ikexz)] which did not identically van-
ish. Of course, those treatments realized that there

f

should be no such wave in the bulk medium. By various
techniques (conversion to a four-order wave equation or
an extinction-theorem-like calculation) they showed that
the term involving exp(ikexz) can be made to vanish.
The condition of vanishing becomes their ABC. Because
the surface terms in Eq. (88) involving 53(,1) and 1_752) are
not included in their formulation, their ABC is then just
the vanishing of the other two terms in the coefficient of
exp(tkexz) in Eq. (88b) and so is incomplete.

Equation (89) can be used to derive the macroscopic
boundary condition needed in the coordinate space ap-
proach. By letting z approach zero we have Py* (ot) =
€oEoxexk? [t1/(k? — k2,) + t2/ (k3 — k2,)] which is the
sum of the amplitudes of the two bulk waves. Note that
P (0%) # Pex () the left side being the limiting value
of the bulk solution and the right side being the effec-
tive average value in the surface layer. If we transform
the electric field to real space, the electric field inside the
medium is

E (Z > 0) = Eotleiklz -+ Eotzeikzz, (90)
from which we find E, (0%) = Eo(t; +tz). From Eq.

(81) we then obtain the macroscopic ABC for a Frenkel
exciton near resonance as
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Pe* (01) = coxexCEy (07) . (91)

This differs with Pekar’s ABC, Pg*(0%) = 0, which was
thought to be justified by the microscopic “no escape”
boundary condition. On the contrary, using Pekar’s
ABC macroscopically is quite different from and incon-
sistent with using it microscopically where it is mean-
ingful. The exact microscopic solution of the exciton
polarization must contain evanescent waves besides the
two bulk waves.3® These evanescent waves count signifi-
cantly within a few atomic layers from the surface, and
contribute significantly to the polarization in a micro-
scopic boundary condition. Only far away from the sur-
face where the evanescent waves die (almost) completely
does the microscopic solution become the same as the
macroscopic solution. It is these evanescent waves that
are responsible for the difference between P;*(0") and

Py ©), However, a macroscopic theory, by its nature, has
no way to obtain these evanescent waves which describe
the details of the exciton polarization on an atomic scale
near the surface. This is why our macroscopic method,
like all the other macroscopic methods, can only obtain
the exciton polarization outside this macroscopically in-
finitesimal but microscopically finite surface layer, as seen
in Eq. (89). On the other hand, our macroscopic the-
ory can and does contain extra elements (surface terms)
such as Py~ (0), to describe, on average, the surface layer
properties as altered by the evanescent waves. This leads
to including the surface layer properties in our boundary
condition (91) through the ¢ factor. This ability to treat
the effect of the surface layer on the long-wavelength dy-
namics, without resorting to a detailed microscopic solu-
tion there, is an important characteristic of the k-space
method.

It should be noted that if a = 0 then ( = 0 and
the Pekar boundary condition P**(0") = 0 is recov-
ered. However from the coherent wave theory derivation
it is clear that a = 0 corresponds to a complete absence
of wave-vector dispersion (infinite mass, zero mobility).
Thus, we conclude that the Pekar boundary condition
cannot apply to a Frenkel exciton whose wave-vector dis-
persion is significant. We surmise the same conclusion
applies approximately to Wannier excitons.

Bishop and Maradudin3! gave a real-space Lagrangian
treatment of the exciton-polariton problem in which they
invoke a step function cutoff of basic material properties
as we do. A derivative of the step function gives them
a Dirac delta-function term in their dynamical equation
which they eliminate by requiring its coefficient to vanish.
This gives them a boundary condition at the medium
surface, but it is one involving fields evaluated at the
surface, or in our notation, f(®) quantities. However,
to use it as a boundary condition they interpreted the
quantities as f(0%). Our development has shown these
quantities are not equal. This discrepancy is at the heart
of the difficulty of using a real-space method.

VI. DISCUSSION AND CONCLUSION

In this paper, we present a first-principles derivation
of the dynamic equation of the dielectric or HT model
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in a bounded, wave-vector dispersive medium based on a
general macroscopic Lagrangian theory. We also derive
the constitutive equation for Frenkel exciton polarization
in a bounded medium from coherent wave theory. Under
the continuum limit we show that the Lagrangian and
coherent wave methods agree on the constitutive equa-
tion for the Frenkel exciton polarization and that it has
the same form as that of the dielectric or HT model, thus
proving the two models to be equivalent and that the HT
model is valid for the Frenkel exciton, not the Wannier
exciton as long believed. In the process of deriving the
equation we find that the effect of the surface on the in-
ternal structure of the exciton that causes a change of
exciton binding energy is comparable to the mobility ef-
fect as a cause of wave-vector dispersion in the surface
layer.

A new k-space method introduced in the preceding
paper is applied here to study the macroscopic reso-
nant wave-vector dispersive phenomena in a bounded
medium. It is a mathematical method tailored for a long-
wavelength physical problem that involves wave-vector
dispersion. We find that the macroscopic nonlocal consti-
tutive relation between the exciton polarization and the
electric field in a bounded medium must contain surface
terms. We use our k-space method to obtain a unique
solution for transmission and reflection coefficients with-
out using any boundary conditions, let alone an ABC.
We also find that the surface exciton polarization is ob-
tained simultaneously with the transmission and reflec-
tion coefficients. Analogous conceptually to the quantum
scattering theory, our theory has the ability to treat the
effect of the surface layer on the long-wavelength dynam-
ics without resorting to a detailed microscopic (near field)
solution there. Once transformed into coordinate space,
our k-space method obtains the macroscopic ABC that
naturally includes the surface properties of the model.

