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Wave-vector-space method for wave propagation in bounded media
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A method for solving wave propagation problems in bounded media that operates entirely in
wave-vector space is presented. No boundary conditions are used in the solution in contrast to the
real-space method. The transmission/reflection problem of an electromagnetic wave on a dielectric
half-space is solved as an illustration of the method. The dispersion relations of vacuum and medium,
Snell's law, the re8ection angle law, and the Fresnel re8ection/transmission forinulas are obtained
from these procedures. Applications to wave-vector dispersion problems, where the method appears
to be essential, are pointed out.

I. INTRODUCTION

Electromagnetic-wave-propagation problems in
bounded media are quite standardly handled in a real-
space formulation. %'aves inside and outside the medium
are found whose propagation constants are determined
by the dispersion relations which result from substitut-
ing the waves into the electric Geld wave equation. The
waves inside and outside are then joined with the use of
the boundary conditions on the Maxwell Gelds, E, H,
D, and B, at the medium surface. These conditions pro-
duce the Fresnel reflection/transmission coefficient rela-
tions between the amplitudes of the incident, reflected,
and transmitted waves. They also relate the inside and
outside propagation constants through Snell's law of re-
&action and the reflection law of equal angles of incidence
and reflection.

The standard real-space method meets considerable
difIiculty when applied to wave-vector dispersion prob-
lems. These are problems in which the polarization of
the medium depends on spatial derivatives of the elec-
tric Geld as well as on the field itself. The dependence
on the first spatial derivative of the electric field leads
to optical activity while dependence on the second spa-
tial derivative leads to resonant wave-vector dispersion as
present near the &equency of an exciton transition. Cal-
culation of the transmission and reflection in the latter
case leads to the so-called "additional boundary condi-
tion" or ABC problem. ' Here "additional" refers to a
boundary condition on the polarization or the electric
field (or their derivatives) that supplements the usual
Maxwell boundary conditions. The origin (microscopic
or macroscopic) and nature of the ABC have remained
in controversy for thirty-Gve years. Several real-space
approaches showed that a condition equivalent to an
ABC could be obtained by an extinction theorem type
of development. However, these approaches simply as-
sumed that the bulk nonlocal constitutive relation held
right up to the surface. This so-called "dielectric approx-
imation" was at Grst thought to be the natural macro-
scopic assumption, but was later found to violate energy
conservation. The wave-vector-space method presented
here is conveniently applied to the exciton problem at

a fundamental level that derives the nonlocal constitu-
tive relation for a bounded medium and thus avoids the
dielectric approximation. Furthermore, the new wave-
vector-space method ' uses no boundary conditions to
solve the problem and thus sidesteps the entire question
of an ABC. By transformation of the appropriate steps
back to real space, however, the form of the ABC implic-
itly used and needed for a real-space calculations can be
found.

The procedures of the wave-vector-space method are
sufficiently unfamiliar and novel that we believe it use-
ful to present them here in the context of a familiar
problem, the Fresnel reflection/transmission problem of
a light wave impinging on a dielectric half-space. The
electric field wave equation is first transformed to wave-
vector (k) space by taking a spatial Fourier transform.
A single (vector) equation results and replaces the two
spatial forms of the wave equation for inside and out-
side the medium. The k-space electric Geld transform is
thus continuous everywhere. Thus there is no need for
boundary conditions and none are used in the k-space
method. The form of the electric Geld transform is found
by examining the poles of it in the complex k space im-
plied by the transformed wave equation. The necessity of
the wave equation remaining finite and thus meaningful
at the poles of the E-field transform determines the dis-
persion relations of the medium and the vacuum. Trans-
mission and reflection coeKcients are introduced into the
E-field transform as required by the asymptotic forms of
a transmission/reflection problem. After substitution of
the transform into the wave equation a nontrivial solu-
tion can be seen to exist only if Snell's law of refraction
and the reflection law of equality of incident and reflected
angles are both true. Use of the dispersion relations then
recasts the wave equation into a polynomial in the wave-
vector components. For the half-space problem treated
here only the component of the wave vector k normal to
the surface appears. Since A: is the independent variable
of the E-Geld transform, each term of the polynomial
is linearly independent and so must vanish separately.
These conditions determine the transmission and reBec-
tion coefIicients which for the illustrative problem treated
here are the familiar Fresnel formulas.
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II. TRANSFORMED WAVE EQUATION

