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Low-temperature transport in disordered conductors exhibits a variety of fascinating quantum-
mechanical interference effects associated with the phenomenon of weak localization. Such effects are
typically isolated and probed by virtue of their sensitivity to applied homogeneous magnetic Belds,
which introduce Aharonov-Bohm phase factors into quantum-mechanical amplitudes. Analogous
interference efFects have been proposed in the context of the quantum transport of (possibly electri-
cally neutral) particles with spin in the presence of inhomogeneous magnetic fields, which have the
efFect of introducing Berry phases. Thus, the possibility is raised of isolating and probing quantum
interference effects through their sensitivity to the inhomogeneity of applied magnetic fields. In this
paper we develop an approach to the study of quantum transport ir| disordered conductors in the
presence of almost arbitrarily inhomogeneous magnetic Belds, which is based on diagrammatic and
semiclassical path-integral techniques and a subsequent adiabatic approximation. We illustrate these
ideas with applications to three examples: anomalous weak-Beld magnetoconductance, conductance
oscillations in mesoscopic multiply connected structures, and sample-dependent mesoscopic conduc-
tance Buctuations. Among other things, we find that while in the context of the disorder-averaged
conductance it is accurate to regard systems as being composed of two independent subsystems
(having spins aligned or antialigned with the local external magnetic field) a more interesting and
refined structure emerges in the context of conductance Quctuations.

I. INTRODUCTION AND OVERVIEW

The investigation of quantum-mechanical contribu-
tions to the low-temperature conductivity of disordered
conductors has revealed a number of fascinating quantum
interference phenomena that can be observed in experi-
ments on macroscopic and mesoscopic samples. Notable
examples include the anomalous weak-field magnetocon-
ductance of macroscopic metallic Glms; magnetic-Aux-
dependent oscillations (with period hc/2e) in the con-
ductance of mesoscopic metallic hollow cylinders; and
stochastic variations (e.g. , with magnetic field) in the
conductance of mesoscopic metallic samples, with a range
of order e /h, commonly referred to as universal conduc-
tance fluctuations (UCF's). Typically, these phenomena
can be probed and isolated by taking advantage of their
sensitivity to homogeneous magnetic Gelds that are weak
(on the classical scale) but which nevertheless introduce
Aharonov-Bohm phase factors that modify nonclassical
(i.e., interference) contributions to the conductance. Sev-
eral reviews of such phenomena exist; see, e.g. , Refs. 1—6.

It was recently anticipated that analogous quantum
interference phenomena should be observable in disor-
dered conductors, due to the orbital motion of spin-

ning (although possibly neutral) particles through ori-
entationally inhomogeneous magnetic fields, rather than
of charged particles through homogeneous magnetic
fields. 's Quantum interference, it was argued, should be
modified through the acquisition of Berry (i.e. , geometric
rather than Aharonov-Bohm) phase factors, io which are
sensitive to the field inhomogeneity. Thus implications
of the Berry phase should be identifiable in experiments
on the conductance of macroscopic and mesoscopic sam-
ples of condensed matter, and it should be possible to
isolate them by varying the inhomogeneity of the Geld.
Moreover, in multiply connected structures the geomet-
ric (rather than topological) character of the Berry phase
should allow the coherent relative modification of quan-
tum amplitudes &om Feynman paths of, say, diKering
winding number, so that it should be possible to observe
oscillatory manifestations of such quantum interference
in condensed matter.

This point of view was also adopted in a recent paper
and thesis by Stern, who analyzed a model consisting
of a one-dimensional conducting ring in the special case
of a cylindrically symmetric inhomogeneous field. By
adopting an adiabatic approximation and subsequently
regarding the system as comprising two uncoupled elec-
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tron gases (with spins parallel or antiparallel to the local
magnetic field), Stern concurred that implications of the
Berry phase should arise in the context of mesoscopic
rings. In particular, the conductance was indeed. seen to
oscillate as the Geld inhomogeneity is varied, a criterion
for the validity of the adiabatic approximation was dis-
cussed, and some comments were made regarding sample-
specific conductance fluctuations.

