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Neutral impurities in tunneling structures
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We examine transport in single and double barrier tunneling structures with neutral impurities.
For this purpose, we have developed a three-dimensional, tight-binding supercell model of quantum
transport capable of simulating potential variations both along the growth direction and in the
lateral directions. We find that an isolated attractive impurity in a single barrier can produce a
transmission resonance whose position and strength are sensitive to the location of the impurity
within the barrier. We also study transmission in the presence of two closely spaced impurities as a
function of their separation and orientation relative to the incident plane wave. Multiple impurities
can lead to a complex resonance structure that fiuctuates widely with impurity configuration. In
addition, impurity resonances can give rise to negative differential resistance.

I. INTRODUCTION

State-of-the-art semicond. uctor manufacturing tech-
niques such as molecular beam epitaxy and nanolithog-
raphy have given rise to a host of heterostructures that
demonstrate new physics and hold technological promise.
These nanometer scale devices, such as single and d.ou-
ble barrier tunneling structures, operate in the quantum
regime, and hence small Huctuations in their structure
and composition can afFect their characteristics consider-
ably. Impurities, for example, can alter the optical and
electrical properties of semiconductor devices. A survey
of impurities and other point defects in bulk materials
can be found in a review by Pantelides. The electronic
structure and electronic levels of neutral impurities have
been studied using a number of approaches. Cluster
methods, such as the defect molecule model and the
atomic cluster model, ' have been used to calculate en-

ergy levels of neutral impurities. The extended Huckel
theory method, developed by Walter and Birman, has
been widely used to calculate electronic states. Self-
consistent Green function methods have also been em-
ployed. A recent optical study of neutral impurity lev-
els can be found in an article by Monemar. Additional
topics such as elastic ' and inelastic scattering from
neutral impurities have also been considered.

Only recently have the efFects of impurities on trans-
mission in tunneling structures received attention. Res-
onant tunneling assisted by an energy level associated
with a defect has been observed. The authors use a
single scattering center calculation and find that nega-
tive difFerential resistance can occur in a single barrier
with isolated defects. Double barrier structures with a
dilute concentration of impurities in the well have also
been considered. An average of the current density over
impurity configurations was taken, and it was found that
impurities produce a broadening in the well resonance
and a reduction in its maximum.

In this paper, we use a tight-binding supercell model
which can represent a specific, three-dimensional (3D)

configuration of impurities and take interactions between
impurities into account. This Qexibility allows us to ad-
dress topics in tunneling in structures with neutral impu-
rities. We find that the particulars of a three-dimensional
impurity configuration, such as orientation and inter-
impurity distances, play an important role in tunneling.
We are thus able to study fluctuations in addition to
the average efFects of impurities in devices. We find im-
portant difFerences between simulations in one, two, and
three dimensions.

In Sec. II we describe the tight-binding supercell
model. In Sec. III we apply the model to single and.
double barrier tunneling structures with neutral impu-
rities. We first examine an isolated impurity in a sin-
gle barrier. We look at resonance shape and position
as a function of material parameters and the location
of the impurity within the barrier. We then consider
the level splitting and effects on transmission in the case
of two closely spaced impurities. We next study three-
dimensional distributions of impurities in single and dou-
ble barrier tunneling structures. We end Sec. III with
a current-voltage calculation for a single barrier with an
isolated impurity, and we summarize in Sec. IV.

II. METHOD

To model a structure, we employ the one-band, nearest
neighbor, cubic lattice tight-binding Hamiltonian

(nm)

where the second sum extends over all nearest neighbor
pairs on a cubic lattice of lattice constant 0. Each of
the sites n is associated with two material parameters:
a band edge E, and. an effective mass, m . In terms
of these parameters, the on-site energies e~ and the hop-
ping matrix elements t used in the Hamiltonian are,
following Frensley,
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e„=E„+) t„

(t„—+t ),
1
2

n 2m a2

The sum in the first line above is over all nearest neighbor
sites rn of site n. These definitions are familiar when one
considers the special case of a uniform, bulk material of
band edge Eo and effective mass m, in which case the
Hamiltonian gives rise to the band structure

E(k) = Eo + 2t(3 —cos k a —cos k„a —cos k, a), (3)

Ting, Yu, and McGill. The basis consists of one orbital
for each site in the supercell representation of a struc-
ture. The Hamiltonian matrix. elements, together with
terms representing the boundary conditions in the elec-
trodes, enter into a linear system of equations, which
is solved for the electron wave function using an itera-
tive algorithm. From this the transmission can be
determined.

