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Self-energy of a charged particle placed in a gap
between two metal surfaces and near a metallic slab
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We derive general expressions for the self-energy of a charged particle placed in the gap between two
metal surfaces and near a metallic slab. Treating the electron gas in the metal within the hydrodynamic
approximation, the self-energy of a charged particle is obtained, taking into account the dispersion of the
surface plasmons and the effect of the recoil of the charged particle. We show that the self-energy satu-
rates to a finite negative value at the metal surface and inclusion of recoil and dispersion reduces the
magnitude of the self-energy.

I. INTRODUCTION

The study of the interaction between an external
charged particle and polarization modes of metallic sur-
faces has been of considerable interest in view of its vari-
ous applications. ' For example, the knowledge of the in-
teraction potential is useful in the interpretation of
reAection electron-energy-loss experiments, low-energy
electron diffraction, and reAection of high-energy elec-
trons by metal surfaces. The energy loss by a charged
particle interacting with a metal surface has been deter-
mined in experiments with scanning transmission elec-
tron microscopy. The interaction of a charged particle
with a metal surface is important in the study of thin
films by means of particle beam spectroscopies. The im-
age potential experienced by a tunneling electron is also
of importance in the study of the I-V response of a
metal-insulator or metal-semiconductor junction or inter-
face.

Recently, Sols and Ritchie have studied the interac-
tion between a charge particle and the polarization
modes of a metallic slab and of two coupled metal sur-
faces. These authors have not considered the dispersion
of the surface plasmons in their calculations. In the
present paper, we have extended the results of Sols and
Ritchie by including the effect of the dispersion. We
have derived general expressions for the self-energy of the
charged particle using the formalism of Manson and
Ritchie. The calculations are restricted to speeds of the
charged particle below the threshold speeds above which
excitations of real plasmons may occur. The unperturbed
state of the electron is described by a plane wave.

The paper is organized as follows: In Sec. II, we
present the theoretical formulation. Numerical results
are presented and discussed in Sec. III. The summary of
the results is given in Sec. IV.

II. THEORETICAL FORMALISM

We consider a particle with charge Q and mass M in-
teracting with two plane parallel metal surfaces or with a

metallic slab. In order to obtain the interaction Hamil-
tonian for these systems, we start with the linearized hy-
drodynamic equation and solve the Poisson and Laplace
equations in all of space. The solutions give us the nor-
mal modes of the systems. Application of the boundary
conditions on the normal modes of the displacement and
velocity vectors yields the dispersion relations for the sur-
face and bulk plasmons. These normal modes are quan-
tized and used to express the interaction Hamiltonian for
a charged particle interacting with the two systems.

The total Hamiltonian for the systems can be expressed

2

H = +H~~t &
+H

2M

where the first term is the kinetic energy of the charged
particle, and H „,&, the Hamiltonian representing the
metal electrons, is given by

H „,)=girtco, [a~q aq + —,'] .
k, a

(2)

A. Interaction Hamiltonian for a charged particle
located in a gap between two metal surfaces

The interaction Hamiltonian for this case is given by

H;„,=Q g(ak +a k„)e' &k gk
k, a

(3)

In Eq. (3) Ãk and gk are defined as follows:

In Eq. (2), co, represents the surface-plasmon frequency
for symmetric and antisymmetric modes which are desig-
nated by o, =+1, respectively; ak and ak are, respec-
tively, the annihilaton and creation operators for surface
plasmon with wave vector k parallel with the surface.
The expressions for the normal mode of these systems are
given separately for the case of a charged particle placed
in a gap ' and near a metal slab. H;„, is obtained in the
following.
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The squared normal mode frequency co, is found to be ' '

~2 (
&

) {~2( 1+~e —2ka)+p2k 2+pk [@2k 2+2~2( 1 &e
—2ka) ]1/2 j

where P is the dispersion parameter and is chosen to be (3/5)v~ corresponding to random-phase approximation and y
is found from

y2 k2+( 2 2 )/P2

B. Interaction Hamiltonian for a charged particle near a metallic slab

The form of the interaction Hamiltonian for this case is similar to Eq. (3), but gk and Nk are different. Here again
a= 1 corresponds to the symmetric modes and a= —1 corresponds to the antisymmetric modes. The explicit expres-
sion for gk is given by

gk (Z) = co, cosh(kZ)—

[co, cosh(ka) —(k /y)wz sinh(ka)coth(ya ) ]e"' +'), Z & —a

ken sinh(ka)
cosh(yZ), Z~ &a

y sinh ya
[co, cosh(ka) —(k/y)co sinh(ka)coth(ya )e "'z ', Z )a;

(Sa)

and

gk (Z) = .co, sinh(kZ)—

—[co, sinh(ka) —(k/y)co cosh(ka)tanh(ya )]e"' +', Z & —a

k co cosh( ka )
sinh(yZ), ~Z~ &a

y cosh ya
[co, sinh(ka) —(k/y)co& cosh(ka)tanh(ya )]e "( '), Z )a .