In addition to influencing transport phenomena, it has
long been appreciated that there are equilibrium implica-
tions of Aharonov-Bohm phase factors, most notably the
occurrence of persistent charge currents during phase-
coherent ballistic or difFusive orbital motion in multi-
ply connected structures threaded by magnetic flux; see,
e.g. , Refs. 4, and 12—14. Similarly, equilibrium impli-
cations of the Berry phase have been investigated, and
it has been predicted that persistent currents of charge
and spin should occur in multiply connected mesoscopic
conductors in the presence of inhomogeneous magnetic
fields ~" '7

The aim of the present paper is to give a detailed the-
ory of quantum transport in disordered conductors, in-
corporating the effects of inhomogeneous magnetic fields
on the motion of particles with spin. As we shall see,
analogous quantum interference phenomena do indeed
emerge as a result of such Gelds. We illustrate our results
by focusing on three examples: the anomalous weak-Geld
magnetoconductance of macroscopic metallic Glms, oscil-
lations in the conductance of metallic mesoscopic rings
and hollow cylinders, and, most importantly, stochas-
tic variations in the conductance of mesoscopic metallic
structures. Although we also anticipate implications of
quantum interference in the low-temperature transport
of mass and. spin by neutral particles through disordered
media (such as the normal Fermi liquid He through Vy-
cor) our focus here will be on the low-temperature con-
ductivity of normal disordered metallic conductors.

Our strategy will be to adopt the diagrammatic im-
purity technique in combination with an extension
of the semiclassical Feynman-path-integral approach to
weak-localization theory advocated by Chakravarty and
Schmid in their substantial elaboration of ideas origi-
nally formulated by Larkin and Khmel'nitskii and by
Bergmann. Among the virtues of this approach, which
we extend to the present situation, are (i) its suitabil-
ity for the formulation of the adiabatic approximation to
the spin dynamics and, in particular, the ability to ad-
dress essentially arbitrary magnetic fields (and not solely
field configurations with a high degree of symmetry); and
(ii) the opportunity of deferring the adiabatic approxima-
tion to the spin dynamics until after the orbital motion
has been approximated as diffusive and, thus, the op-
portunity to assess the range of validity of the adiabatic
approximation within the weak-localization regime in a
self-consistent and controlled manner. What emerges is a
criterion for the validity of this adiabatic approximation
that is considerably weaker than the condition derived
by Stern. Hence, even without invoking an enormous g
factor, the opposing requirements that the magnetic Geld
be strong enough to enforce adiabatieity of the spin dy-
namics but not strong enough to cause the breakdown of

the conventional theory for weak localization and UCF's
are seen to be quite compatible, which is crucial for the
experimental observability of effects due to the inhomo-
geneous Geld.

The organization of this paper is as follows. In Sec. II
we deGne the model and introduce appropriate corre-
lators, i.e., disorder-averaged products of single-particle
Green functions. We evaluate these correlators explic-
itly using diagrammatic and semiclassical Feynman-path-
integral techniques in Sec. III, in which we also ana-
lyze the adiabatic approximation and its range of va-
lidity. In Sec. IV we illustrate the results of Secs. II
and III with applications to systems embedded in in-
homogeneous magnetic Gelds. First, we consider a geo-
metrical analogue of anomalous weak-field magnetocon-
ductance due to weak-localization efFects in simply con-
nected structures. Then we address weak-localization
effects in multiply connected structures, i.e., rings and
cylinders, and the consequent magnetoconductance os-
cillations. Finally, and most importantly, we turn to
implications of unconjugated quantum Aharonov-Bohm
and Berry phases, and analyze issues concerning conduc-
tance fluctuations and associated oscillations in multiply
connected structures. By and large, technical details con-
cerning diagrammatic computations and the semiclassi-
cal method are relegated to a pair of appendixes.

II. MODEL HAMILTONIAN
AND CORRELATORS

A. Model

We consider a d-dimensional sample of disordered con-
ductor, which is embedded in an inhomogeneou8 mag-
netic field B(r) that couples to the spin of the electrons
via the Zeeman interaction and leads to a nontrivial ef-
fective coupling between orbital and spin motion. The
single-particle Hamiltonian II for this system is given by

1 em 1II = p —eA' (r) + V(r) ——gpii B(r) . cr,2' 2

(2.1)

where m, e, p, r, g, and ho/2 are, respectively, the elec-
tron mass, charge, canonical momentum, position, g fac-
tor, and spin. The operator V(r) represents the (spin-
independent) random impurity potential, pii is the Bohr
magneton, A is the electromagnetic vector potential,
with B = V'xA relating it to the magnetic Geld, and
0' (with i = 1, 2, 3) are the Pauli spin operators. We shall
neglect electron-electron interactions and band-structure
efFects, as well as alternative spin-scattering mechanisms.