III. NUMEB. ICAL RESULTS

A. Isolated impurity

where t = jiz/2ma2.
In order to make transport calculations numerically

tractable, we apply a supercell scheme to this Hamilto-
nian. We model a device structure as a series of mono-
layer planes along the growth direction. Each plane con-
sists of an infinite periodic array of identical rectangular
supercells n sites in the x direction and n„sites in the
y direction, as in Fig. 1. The sites for the supercell in
a particular plane are chosen to reHect the properties of
that plane. For example, if the plane represents a region
of bulk material, the sites are identical. To represent an
impurity in a particular layer, we choose the supercell
for that layer to contain a site representing the impurity,
and we assign to the other sites the appropriate type of
surrounding material. The infinite layers normal to the
growth direction are thus modeled by a finite supercell,
and a device structure is specified by a finite series of
supercells along the growth direction.

To calculate quantum transport in this model, we use
an eKcient, numerically stable method. The trans-
mission coefBcients for structures described by the super-
cell model can be determined by the direct application
of the one-dimensional multiband method described by

We A.rst consider an isolated impurity in a single barrier
tunneling structure. We take the electrodes to have a
band edge of E = —1 eV and an effective mass of m
0.0673mo, and the barrier to be nine monolayers thick
and to have a band edge of Eb ——0 eV and an effective
mass of mb ——0.1mo. The impurity is placed in the
middle layer of the barrier. We represent the impurity by
a single site with an on-site energy LU above that of the
barrier, so that LU & 0 for an attractive impurity, and
LU ) 0 for a repulsive impurity. The hopping matrix
element to the impurity site is the same as that in the
rest of the barrier. With the definition t—:hz/2mba we
can take the dimensionless quantity ~AUti/t as a measure
of impurity strength.

We plot, in Fig. 2, the transmission versus incident
electron energy for this structure using a few difFerent
values of AU/t For attra. ctive impurities, we see that if
~AU~/t is large enough, there will be an impurity level
between E, and Eb If ~AUt/. t is not large enough, there
will be no impurity level in this range. Nonetheless, the
impurity can still acct tunneling, as exhibited by the
long-dashed curve. Repulsive impurities have less eKect
on the transmission, as seen from the curve marked with
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FIG. 1. Supercell representation of an electrode followed
by a barrier with an impurity in the sixth barrier plane. The
supercells repeat in the planes normal to the growth direction.
In the tight-binding model, an on-site energy corresponds to
each site, and a hopping matrix element corresponds to each
nearest neighbor pair of sites.

Incident Energy (eV)

FIG. 2. Isolated impurity in the middle layer of a single
barrier tunneling structure. I.g = 9 monolayers, 13 x 13 su-
percell, a = 2.825 A. Eb = 0 eV; mb = O. lmo., E, = —1
eV; m = 0.0673mo. Various values of EU/t are used. Elec
trons are incident along the growth direction (i.e. , with zero
in-plane momentum. )
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circles. The higher on-site energy of the repulsive impuri-
ties contributes in an averaged sense to an overall slightly
higher barrier, thereby reducing transmission. In short
we see that an isolated impurity (especially a strongly at-
tractive impurity) can have a significant impact on tun-
neling.

In addition to a resonance, the transmission coeK-
cient curve for AU/t= 4.6—appears to have a zero near
E=—0.52 eV. This is due to interference caused by rep-
etition of the supercells (and hence impurity sites) in
the growth planes. Representing a well isolated impurity
would require much larger supercells and a prohibitively
large amount of computer memory. Nonetheless, the fea-
tures we are interested in, namely the resonances, change
little for supercells larger than about 13 x 13, so this size
will suKce in most of our calculations.