The real space form of the electric Beld wave equation
for linear propagation in a dielectric crystal is

++V' x [V' x E(», t)] + —, , ([I + y (», &)] Z(»), &)

For simplicity we consider either a cubic crystal or an
isotropic amorphous medium for which the linear elec-

tric susceptibility is y = Iy. Since we are concerned
with spatial dependences, we simply assert that for sin-
gle frequency propagation (E e '

) Eq. (1) can be
recast as

1 (z & 0)0 (z) =
0 ( 0)

F (k) = F (») e *""d»1

(2~)s

and its inverse transform is

F(») = F (k) e'" "dk. (6)

The k-space transform of O(z) can be calculated to be

The k-space Fourier transform of a general function
F(») (with frequency dependence omitted from here on)
is

V' x [V x E (», u))] ——[1 + y (», ~)] E (», ~) = 0. (2)
C

b(k ) 8(k„)
27ri k —ig'

We consider a homogeneous half-space of matter
bounded by the z = 0 plane. The spatial dependence
of the susceptibility is thus

y (», ur) = O(z)y ((u),

where O(z) is the unit step function defined by

where g is an infinitesimal positive quantity introduced
to obtain convergence of the transform and b(k) is the
Dirac delta function.

The inverse transforms of E and 8 of the form of Eq.
(6) are introduced into Eq. (2) as modified by Eq. (3)
with the result

f
2

kx kxE k + —E k e'k~dk+ —y
bI,'k.'ib k'

." E (k") e'(" +" ) "dk'dk" = 0.
I II

2vr i (k,' —iq)

Substituting k = k' + k" in the second integral and carrying out the k' and k„' integrations, we find

(
Cd (d

k x [k x E(k)]+ —E(k) + —yC2 C2 2&i
( *' "' 'dk' .'""dk=o

k, —k' —ig
(9)

The electric field transform E(k) can be written as a sum
of two functions, E~+~k having poles only in the upper
half complex k plane, and E~ ~(k) having poles only in
the lower half complex k plane,

there. Now it is clear that the integral over k in Eq. (9)
can vanish in general only if its integrand vanishes. After
expanding the vector triple product and introducing Eq.
(10) we obtain

E (k) = E~+l (k) + E (k) .

As discussed more fully in the Appendix, there are no
poles on the real axis, i.e. , between the upper and lower
halves of the complex k plane. Those poles arising from
the propagation characteristics of the medium are nec-
essarily displaced into the upper half-plane by ig while
those arising f'rom the propagation characteristics of the
vacuum are necessarily displaced into the lower half-plane
by —ig. For these reasons we speak of El+l (k) as the part
of the transform arising from the medium and El ~ (k)
as the part arising from the vacuum.

The Appendix contains the proof of a very important
theorem which states

("*'""' 'dk,' = Z~+l (k).
2vri k. —k~ —ig

Note that the left side of Eq. (11) is exactly the bracketed
integral in Eq. (9) and so allows introduction of E&+l(k)

(k,' —k') Ei-l (k) + k k Zl-l (k)

+ (Kk,' —k') Zl+l (k) + k k Z~+l (k) = 0, (12)
i

where the vacuum wave vector is ko = w/c and the rel-
ative dielectric constant is K(u)—:1 + y(w). Equation
(12) is the transformed wave equation. Note that the
only medium property, r, is associated with E~+~ as ex-
pected from the above discussion. Note also that we have
only one wave equation, not one for the medium and one
for the vacuum as a real-space treatment has.