As is well known (see, e.g. , Ref. 4), the electromagnetic
potential A' occurring in the kinetic energy gives rise
to a spin-independent Aharonov-Bohm phase, when eval-
uated in the semiclassical approximation, whereas the
Zeeman interaction, when evaluated in an adiabatic ap-
proximation defined below, results in a spin-dependent
Berry (i.e. , geometric) phase. If the magnetic field is ho-
mogeneous then the Berry phase vanishes (modulo 2vr).

In previous work the model defined by Eq. (2.1)
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has been studied in the context of a one-dimensional iso-
lated metal ring embedded in an inhomogeneous mag-
netic field. It has been shown that at low temperatures
this system carries persistent charge and spin currents in
thermodynamic equilibrium, caused by the Berry phase.
These persistent currents have been calculated explicitly
for the ballistic regime, i.e. , in the absence of the impurity
potential V.

Here, on the other hand, we are interested in the influ-
ence of the spatial inhomogeneity of the static magnetic
field (via the Berry phase) on the low-temperature diffu-
sive transport (i.e. , nonequilibrium) properties of systems
with a variety of geometries, i.e. , their linear response to
external current-generating forces. In particular, we shall
explore the influence of the Berry phase on various phe-
nomena associated with the physics of weak localization,
e.g. , caused by interference of Feynman paths with their
time-reversed partners. As usual, the weak-localization
regime is characterized by the requirement that the elec-
tronic mean free path l, due to elastic collisions with ran-
domly located impurities, be much larger than the Fermi
wavelength A~, with the consequence that electron prop-
agation through the disordered medium can be treated
semiclassically. Moreover, as we shall consider the dif-
fusive regime, we impose the conditions I « L
where L is a characteristic sample dimension and (where
appropriate) ( is the localization length. In addition,
we shall only consider situations where the (nonquantal)
dynamical e8'ect of the magnetic field on the classical
trajectory of the particle is negligible. Such situations
are readily met, requiring (i) that the cyclotron radius
r = me~/eB, in which v~ is the Fermi velocity, be much
larger than I (i.e. , that the l.orentz force at most barely
curves the classical particle trajectories between elastic

I

scattering events); and (ii) that the typical variation of
the magnetic field between two such events be much less
than the characteristic magnetic field Bp' = ep'/gpii as-
sociated with the Fermi energy eF (so that neither does
the Zeeman force cause significant curvature). For typi-
cal metals it is only the first condition that is at all rel-
evant; but it is still not restrictive, as it can be fulfilled
for magnetic fields as large as 10 T.

B. Cerrelators and conductivity

As we neglect electron-electron interactions we shall
work in the single-particle Hilbert space and concen-
trate on the evaluation of the following general frequency-
dependent current-current correlator:

h,
(M) = (TI'S pG (ty'+54))S pG (ey)).

(2 2)

Here, w is the frequency, 0 is the volume of the sys-
tem, G"~ (e) = (e —H + i0) i is the retarded/advanced
single-particle Green function, and Tr denotes a trace
taken over all single-particle states. The angle brackets
( ) denote an average taken over the distribution of ran-
domly located static impurities. Furthermore, S = 1
and S' = ho'/2 (with i = 1, 2, 3). Note that p+" (cu = 0)
is real. Correspondingly, e p is the charge-current—
charge-current correlator, which at low temperature and
small frequencies represents the leading contribution to
the electrical conductivity o.. 9 Indeed, following Ref. 20
the exact Kubo formula for the conductivity can be writ-
ten as

e2h OO e n
0((u) = dE[n(E+ h(u) —n(E) (TrpG (E+ her)pG (E)) + i2' m20d 7'(d

2h2 oo

dEn(E) [(TrpG (E)pG (E —h(u)) —(Tr pG (E+ h~)pG (E))], (2 3)