We have thus far taken full advantage of our model
by simulating an impurity in three dimensions. By con-
structing appropriate supercells, we can also simulate im-
purities in one and two dimensions. For example, to sim-
ulate an impurity in two dimensions, we would use a 1 x n
supercell; in one dimension, the supercells would consist
of a single site. We use this versatility to show some
important differences between tunneling calculations in
one, two, and three dimensions. Figure 3 shows the de-
pendence of resonance width and normalized resonance
energy E/t on the impurity strength AU/t for a single
barrier with an isolated attractive impurity in the mid-
dle layer. For a given impurity strength simulations in
different dimensions predict different resonance positions
and widths. The resonance moves to higher energies as
the dimension of the calculation is increased, due to the

E/t = 2 —g4+ AU'/t2, (4)

and at high values of ~AU~/t, this agrees with the res-
onance position of an impurity in a single barrier. For
weaker impurities, however, the single barrier resonances
are at energy levels different from those of impurities in
bulk samples (see Fig. 3.) Although a bound level always
exists in bulk in one and two dimensions for AU/t ( 0,
no such level exists for weak impurities in a single barrier
of finite thickness. The finite extent along the growth di-
rection does not support a bound state for very weakly
at tractive impurities.

These results on resonance position and width can be
used to predict how neutral impurities might affect trans-
mission in a single barrier. Whenever the impurity level
lies above E, a transmission resonance can be expected.
In this regard, we stress the important differences in the
predictions of the one-, two-, and three-dimensional sim-
ulations. We also stress the importance of the finite bar-
rier thickness in determining the resonance widths and
positions, especially for weak impurities. Finally, as we
saw earlier, even when there is no bound level between E
and Eb, a neutral impurity can still affect transmission
in this energy range.

increasing number of directions in which the impurity
bound state is confined. In one-dimensional simulations,
it is confined only along the growth direction, whereas in
three-dimensional simulations, it is confined in the lateral
directions as well. When the resonance level rises, con-
finement along the growth direction grows weaker, due
to the finite barrier thickness. Thus, as the dimensional-
ity increases and the resonance level rises, the resonance
width increases, as in the top panel of Fig. 3.

The finite thickness of the barrier can also affect the
resonance position. For a strongly attractive impurity,
the resonance position in a single barrier agrees with the
level of the impurity in a bulk sample of barrier type
material. In one dimension the bulk level is
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FIG. 3. Resonance widths and normalized resonance ener-
gies Elt for an isolated impurity in the middle barrier layer
of a single barrier as calculated in one, two, and three di-
mensions. The dotted curve is the analytical result for the
resonance position of a single impurity in a bulk 1D sample.
Lb ——9 monolayers, 1 x 1, 1 x 10, and 10x 10 supercells are
used in 1D, 2D, and 3D respectively, a = 2.825 A.. Ei, = 0 eV;
mb ——0.1mo, m = 0.0673mo. Various electrode band edges
E & —1 eV were chosen so that E was below the resonance
level. Electrons are incident along the growth direction.

In addition to impurity strength, the impurity location
also impacts transmission. As an impurity is moved along
the growth direction in a single barrier, the transmission
resonance it produces changes shape and position. In
Fig. 4 we plot resonance position, resonance width, and
the maximum transmission coeFicient as a function of im-
purity location in a 22 monolayer thick barrier. We find
that the resonance moves to slightly higher energy as the
impurity approaches the center of the barrier due to in-
creasing confinement the impurity site is surrounded
by thicker walls. We find that the resonance width de-
creases as the impurity is moved toward the center of the
barrier, another sign of increasing isolation from the elec-
tr@des. The maximum transmission increases to unity
as the impurity approaches the middle layer of the bar-
rier. It is clear that the maximum transmission increases
faster than the resonance width decreases, so the trans-
mission resonance grows stronger as the impurity moves
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PIG. 4. Resonance shape as a function of impurity location
along the growth direction. The horizontal axis is labeled with
the number of the barrier layer in which the impurity resides.
The plot begins at layer 4, since the resonance shape is difFi-

cult to measure when the impurity is closer to the electrode.
I b = 22 monolayers, 13 x 13 supercell, a = 2.825 A. Er, = 0
eV, mb = O. imp, E, = —1 eV, m = 0.0673mp, AU/t = —4.5.
Electrons are incident along the growth direction. Resonance
width is the width at half maximum

FIG. 5. Transmission vs incident energy for a single barrier
with two impurities separated by Gve lattice spacings. The
plane mave is incident along the grovrth direction (z axis)
which makes angle 0 with the impurity separation direction.
The midpoint between the impurities lies in the middle of the
barrier. I &

——— 13 monolayers, 13 x 13 sup ercell, a = 2.82 5
A. Er, = 0 eV, mr, = O. imp, E, = —1 eV, m, = 0.0673mp,
AU/t = —4.5.

toward the middle layer of the barrier. From this we
might expect that attractive impurities near the center
of a barrier would play a larger role in the transmission
than those near the edges . In any event, both the res-
onance strength and position depend. on the location of
the impurity within the barrier.