It is generally regarded that Pekar’s boundary con-
dition is correct for the Frenkel exciton. However, we
show that Pekar’s boundary condition corresponds to ig-
noring the wave-vector dispersion of the Frenkel exci-
ton, the property under study. It is also generally re-
garded that Pekar’s boundary condition can be derived
from the “no escape” boundary condition on the exciton
wave function. However, we show that there is a dif-
ference in using it microscopically and macroscopically.
A general microscopic solution must contain evanescent
wave components besides the extended (bulk) wave com-
ponents. Therefore, the microscopic boundary solution
is imposed upon all these components at the surface
while the macroscopic boundary condition is only im-
posed upon the extended (bulk) wave components. Thus,
we believe, it is incorrect to use Pekar’s boundary condi-
tion macroscopically.

There are a few quantum-mechanical works done
specifically for Frenkel excitons in a half-space
medium.'®37 The model proposed by Mead and
Philpott!® is the discretized version of the effective sur-
face potential model used by Hopfield and Thomas* to
discuss Wannier excitons. As shown in Sec. III by our co-
herent wave theory this model needs modification. Hyzh-
nyakov, Maradudin, and Mills®7 introduced a Frenkel ex-
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citon model that is similar to ours but more complicated
in the sense that it also includes the contribution of the
unbound exciton states to the exciton polarization. Be-
cause of this, the exciton polarization of their model is
more complex than that of the HT model even in the
bulk medium. They carried out the calculation for the
exciton susceptibility microscopically, which reveals the
extremely complex nature of a Frenkel exciton near the
surface. However the transmission and reflection coeffi-
cients were not obtained from this microscopic suscepti-
bility. Unlike the microscopic real-space treatment that
must deal with such a complex phenomenon near the
surface, our theory only accounts for the surface layer ef-
fect to the long-wavelength optics. Thus our macroscopic
method bypasses the difficulty faced in the microscopic
real-space method.

Most ABC’s listed in Ref. 19 are for Wannier exci-
tons. They can be considered derived without account-
ing for the effects from distorted internal structure near
the surface.!®!! D’Andrea and DelSole included such
effects!® in their ABC. They suggested that the ABC
for a Frenkel exciton may be obtained from the ABC for
a Wannier exciton by letting the thickness of the “dead
layer” approach zero. However, they cautioned that the
effective-mass approximation for the electron and hole in
a Wannier exciton does not apply to those in a Frenkel
exciton. Thus such a limit is suspect. Also, since the
“dead layer” is proportional to the size of an exciton,
and (roughly speaking) the smaller the exciton is, the
less mobile the exciton is, it is not clear whether the ef-
fective mass would approach infinity as the thickness of
the “dead layer” approaches zero. If that is the case,
as seen from our derivation for a Frenkel exciton, their
conclusion for Frenkel excitons may need altering.

In conclusion our work (i) introduces a new k-space
method for the long-wavelength exciton-polariton prob-
lem of transmission/reflection that uses no boundary con-
ditions; (ii) derives the need for surface terms in the con-
stitutive relation of the exciton polarization; (iii) obtains
a complete solution to the transmission/reflection prob-
lem near a Frenkel exciton resonance; (iv) reveals that
the finite size of a Frenkel exciton and the consequent
surface layer effect cannot be neglected (contrary to the
generally held belief that the size of a Frenkel exciton
can be simply set to zero); (v) deepens the understanding
of the distinction between macroscopic and microscopic
boundary conditions; and (vi) obtains a new form of the
macroscopic ABC needed in real-space treatments of the
optics problem of a Frenkel exciton near resonance.
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APPENDIX

The problem of encountering a singularity in construct-
ing the boundary conditions is inevitable in a wave-vector
dispersive bounded medium. It can be illustrated by con-
structing the Maxwell boundary condition from Eq. (13)
in the traditional “pillbox” way using a simple origin
of linear wave-vector dispersion, the quadrupolarization.
Let us regard the material surface not as a mathemati-
cally abrupt discontinuity but rather as a rapidly varying
and continuous transition layer of thickness Al in which
all the material properties drop continuously to zero. In
such a layer, E, P, and Q vary continuously. Now con-
sider a small “pillbox” whose flat and parallel ends are
coincident with the boundaries of this transition layer at
a given instant of time. We can apply Gauss’s theorem to
a volume integral of Eq. (13) over the pill box obtaining

/D‘nda=0
A

where n is the unit outward vector normal to an element
of surface of the pillbox whose area is da. The lateral ex-
tent of the flat end surfaces of the pillbox is small enough
that E, P, and Q can be taken as constants over each one.
However, the existence of V-Q in D, in Eq. (15), makes
things far more complicated. Because Q contains a ma-
terial property, the quadrupole moment, a divergence of
a rapidly varying material property appears. It can be
taken as a constant at the flat surfaces of the two ends
of the pillbox (n° and n’ are two corresponding normals
and n° = —n?) so that we can express Eq. (Al) as

(A1)

D°-n°+D"-n"+/ D -nda=0. (A2)

side wall

However, if we shrink the transition layer thickness and
the pillbox height to zero simultaneously, the side-wall
contribution becomes indeterminate because the 9Q/0n
part of D becomes infinite while the side wall area goes to
zero. Thus the pillbox procedure fails for a wave-vector
dispersive term.
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