where n, is the number of particles per unit volume and n(E) is the Fermi function. In the limit of zero frequency
and temperature this expression simplifies considerably. In fact, using the identities G pG = im[G", x]/h and
[z, , p~] = ihh;~, and writing AG = G"(e~) —G (e~), we obtain the well-known Greenwood formula2 for the zero-
temperature dc conductivity:

e h e2h
a(0) = — (TrpAGpAG) = e p (0) — Re (Tr G"(ep)), (2 4)

where Re denotes the real part. The final representa-
tion for the conductivity in Eq. (2.4) provides a most
convenient starting point for the following analysis. As
its second term (i.e. , Re (Tr G )) is of higher order in
1/k&l, 22 where k~ is the Fermi wave vector, we need only
retain the current-current correlator e p, which turns
out to contain the Boltzmann value as well as the weak-
localization correction (see below). This also holds in the
calculation of conductance fluctuations, where only the

current-current correlator contributes, to leading order
(see Appendix B).

p'~, on the other hand, is the spin-current —spin-current
correlator, which determines the spin diffusion coeKcient
at zero temperature, s i.e. , D',& = p'~ (u = 0). Although
we are, in the present paper, primarily concerned with
electronic systems and their characterization by electrical
conductivity o, we give results for the general correlator
~P l/
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III. COOPERON/DIFFUSON PROPAGATORS
AND ADIABATIC APPROXIMATION

A. Cooperon/difFuson propagators

In this section we analyze the current-current correla-
tor p~ explicitly, in the weak-localization regime, by iso-
lating the leading quantum correction Lp~ to the classi-
cal (i.e. , Boltzmann) value. We shall focus our discussion
on the quantum correction (and not the Boltzmann con-
tribution) because it is this quantity that is most sensi-
tive to the presence of Aharonov-Bohm and Berry phase
factors. As we shall show, this quantum correction is de-
termined by a generalized "cooperon" propagator, which
acquires spin dependence via the Zeeman interaction. We
also calculate the "diffuson" propagator, which will be

I

used in the following section for the discussion of UCF's
in the presence of an inhomogeneous magnetic Geld.

We perform the calculation using the diagrammatic
impurity technique ' in combination with a semiclas-
sical analysis in terms of path integrals. ' ' This ap-
proach allows us to treat the Zeeman interaction with the
inhomogeneous magnetic field in such a manner that we
can postpone the adiabatic approximation until the or-
bital Inotion has been approximated as Brownian. Such
a treatment has the important virtue that it allows us
to assess the validity of the adiabatic approximation self-
consistently, within the context of weak-localization the-
ory. Deferring technical details of the diagrammatic and
path-integral calculation to Appendix A, we find that
the leading quantum correction to p+ is given by the
cooperon:

D
Apg" (iv) = — dt e* ' C" (t),

C" (t) =—1 dx ) S", ,S, , y (x xt 0),
ClI, ... , Cl4

where o.y ——+1 are spin indices, and where the time integral carries implicit lower and upper limits of the elastic
scattering time w and the dephasing time w~, respectively. The difFusion constant for particles at the Fermi level is
given by D = v&2&/d. As discussed in Appendix A, the propagator g ~D obeys the cooperon/difFuson difFerential
equation with the exact Zeeman term, the path-integral solution of which [see Eqs. (A16) and (A18)] is explicitly
given by

Xcxycx2&cxgM4 ( f 'I lt f 'I 7)

K(ty)=ay 1= 0(ty
—t; ) 17Rexp

K(t, )=a; 4D

ty t,y

dt~R~*+~ — dtR (A' (R[t)) +A' (R.+(t))))

ty ty

x a4 exp i dtB R t cr o,3 o.~ exp i dtB R+ t . cy.
.gPa .gpss

2h t- 2h
l

(3.2)

where 7 is the time-ordering operator and R (t)
R o.t + (1 —n)(tt + t;)/2, so that R (t) is the tiine-
reversed (i.e. , conjugate) partner of the Brownian path
R+(t) [= R(t)]. Note that for later convenience we
have allowed for the possibility that conjugate paths R(t)
propagating between z; and zy do not necessarily ex-

perience the same fields, i.e. , A and A can difFer.
This has the consequence that there can be nontrivial
interference terms (due to phase factors) for not only
the cooperon but also the difFuson propagator. Such a
situation with different Gelds is met, e.g. , in the calcula-
tion of conductance Quctuations, as we shaB see in the
next section. For the weak-localization correction to the
disorder-averaged conductance itself, however, the Gelds
should be chosen identical. Also note that at this stage
propagation through the random medium is described as
the Brownian motion of a particle with diffusion constant
D.