III. DETERMINING THE ELECTRIC FIELD
TRANSFORM

As discussed in the Appendix the E-Beld transform can
be expected to have a pole in the complex plane for each
propagating mode, in the upper half-plane for medium
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Inodes and in the lower half-plane for vacuum modes.
Clearly the transformed wave equation (12) must remain
meaningful (finite) at each of these poles. The behavior
of Eq. (12) at the poles must be examined in two steps:
first, the scalar product terms two and four and, second,
terms one and three that involve one field component at
a time.

To isolate the scalar product terms we form a scalar
product of the whole equation (12) with k and so obtain

k E(-) (1 ) + Kk. E(+) (1 ) = o,

( )
1 t(+) (k, ky) r+ (k, ky)

2+i k —k~ —ig k, + kM —ig

( )
1 t( )(k, ky)

k. —kv+&q

r(-) (k. , k„)
k +k~+ig

IV. FRESNEL FORMULAS FOR OBLIQUE
INCIDENCE

t~+~, t~ ~, r~+&, and r& & being as yet arbitrary functions.

k,' —O' = O. (14)

We interpret this required relation as the dispersion re-
lation of the vacuum with two solutions,

(kL, ), = + kp —k —k„=+kv,

corresponding to two poles, one for forward propagation
and one for backward propagation. We have expressed
the solution (15) for the z component of k because as we
see presently the orientation of the matter surface (z = 0)
makes only the component k a true variable in the E-
field transform, k and k& being fixed by the problem
definition.

A completely analogous argument applied to the ap-
proach of k to an upper half-plane pole kU- leads to re-
quiring the coefficient of the third term in Eq. (12) to
vanish,

which is just the transformed V'.D = 0 Maxwell equation.
Consider k approaching a pole kL, in the lower half-plane.
Since E~+~ has no poles there by definition, the second
term in Eq. (13) is finite there and, since the first term is
equal to the negative of the second term, the first term
must also be finite at the pole kL, . Thus, the pole in
E~ ~ at kl. must be canceled out by the combination of
factors present in the scalar product. The cancellation
shows that the pole must be first order. An analogous
argument can be made as k approaches a pole kU in the
upper half-plane to show that k E~+~ remains finite there
and that its poles are also first order.

Next we consider the entire transformed wave equation
(12) as k —+ kl. . The third and fourth terms have no
poles in the lower half-plane and we just showed that
the second term is finite there. Since only an individual
component of E~ ~ appears in the first term, the only
possible cancellation of its pole is the vanishing of the
coefBcient

We consider oblique incidence &om the vacuum side
onto the matter half-space. We take the plane of inci-
dence as the xz plane so that k„= 0 and take the known
angle of incidence with respect to the surface normal as
0;, the (unknown) angle of reHection as 0„, and the (un-
known) angle of refraction as P. Also causality allows us
to take r~+~ = 0 because there can be no backward wave
in the medium for incidence &om the vacuum. With the
problem thus specified we have

t (k, k„) = EpeIb (k —kp sin 0;) b (ky),

r( ) (k, k&) = Epre2b (k —kp sin 0„)b (k„),

t(+) (k, k„) = Eptesb (k —kpn sing) b (k„),

r(+) (k. , k„) = O,

(1Oa)

(1ob)

(19c)

(1od)

k = kp sill 0' = kp SIII 0 = kpn sin P,

which yields the law of reflection

(21)

and Snell's law of refraction

where n = k/kp ——~ic is the refractive index from Eq.
(16), Ep is a given incident electric field amplitude, r is a
refIection coefIicient, t is a transmission coefIicient, and
e~, e2, and e3 are as yet undetermined unit vectors.