(Sb)

2 my fi
k++ e 2 Akn co, d ( sinh (ka)

(9a)

The normalization coefBcients for the symmetric and an-
tisymmetric modes, denoted by Nk and Nk, are ex-

+
pressed by

d2 = {2y [y tanh(ka) —k tanh( ya ) ]

+k(k —y )tanh(ya)

+(k —y )kya[1+tanh (ya)]] . (9d)

The quantity y occurring in Eqs. (Sa)—(9d) is obtained by
solving the transcendental equation

where

d, = {2y [y coth(ka) —k coth(ya ) ]
co +13 (k —y )=(co /2)(1 —ae "')

X {1+(k /y ) [coth( y(2 ) ] (10)

where

+k(k —y )coth(ya)+(k —y )kya

X [1+coth (ya )]]

my A'

k
e 2 A kn co, d2 cosh ( ka )

(9b)

(9c)

With the value of y obtained from Eq. (10), we find the
surface-plasmon frequencies for symmetric and antisym-
metric modes using the equation

2 2+P2(k2 y2)

The numerical solutions for the surface-plasmon frequen-
cies obtained from Eqs. (10) and (11) are discussed in a
separate paper.
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C. Expressions for the self-energy of a charged particle

1. Self en-ergy ofa charged particle
in a gap between two metal surfaces

According to the formalisn1 proposed by Manson and
Ritchie, the self-energy X(Z) of a charged particle is

(r~K) (O~H;„, ~Kp)(n, K~H;„, ~O, Kp)
X(Z) = —Y

(12)

In Eq. (12), ~Kp) and ~K) represent the initial and inter-
mediate states of the charged particle having momentum
fiKp and fiK, respectively. Kp=(kp, qp) where kp and qp
are parallel and perpendicular to the metal surface, re-
spectively, and, similarly, K=(k, k&). sz and Ep are the

p, =(k —kp) +(2M', /A) K2p, —

we are able to write the self-energy according to

(13)

intermediate and initial of the charged particle. c„ is the
energy of the plasmon field in its nth excited state. We
now substitute the interaction Hamiltonian given by Eq.
(3) into Eq. (12). We perform the summation over the in-
tern1ediate states and over the parallel component of the
surface plasmons. The integration over k3 is accom-
plished by using the methods of the contour integration
and choosing the contour in the upper and lower half of
the complex plane, depending on the sign of Z. These in-
tergrations are lengthy but reasonably straightforward.
The self-energy can now be expressed as an integral over
k which cannot be evaluated analytically. Restricting to
the initial speeds of the charged particle to values below
the threshold value by imposing the requirement that
p, )0, where

X(~Z~ (a)= —9 (M/4irt)g (cp, y —kcp )
p k2 ( ka+~e —ka)2 P

(
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k to 2
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—ka
)
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+ '
. + '

. +
p, —k+iqp k+p, +iqp

2(pi, y —kco )e

(qp+ik) +p,

(p —iq)( Z —a)
e

Psa

2k cocos p e

k +(qp+ip, )

kpi2(e —ka+cteka) k~2e —ka
P +

Va+I sa ~qo Psa+ ~qp

2eka

k —p, +iqo

2a(co, y —kco~)e"

(qp ik) +—p,
(14)

Equation (14) represents the self-energy of a charged particle for all speeds below the threshold value and includes the
effects of plasmon dispersion. By choosing values of kp and qo, the particle may n1ake any arbitrary angle to the sur-
faces. The contribution to the self-energy due to the bulk-plasmon modes is not significant and is not considered in this
paper. To obtain the self-energy in which the effect of the dispersion is removed, we substitute P=O in Eq. (14). The re-
sult for the dispersionless case which agrees with the work of Sols and Ritchie is then given by

—2ka( —kZ+ kZ)

X( ~Z
~
(a ) = —Q (M/2R)g f dk

p (1+t2e —2ka)

kZ

(qp —ik) +p,
—i(Z —a)(qo+ip )

e
—kZ

(qp+ik) +p,
+(X

—i(Z+a)(qo —ip )

ka, e
~ 2p, a k +(qp tp, ) —k +(qp+ip, )

(15)

In Eq. (15), p, is the same as defined earlier but oi, occurring in its definition is given by to, =(to /2)(1+ac "').