B. Adiabatic approximation

We are now in a position to address the evaluation of
the cooperon/diffuson propagator, Eq. (3.2), in the pres-
ence of the Zeeman term that depends on the path R in
a nontrivial way via the inhomogeneous magnetic Geld
B(R). In general, this path integral cannot be evalu-
ated exactly. However, we shall now concentrate our fur-
ther considerations on systems that are in the adiabatic
regime. Roughly speaking, in this regime the orbital dif-
fusive motion of the particle and the magnetic field must
be such that, as the particle diffuses, the field variation
occurs over a sufficiently long length scale so as to allow
the spin to maintain alignment along the local direction
of the magnetic field (a detailed elaboration of this is-
sue follows below). If this is the case then we can make
considerable progress by evaluating the Zeeman term us-
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ing the adiabatic approximation, in a manner similar to
that first discussed by Berry. In particular, the path in-
tegral in Eq. (3.2) is very similar in form to one studied
previously in the context of imaginary-time propaga-
tors for one-dimensional rings in thermodynamic equilib-
riuin. The results derived there (up to Sec. V of Ref. 16)
can readily be extended to the present situation of ar-
bitrary sample dimension and shape. The technically
trivial but physically important alteration is that when

importing results from Ref. 16 we must make two formal
replacements: (i) h /2m ~ D (the diKusion constant);
and (ii) B ~ B/h [as can be seen, e.g. , by comparing the
efFective Hamiltonian occurring in the cooperon/difFuson
difFerential equation, Eq. (A19) of Appendix A, with the
Hamiltonian studied in Ref. 16]. Furthermore, introduc-
ing the instantaneous eigenstates of the Zeeman interac-
tion, B(R(t)) . cr B(R(t)),n) = a B(R(t)),n), we find
for the spin propagator in the adiabatic approximation

tf
n~ Texp d:e deH( R(t)) nl n;

) (ny H(R(ty)), n) exp {eI' R ) exp{ + in (ty —t)B)(H(R(t )), n n),
n=+1

(3.3)

where we have specialized to the case of magnetic fields B with constant magnitude B, and have parametrized B in
terms of the spherical polar angles g and rj, so that it has Cartesian components B(sin icos g, sing sing, cosy), with
the angles y and q being smooth (but otherwise arbitrary) functions of position. The instantaneous eigenstates can
then be expressed in terms of y, q, and the eigenstates ~n = +1) of 0, :

B(R),n) = ~n) cos(y/2) + n~ —o) e' "sin(y/2).

The Berry phase associated with the path R then becomes

(3.4)

r a. = —Im
tf i9

dt B(R(t)),n —B(R(t)),n = — dR. V'q(R) ( cosy(R) —1),
Ot [all

where Im denotes the imaginary part and R( )] denotes the path of integration. By introducing the spin- and
position-dependent gauge potential

Ag (R) = —Im(B(R), n V' B(R),a) = —V'ri(R) 1 cosy(R) —1), (3.6)

we can express the Berry phase in the form

(3.7)

analogous to the form of the phase factor resulting from the electromagnetic gauge potential. Thus we see that the
Berry phase changes sign under time reversal, i.e.,

(3.8)

a reQection of the fact that the exact Zeeman term also changes sign under time reversal. It is this change of sign
that leads to interference eKects in the cooperon propagator, whereas no such eKects occur in the diKuson propagator,
provided both paths are affected by the same magnetic field (which is not the case when conductance fluctuations are
computed; see the following section).