Equations (18) and (19) can now be substituted into
Eq. (12). Clearly it is then required that the arguments
of the three Dirac delta functions involving k must be
equal. Otherwise integration of the equation over a range
of k including, for instance, the refIected wave k
ko sin 0„, but not the incident wave k = ko sin 0;, would
violate causality. Thus we have

kov —k = 0. (16)
sin 0 = n sing. (22)

This is the dispersion relation of the medium with its two
solutions,

(kU), = + [kpr —k —k„] = +kM, (17)

again corresponding to two poles for the two directions of
propagation. Again the poles are determined to be first
order.

The two parts of the E-field transform can now be
written as

kv = ko cos0,

kM = kpncosP. (24)

With the Dirac delta functions dropped, Eq. (12) is recast
as

These allow the values of k, at the poles, Eqs. (15) and
(17), to be reexpressed as
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(ko —k ) ei+ k(k ei)
k —ko cos 0

(ko —k ) e2 + k (k . e2)'
' k + kocos0

+ (koK —k ) es+ k(k. e3)] = 0,
k, —koncos

(25)

t, = 1+r„
nt, cos P = (1 —r, ) cos 8.

These are easily solved for r, and t„
n cos —cos 0

~S nc os/+ cos8'
2cos0

nc os/ +cos 0

(28)

(29)

(3o)

(31)

where for the manipulations that follow we let g —+ 0.

A. s polarization

Consider 6rst that the incident E-field polarization is
perpendicular to the xz plane, the so-called s polariza-
tion. Thus we can set

ei ——e2 ——e3 ——y (26)

and denote the reBection and transmission coeKcients as
r, and t„respectively. If the conditions (26) are substi-
tuted into Eq. (25) and k = ko sin 0 and k„= 0 regarded
as parameters fixed by initial conditions, then Eq. (25)
reduces to a first-order polynomial in k, the only re-
maining transform variable,

which are the familiar Fresnel formulas for the reHection
coefBcient r, and transmission coefBcient t, for 8 polar-
ization. If the results are collected, the inverse electric
field transform found by Eq. (6), and the time depen-
dence added, the real-space solution for 8 polarization
throughout all space (medium and vacuum) is found to
be

E(8) (x t) @ [0 ( )
i(leo+ sin 8+koz cos8 cdt—)

+0 ( )
i(kox sins —kpz cos 8 4ft)—

+g ( ) t i(Icon+ sin /+kong' cos P wt)] —
(32)

B.p polarization

Consider next that the incident E-field is polarized in
the xz plane of incidence, the so-called p polarization, so
that

(t, —1 —r, ) k, + (nt, cos P —cos 8 + r, cos 0) ko —0. iy = &2y = &3y = O (33)

(27)

This can vanish, in general, only if the coeKcients of the
two terms vanish. Thus we have

For the p-polarization case we denote the reBection and
transmission coefBcients by r„and t„, respectively. Equa-
tion (25) has both x and z components in this case,

(ko —k, ) ei + k k, ei —I(ko —k, ) e2 + k k eg, ]

(koK —k, ) es + k k, es, ]
" = 0, (34)

k, —kon cos

— (k; —k.') .„+k, k.... — (k,' —k.') .„+k, k.e..
+ I(k,'~ —k.') e„+k.k....]

" = O. (35)
k, —koncos

We cannot determine the ratio of x and z components of
ei, by using ei . k = 0 (and similarly for e2 and es) be-
cause k, is the variable of the transformed wave equation,
not a parameter. However, that ratio can be determined
by a further examination of the pole cancellation in the
divergence equation (13). In the more developed nota-
tion of Eqs. (34) and (35) it is equivalent to the sum of
Eq. (34) multiplied by k and Eq. (35) multiplied by k,

ko(k ei +k, ei )
k —ko cos 0

ko2 (k e2 + k, e2 )
k, + kocos0

Kko2 (k es + k, es, )
( )+

k —koncos P

With k determined by Eq. (20) the three poles of



48 WAVE-VECTOR-SPACE METHOD FOR WAVE PROPAGATION IN. . . 15 369

Eq. (36) can be canceled only if ei /ei, ———cot H,
e2 /eq ——+ cot H, and es /es, ———cot P with one ex-
ception. If r (m) = 0, which is true at all longitudinal-
optic phonon frequencies, the pole at k, = kon cos P can
be canceled at these specific &equencies. Since we are
seeking propagating wave solutions for an arbitrary fre-
quency, we are not concerned with these special &equen-
cies.