2. Self-energy ofa charged particle near a metallic slab

Substituting the interaction Hamiltonian obtained in 8, corresponding to the present case, into Eq. (12) and following

the same procedure as in the previous section, we obtain
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(16)

Here, p, is given by (13) with co, determined by Eqs.
(10) and (11) and y obtained from Eq. (10). Equation (16)
is valid for all speeds of the particle below the threshold
speed. It includes the effects of the recoil associated with
the mass of the particle and the dispersion. The effect of
dispersion is removed by putting P=O in Eq. (16). For
the dispersionless case, the self-energy for zero speed, i.e.,
K=O, is given by

2 2
r(Z)= Q + Q f "ydk(k/&, .)e "'z-

4iZ —ai 4 o

psa(ZX[e

+ae "" ], (17)

where co, =(co& /2)(1 —ae "') is substituted in the
definition of p, . The expression (17) agrees with the re-
sult obtained by Sols and Ritchie.

III. NUMERICAL RESULTS AND DISCUSSIQN

We present numerical results for the self-energy of an
electron at zero speed (i.e., K=O) located within the gap
between two metal surfaces when the dispersion effects
are included as well as not included [Eqs. (14) and (15),
respectively]. We take Q= —e, the charge of the elec-
tron. The self-energy is expressed in Rydberg units and

the distance between the metal surfaces in units of Bohr
radius a p. The numerical calculations are done for
several values of the electron density parameter r, .

In Fig. 1, we plot the self-energy of an electron as a
function of its position within the gap formed by two sur-
faces for r, =2. 1 and for the separation D =3.89ap. The
solid and the dashed curves give the self-energy of the
electron when dispersion is included and not included, re-
spectively. Since the self-energy is symmetric with
respect to the center point of the gap, we therefore give
the results for +ve values of Z only. The first two terms
inside the squared bracket in Eq. (15) correspond to the
classical image potential (Q /4 Z —a ) which gives a
finite value at the center and goes to infinity at the sur-
face. When recoil eFects are included, Eq. (15) gives the
numerical values for the self-energy equal to —0.329 Ry
at the center and —0.88 Ry at the surface. These values
reduce to —0. 194 Ry at the center and —0.329 Ry at the
metal surface when dispersion is considered. The de-
crease in the self-energy occurs due to the screening
effects of the metal electrons. In Figs. 2 and 3, we have
plotted the self-energy of the electron when the disper-
sion is included and omitted for r, =4.0 and 6.0. Com-
parison of Figs. 1, 2, and 3 shows that the self-energy de-
creases with the increase in the value of r, . The varia-
tions of the self-energy with distance are more pro-
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FIG. 1. Self-energy of an electron with zero speed as a func-
tion of distance between the gap of two metal surfaces for
r, =2. 1. The solid and the dashed curves are with dispersion in-
cluded and excluded, respectively.
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FIG. 3. Self-energy of an electron with zero speed as a func-
tion of distance between the gap of two metal surfaces for
r, =6.0. The solid and the dashed curves are with dispersion in-
cluded and excluded, respectively.

nounced as we approach the surface.
In Figs. 4 and 5, we have plotted the self-energy at the

center of the gap as a function of the gap width with and
without the dispersion. We notice that the dispersion
effects are not important for the width D = 10ao when the
values of the self-energy with and without dispersion be-
come equal. The values of the self-energy at D =0 corre-
spond to the values when the electron is placed inside the
bulk of the metal with and without dispersion, respective-
ly. It is also observed that for a given r, value, the self-

energy decreases as the gap width is increased.
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FIG. 4. Self-energy of an electron at zero speed placed at the
center between two metal surfaces as a function of gap width
with dispersion effects excluded.
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FIG. 2. Self-energy of an electron with zero speed as a func-

tion of distance between the gap of two metal surfaces for
r, =4.0. The solid and the dashed curves are with dispersion in-
cluded and excluded, respectively.

FIG. 5. Self-energy of an electron at zero speed placed at the
center between two metal surfaces as a function of gap width
with dispersion effects included.
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IV. SUMMARY AND CONCLUSIONS

In this paper, we have obtained the general expressions
for the self-energy of a moving charged particle located
inside the gap of two similar metal surfaces and near a
metal slab. The results are obtained within the hydro-
dynamic model for the metal electrons. The unperturbed
state of the electron is described by a plane-wave state
propagating in an arbitrary direction, but the speed of the
particle is below the threshold speed. The interaction of
the charged particle with the metal electrons is treated as
perturbation. The self-energy is obtained by using the
formalism of Manson and Ritchie. The numerical re-
sults are presented for the self-energy of the electron at
zero speed for the metallic density parameter r, =2. 1,

4.0, and 6.0. The range of r, covers most of the metals.
The effects of the recoil of the electron and dispersion of
plasmons are included in the calculation of the electron
self-energy. It is found that both these effects are impor-
tant near the surface and lead to the saturation of the
self-energy as we approach the surface.
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