Next we insert the adiabatic approximation for the spin propagator, Eq. (3.3), into the cooperon/difFuson, Eq. (3.2),
and obtain

(zf e z;; tf ) te) = ) (cx4 B(2 f ) e cl) (B(zj) ) A A3) (B(ze/ f ) ) cl &i) (a2 B(z f /~) e o') g~~ (zf ) zpe tf ) te) ) (3.9)

where

(zf, z;; tf, t;) = 0(tf —t;
R{ty)=zy

178, exp
R{t;)=z, 4D

ty
dt K

tf
+e deR (A. (R(t))+Ae(R(e)))+e (ty —e;) ( B —nB)).2h,

(3.10)

Note that the electromagnetic and geometric gauge potentials simply add, and have therefore been combined into a
single spin-dependent effective gauge potential A, defined by
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A = —A + A~. (3.11)

When necessary, explicit expressions for the spin matrix elements occurring in Eq. (3.9) can be obtained from Eq. (3.4).
However, we shall see later that, as a result of various spin sums, these spin matrix elements do not appear in the
final expressions describing the transport of charge.

Finally, reversing the earlier procedure of solving the cooperon/diffuson difFerential equation in terms of a path
integral, it is not difficult to see that the propagator y -, given in Eq. (3.10), obeys a new cooperon/diffuson
differential equation, which is characterized by the presence of this spin-dependent gauge potential A

~

~

2

Ot,'
+ D i ——(A (x') + A-(x')) —i (o.B —aB) y ~ (x', x;t', t) = b(x' —x) h(t' —t).

0Ã 2h, CXCX
(3.12)

It is quite striking that in the adiabatic limit the effect
of an essentially arbitrary inhomogeneous magnetic field
can be taken into account in such a compact way via the
geometric gauge potential.

C. Validity of adiabatic approximation
and weak-localization framework

Before proceeding to specific applications we pause to
discuss the conditions under which the adiabatic approx-
imation is valid, and their relationship with the condi-
tions for the validity of the entire &amework of weak-
localization theory. This is a particularly important as-
pect of the present work because it enables us to assess
the constraints that would have to be satisfied in exper-
iments in order to observe the effects that we shall dis-
cuss. What will emerge is a criterion for the validity of
this adiabatic approximation that is considerably weaker
than the condition derived by Stern. Most significantly,
we shall see that even without invoking an enormous g
factor the opposing requirements that the magnetic field
be (i) strong enough to enforce adiabaticity of the spin
dynamics but (ii) not strong enough to cause the break-
down of conventional weak-localization theory are quite
compatible.

The physical picture underlying adiabaticity is as fol-
lows. As the orbital motion of a particle carries the spin
of the particle to a region in which the magnetic field has
a significantly different orientation, enough time must
elapse for the spin to have undergone many complete
precessions, i.e., u~r )) 2', where the Bohr frequency
a~ is given by w~ = gp~B/Ii and w is the duration of
the orbital motion.

We first give a qualitative discussion of the adiabatic
criterion appropriate for generic situations of quantum
transport, which involves a physical argument concerning
precession times. Later we shall verify our conclusions, at
least in restricted contexts, via an analogy with the equi-
librium statistical mechanics of quasi-one-dimensional
rings in cylindrically symmetric magnetic fields. We be-
gin by introducing the length scale E~ (which we assume
to be roughly homogeneous) characterizing the typical
distance over which the variation of the orientation of
the magnetic field is of order unity. A ring of circumfer-
ence L on which the field reorients of order once would
have EI3 L. Next, consider a typical diffusive path of

spatial size A, which is completed in a time t~ A /D.
Adiabaticity then requires turit~ )) 2vrA/l~, where the
factor A/E~ accounts for the number of field reorienta-
tions across the distance A, i.e. ,

2' l l
a~& )) ———,

d S~ A' (3.13)

where we have used D = v&7/d. The factors l/Eg and
I/A are most significant: typically they make the crite-
rion far less stringent than cu~w )) 2vr/d (which would
demand many complete precessions between each elastic
scattering event).