We are now able to write

pole cancels now &om each term, only a second degree
polynomial,

k, [tpcosP —(1 —r„)cosH]+ k ko [nt„—(1+r„)]

+ko 't„n sin icos/ —(1 —r„) sin HcosH = 0,

(41)

eq ———cos Ox + sin 0z,
e2 ——cos Ox + sin 0z,
es ———cos Px + sin Pz

(37)
(38)
(39)

results. Since k is the variable of the transformed wave
equation, Eq. (41) can be satisfied only if the coefFicient
of each term separately vanishes. This yields two inde-
pendent conditions

for the p-polarization case. These expressions along with
the k values of Eq. (20) can be substituted into the two
component equations (34) and (35) and polynomials in k,
found similarly to the 8 polarization case. However, the
polynomials are of high degree, a great deal of algebraic
manipulation is required, and much redundancy in the
conditions obtained results from this approach. A much
better approach is to form first the transverse portion of
Eqs. (34) and (35) by subtracting the product of Eq. (35)
with k from the product of Eq. (34) with k„

(ko —k ) (k, ei —k ei, ) (ko —k ) (k, e2 —k e2, )

k —ko cos 0 k + ko coso

+ =0, 40
(~k02 —k2) (k, es —k es, )

k, —kon cos P

and then insert Eqs. (20) and (37)—(39). Because the

t„cos P = (1 —r~) cos H,

nt„= 1+r„.
(42)
(43)

The third condition resulting f'rom Eq. (41) is seen to be
redundant by the use of Snell's law, Eq. (22). Equations
(42) and (43) can now be solved for

ncos H —cos P
ncosH+ cosP'

2cos 0
ncos H + cosg'

(44)

(45)

which are the familiar Presnel formulas for the reflection
coefBcient r„and the transmission coefBcient t„ for p po-
larization. If the results are collected, the inverse electric
field transform found by Eq. (6), and the time depen-
dence added, the real-space solution for p polarization
throughout all space is found to be

El") (x t) = Eo[H (—z) (—cos Hz + sin Hz) e' "'*""+""' ' ') + H (—z) r„(cosHz + sin Hz) e'&"'

+H ( ) t ( y + ~

y )
i(knnx sin f+knnz cosQ —ddt)] (46)

V. DISCUSSION

A new k-space method of solving wave propagation
problems in bounded media is presented here. We chose
the familiar problem of Fresnel reflection and transmis-
sion to illustrate its unfamiliar methods. There is no
advantage to the use of the k-space method for this
classic problem of local optics. However, for prob-
lems of nonlocal optics where wave-vector dispersion oc-
curs, we have found the method to be essential to han-
dle the eO'ects of the medium surface correctly. ' In
that work we applied the k-space method to the trans-
mission/reflection problem near an exciton resonance
where resonant second-order wave-vector dispersion oc-
curs. Our treatment of that problem ' derived the
nonlocal constitutive relation of the bounded medium
and thus revealed the needed correction to the previously
used dielectric approximation. Since we can see no way
that the form of this correction to the dielectric approx-
imation could be anticipated when assuming the consti-
tutive relation of the real-space method, we believe the

use of our wave-vector-space method is essential. Based
on this observation we expect the k-space method to find
important applications in wave propagation problems of
bounded media, other than optics, where wave-vector dis-
persion occurs.
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APPENDIX