C. Two impurities

Having studied a single impurity, we now turn to the
case of two attractive impurities. The interaction of two
closely spaced impurities gives rise to a level splitting.
The lower energy level corresponds to a state which is
symmetric along the direction of separation of the im-
purities, and the higher energy level corresponds to an
antisymmetric state. Each of these levels can result in a
transmission resonance, depending upon the direction of
the incident plane wave relative to the direction of sep-
aration of the two impurities. Whenever the direction
of the incident plane wave has a component along the
direction of separation of the two impurities, resonant
tunneling can occur via both the symmetric and anti-
symmetric levels. When the two directions are orthogo-
nal, however, resonant tunneling can occur only via the
symmetric level.

To illustrate this we examine the transmission through
a single barrier with two impurities separated by five lat-
tice spacings. We plot the transmission coefBcient versus
energy for diferent relative orientations of the impurity
separation direction and the incident direction. In Fig. 5,
the direction of the incident plane wave is fxed along the
grovrth direction (z axis), and the impurity separation
vector makes angle 0 with this direction. The midpoint

between the two impurities lies in the middle of the bar-
rier. We note that for 0 = 90, i.e. , the incident and
separation directions are orthogonal, resonant tunneling
occurs only via the symmetric level. As 0 decreases, and
the component of the incident plane wave direction along
the separation direction increases, the resonance associ-
ated with the antisymmetric level increases in strength.
The resonance widths of both the symmetric and anti-
symmetric resonances increase as 0 decreases, since the
impurities are moved closer to the electrode-barrier in-
terfaces. In Fig. 6, we keep the impurity locations fixed
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FIG. 6. Transmission vs incident energy for a single bar-
rier with two impurities separated by five lattice spacings
along the y direction in the middle barrier layer. The incident
in-plane momentum q„(measured in units of vr/a) is varied.
Lr, = 13 monolayers 13x13 supercell, a = 2.825 A. Er, = 0 eVl
mr, = O. imp, E, = —1 eV, m, , = 0.0673mp, AU/t = —4.5.
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Based on these results, summarized in Figs. 4, 5, and 8,
we might expect that the shape of the transmission co-
efIicient curve should fluctuate widely with configuration
in a single barrier with a high concentration of impuri-
ties, where both impurity location and interactions are
important.

D. Multiple impurities
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We examine a single barrier with a random distribu-
tion of attractive impurities. We calculate transmission
for two different configurations of four impurities placed
randomly among the sites of the nine layers of 20 x 20
supercells representing the barrier. Figure 9 contains the
results. Comparing with the transmission coefIicients for
an impurity-free single barrier, we see that the impuri-
ties give rise to several resonances of varying strengths
and positions. Note also that the shape of the transmis-
sion coeKcient curve is indeed very different for the two
configurations.

Impurities in double barrier structures also affect
transmission, as illustrated in Fig. 10. We consider first
the case of impurities in the well and then the case of im-
purities in the barriers. The top panel of Fig. 10 shows
the transmission coefIicient curves for different concen-
trations of attractive impurities in the well. The lower
on-site energy of these attractive impurities contributes
in an averaged sense to a lower effective well band edge.
As the impurity concentration is increased, this effective
band edge moves down, and the n = 1 well resonance
shifts down. In addition, the impurities in the well can
give rise to new resonances, as shown by the solid curve.

The bottom panel of Fig. 10 shows the transmission
in a double barrier structure with attractive impurities
in the barriers. Just as in the case with impurities in
the well, attractive impurities in the barrier can lower
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FIG. 9. Single barrier with multiple impurities. Lg ——9
monolayers, 20 x 20 supercell, a = 2.825 A. Ez = 0 eV,
ms = O. lmo, E, = —I eV, m, = 0.0673mo, AU/t = —4.5.
Impurity concentration is c = 1.11 x 10 (four impurities
were distributed at random among the 9 x 20 x 20 sites of the
barrier). Transmission coefficients are shown for two different
configurations. Electrons incident along the growth direction.
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the effective barrier edge. This leads to a lowering and
broadening of the n = 1 well resonance as seen in the fig-
ure. Again we notice new resonances of various strengths
and positions.