We now show how an equivalent criterion emerges from
a formal relationship between the cooperon of the present
transport problem and the partition function of Ref. 16,
in which the criterion for adiabaticity was discussed in
the context of equilibrium statistical mechanics. There it
was found that for ballistic motion on a one-dimensional
ring of radius r adiabaticity required

glj gB

(mr'kg

T�
)

(3.14)

where k~ is Boltzmann's constant and T is the tem-
perature, provided that the geometric Aux was of order
unity (i.e. , the orientation of the magnetic field makes
of order one coinplete variation around the ring), i.e.,

~zgmr2/k~T )) 1. Physically, what is required is that
the magnitude of the magnetic field should be suKciently
large that the spin should precess many times during
the time taken by a particle with kinetic energy of or-
der k~T to orbit the ring. Particularly noteworthy is the
fact that the well-known roughness of the (imaginary-
time) Feynman paths does not itself immediately lead
to the violation of the adiabatic approximation, at least
in the context of the calculation of the thermal Green
function G (and hence the partition function Z). To im-
port results &om Ref. 16 we note the formal relationship
between the cooperon, Eq. (3.2) a transport quantity-
and the equilibrium thermal Green function, Eq. (4.15)
of Ref. 16: (i) y G; (ii) t h/k~T; (iii) D h/2m.
This relationship emerges after the Feynman path inte-
gral for the orbital motion of the transport problem has
been approximated semiclassically, and the disorder av-
erage has been performed, so that the orbital motion is
represented by Brownian motion and the cooperon is ex-
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pressed as a Wiener path integral. The crucial point is
that the spin motion has thus far been treated exactly.

Suppose that we choose to make the adiabatic ap-
proximation at this stage, and ask the question: un-
der what criterion is the adiabatic approximation valid'
The answer ioithin the context of creak loca-lization the-
ory Inay be found by analogy with the equilibrium case,
i.e. , by comparison of the kinetic and Zeeman terms in
the cooperon path integral, Eq. (3.2). Thus, by using
Eq. (3.14), we see that the validity of the adiabatic ap-
proximation for the computation of the cooperon y for
diffusive motion of duration t on a ring of radius r re-
quires glJIiBt/h » (r /Dt) ~2, i e.

(3.15)

which is equivalent to the criterion obtained above,
Eq. (3.13), for the appropriate choice lii = 27rr. Just
as the roughness of the (imaginary-time) Feynman paths
does not violate adiabaticity, neither does the roughness
of the Wiener paths that simulate the Brownian motion.
And just as for the equilibrium case, this criterion can
(in principle) be confirmed by an exact calculation of the
cooperon with the Zeeman term for the case of a cylindri-
cally symmetric Geld configuration, the only modiGcation
being that the doubling of the number of spin degrees of
freedom requires the diagonalization of a 4 x 4 matrix.
Since no new insight is gained from such a calculation we
shall not pursue this direction here.

Thus far we have been considering adiabaticity with
regard to the cooperon. We now address the fact that to
compute the leading quantum correction to the conduc-
tivity the cooperon must be integrated over times from
v to 7.~, i.e. , contributions must be collected from paths
of all lengths A for which our description is valid, i.e. ,

l & A & L~, where L~ = AD+~ is the diffusive de-

phasing length. In one and two dimensions the domi-
nant contribution arises &om times of order w~. Observe
that the criterion ur~r && (2vr/d) (l/EIi) (j/A) is softer for
longer diffusive paths: in dift'usive processes extra time
produces disproportionately little extra distance. For
the shortest paths A / so that adiabaticity requires
u~& && (2m/d) (l/E~); for the longest paths A L~ so
that adiabaticity requires wiiw » (2vr/d) (t/E~)(l/L&)

Now envisage increasing the degree of Geld inhomo-
geneity (i.e., decreasing g~) until I~ L~, so that the
longest of paths contributing to the conductivity correc-
tion begin to be afIected by the Geld inhomogeneity. Pro-
vided the adiabatic criterion is satisfied for such paths we
will begin to see efI'ects of the Geld inhomogeneity as de-
scribed in this paper, e.g. , in the magnetoconductance of
a film. In other words, at least when E~ L~ only the
very mild criterion ur~r && (2vr/d) (l/L~)2 must be satis-
fied. As the field inhomogeneity is increased (i.e. , l~ is
decreased) the criterion does harden, but it only reaches
the extreme case wii7 » 2'/d under the most extreme
of conditions, i.e., when E~ l and the shortest paths
A / are considered.