Consider an analytic function f (k) of a single complex
variable k where k is a component, such as k, of a vector
variable k. Generalization of the proof that follows to a
function of the vector variable k is straightforward. The
function f (k) must possess poles or else be a constant by
Lionville's theorem, an uninteresting exception. Express
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f(k) as a sum of two parts,

f(k) = f(+)(k) + f(-)(k), (Al)

where g ~ 0 is used in the last step. Next consider the
series expressing f ( ) (k),

M
(+) „) p„(k)

(k —k )"" '

N
( ) „).pt(k)

- (k —k()"' ' (A3)

where there are M poles in the upper half-plane, the uth
pole occurs at k and is of order n„, p (k) is a polyno-
mial in k, and similar quantities are defined in Eq. (A3)
for the lower half-plane. Since for any long wavelength
phenomenon f(k) ~ 0 as k -+ oo at least as fast as 1/k,
the polynomial p„(k) must be of n —1 degree or lower
and similarly for p((k). Under the conditions described
we assert the truth of the theorem

f(+)(k) being the part containing all poles of f(k) that
lie in the upper half [Im(k) ) 0] complex k plane and
f( )(k) being the part containing all poles in the lower
half-plane [Im(k) ( 0]. We need not be concerned with
the possibility of poles on the real axes for reasons dis-
cussed presently. We express the functions of Eq. (Al)

1 1 ) p((k')
2rri k —k' —zrI

- (k' —k()"'
l=1

(A7)

Since all the poles k' = k~ and k' = k —ig lie in the lower
half-plane, the integral (A7) is most easily evaluated with
a semicircular contour in the upper half-plane. Since it
encloses no poles and the contour integral again vanishes
on the semicircular arc, the real integral (A7) vanishes,
glvlng

27ri
(A8)

E (x) = 0 (—z) e*"', (A9)

where the step function is defined in Eq. (4). The k-space
transform by Eq. (5) is

Adding Eqs. (A6) and (A8) yields the desired theorem
(A4).

In order to get an intuitive feel for the poles of, say,
the electric Geld transform and for why poles do not arise
on the real axis, consider just the spatial portion of a
normally incident vacuum wave on a half-space medium
occupying z ) 0,

27ri

+ f (k') dk' (+) )k —k' —ig
(A4) 1 b(k )h(ky)

2vri k —kp+ig
where g is an inGnitesimal positive quantity. To prove it,
consider first the series expressing f(+) (k),

27ri

+ 1 ). p (k')
k —k' —irl (k' —k„)"" (A5)

This can be evaluated by contour integration. Since
all poles k' = k„ lie in the upper half-plane and the
other pole of the integrand lies in the lower half-plane at
k' = k —ig, we choose the contour as the perimeter of a
semicircle with the real axis forming the straight side and
the semicircular arc extending into the lower half-plane.
The contribution along this arc vanishes as its radius be-
comes inGnite because the integrand approaches zero at
least as fast as 1/k as k ~ oo. Thus the real integral
is equal to the residue at the pole k' = k —ig. Thus we
have

E(x) = 8 (z) e*""". (A11)

Its k-space transform is then

1 8 (k ) b (ky)
2vri k, —nkp —ig

(A12)

Note that to obtain a convergent transform an inGnites-
imal damping constant had to be inserted and that it
necessarily displaces the pole from the real axis into the
loner half complex k plane for this vacuum wave. Note
also that the real part of the pole coordinate kp is just the
free wave propagation constant of the vacuum. Lastly,
note the transform behaves as 1/k, as k, ~ oo. Next
consider just the transmitted wave in the medium

27cz

+ f(+) (k') dk'

k —k' —ig

M
)~ P~ ( 9) f(+)(k)- (k —ig —k„)""

(A6)

Note that the pole of the transmitted wave in the medium
has necessarily been displaced from the real axis into the
upper half complex. k plane and that the real part of
the pole coordinate kpn is just the free wave propagation
constant of the medium.

We use the term wave-vector dispersion in preference to
spatial dispersion because of its analogy to the term fee
quency dispersion which is universally preferred over tem-
poraI, dispersi on.
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