In both single and double barrier structures, we have
seen that impurities can give rise to resonances. The su-
percell size in the above calculations, 20 x 20, implies a
cross-sectional area approximately 5.7 nm on an edge.
To simulate transport through a larger region of a de-
vice, we would need to perform configuration averaging
over a large number of different impurity distributions.
With a high impurity concentration, the wide variation
in resonance structure for different local configurations
as in Fig. 9 would no longer allow impurities to produce
distinct resonances when probed over a large area. Impu-
rities would, however, still contribute collectively to the
transmission by shifting and broadening well resonances
in a double barrier or by increasing overall transmission
in a single barrier, for example.

E. Current-voltage calculation

Thus far we have examined the effects of impurities on
the transmission coefricients of tunneling devices. We
have seen that impurities can shift and broaden res-
onances. Just as importantly, however, when prob-
ing devices over a small area, such as with scanning
probe microscopy, impurities can give rise to new res-
onances. These resonances have important consequences
for current-voltage characteristics in that they could give
rise to negative differential resistance. Experimental ev-
idence of negative differential resistance due to a locally

FIG. 10. Double barrier with multiple impurities. Lq ——5
monolayers, L = 15 monolayers, 20x20 supercell, a = 2.825
A. . Eq = 0 eV, ms = 0 lmo, E, = —1 eV, m, = 0 0673mo,
AU/t = —4.5. For the case of impurities in the well, EU still
refers to the difference between the impurity on-site energy
and that of the barrier. The top panel shows the case of
impurities in the well, and the bottom panel shows the case
of impurities in the barriers. Electrons incident along the
growth direction.
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favorable current path created by a donor in the well of
double barrier has been presented.

We give here the results of our supercell calculation of
the 0 K current-voltage characteristic of a single barrier
with an attractive impurity in the middle layer. We use
the same material parameters as in Sec. IIIA. The bar-
rier is nine monolayers thick, and we take the Fermi level
in the electrodes to be 0.05 eV above the band edge. In
Fig. 11 we plot the current density versus applied bias for
this device. We see that the isolated impurity gives rise
to substantial peak current and negative difFerential re-
sistance as a result of resonant tunneling via the impurity
level.
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IV. CONCLUSION
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We have explored several ways in which neutral impu-
rities can play an important role in quantum transport in
tunneling devices. For this purpose, we have developed
an efBcient, numerically stable method for calculating
quantum transport in three dimensions. We have found
that an isolated impurity can give rise to a transmission
resonance. We have investigated the variation of reso-
nance shape and position with the location of an impurity
in a single barrier and found that the resonance moves to
higher energy, and that the resonance strength grows as
the impurity is moved toward the center of the barrier.
We have studied the interaction of two closely spaced im-
purities and found that the manifestation of level split-
ting in the transmission depends on the relation between
the incident electron direction and the impurity separa-
tion direction. We have also seen how the level splitting
is different when calculated in di8'erent dimensionalities,
unless the impurities are strongly attractive. An anal-
ysis of single and double barriers with multiple impuri-
ties reveals that strongly attractive impurities can have a
substantial impact on transmission. Depending on impu-
rity concentration and the area over which a structure is
probed, the impurities can shift and broaden resonances
in a double barrier and increase overall transmission in a

FIG. 11. Negative difFerential resistance in a single bar-
rier with an isolated impurity in the middle barrier layer.
L& = 9 monolayers, 13 x 13 supercell, a = 2.825 A. Ez = 0 eV,
ms = O. lmo, R = —1 eV, m = 0.0673mo, AU/t = —4.5.
Electrode Fermi level is 0.05 eV above the electrode band
edge. Calculated at 0 K. Also shown for comparison is the
current-voltage characteristic of a pure single barrier with the
same parameters.

single barrier or give rise to new resonances. The inhu-
ence of impurities thus depends on many factors includ-
ing material parameters, location, distribution, and con-
centration. In many situations, three-dimensional simu-
lation is essential to understanding the physical phenom-
ena for which the impurities are responsible.
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