Multiply connected geometries afr'ord a useful simpli-
fication of this issue of the validity of the adiabatic ap-

proximation because the Brownian paths then fall into
discrete sectors according to winding number. The es-
sential consequence is that only topologically nontrivial
paths contribute to the Aux sensitivity, e.g. , of the mag-
netoconductance of a structure with a hole of circum-
ference L, and the shortest of these paths has an as-
sociated time scale of order L /D, i.e. , the time taken
to dift'use around the hole, rather than 7. All contri-
butions to the Aux sensitivity then obey the adiabatic-
ity criterion provided that ~ILL /D && 27r (L/I&), i.e. ,
w~w && (2a/d) (I/E~)(l/L), if the field reorients roughly
L/E~ times as the ring is circumnavigated. Equiva-
lently, this criterion reads gtj~B && (L/E~)E~h, where
E~h = hD/L is the so-called Thouless energy. This cri-
terion agrees with the one identiGed by analogy with the
equilibrium case.

Now, if the criterion for the validity of the adiabatic
approximation had turned out to be u~w && 1, rather
than the much softer criterion that we have found, then
the whole theory considered here would break down for
the following reasons. Recall that for electrons the Bohr
frequency w~ and the Larmor frequency ul, differ by the
g factor. Thus, unless g were vastly larger than unity,
the adiabatic criterion m~7 )& 1 would enforce ~I,& &) 1.
Then the high magnetic Geld, while good for producing
rapid spin precession, would cause strong curvature of the
semiclassical paths between elastic scattering events, and
the entire weak-localization picture would be in need of
reGnement. In particular, the orbital dependence of the
disorder-averaged single Green function could no longer
be accurately approximated by its zero-field value, and
in fact a Landau level picture would be a more appropri-
ate starting point (for a discussion of UCF's in strong
homogeneous magnetic fields see Refs. 36 and 37). Thus,
save the demand of an enormous g factor, a criterion
w~w )& 1 would self-consistently predict the breakdown
of the entire theory.

Indeed, the criterion w~w &) 1 would be fatal to the
theory for an even less avoidable reason. Even if the
condition wl. r » 1 (and the consequent strong pertur-
bation of the orbital motion) could be evaded by virtue
of a large g factor, to have u~w )) 1 would invalidate
the standard assumption that the spin dependence of
the disorder-averaged single Green function is negligibly
affected. by the magnetic Geld. More precisely, although
this Green function has a range of order I,, such a strong
Zeeman coupling would perturb the spin motion at this
length scale, the resulting spin precession causing sig-
nificant alteration of the spin dependence of this Green
function. Consequently, in order to avoid such nontrivial
alterations of the whole formalism, we are actually forced
to assume that ~~~ && 1, which allows us then to approx-
imate (G) by its zero-magnetic-field form (except in the
integral equation for the cooperon/diffuson propagator),
as we have done throughout our analysis in Appendixes
A and B. However, by Grst approximating the motion as
diffusive and then making the adiabatic approximation
we have found that the self-consistent criterion for the
validity of the adiabatic approximation is very consider-
ably weaker than u~w )& 1.

We emphasize again that everything said so far is
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valid for all spatial dimensions d and for arbitrary mag-
netic textures satisfying the adiabaticity criterion stated
above. We have been able to derive this criterion be-
cause we have made the adiabatic approximation af
ter the semiclassical approximation in the correspond-
ing path-integral representation of the retarded and ad-
vanced Green functions. This order of approximation
steps seems to be more difBcult to perform within the
conventional Green function formalism because the Zee-
man term cannot be treated in the same way as the elec-
tromagnetic gauge potential.

Finally, for the sake of illustration, we consider the im-
plications of the adiabatic criterion for parameters typical
of metallic cylinders studied experimentally. Supposing
that L Zg we find the criterion a~wI, )& 2x, where vI,
is the time taken to diffuse once around the ring. If we
further assume that I 7 pm, and that e~ = 1.4 x 10
ms and l 70 nm so that 7 —50 fs, then adiabaticity
requires magnetic fields of magnitude greater than 240
Q 27

For the sake of comparison we remark that the criterion
a~r &) 2x/d would require unattainably strong magnetic
fields, exceeding 240 T, i.e. , a factor of 10 larger, ren-
dering the Berry phase effects described here completely
unobservable. The physical picture corresponding to this
important conclusion is that the difFusive length L2/l is
two orders of magnitude larger than the circumference
I, so that the strength of the magnetic field required
for adiabaticity is two orders of magnitude smaller for
diffusive systems than it is for ballistic systems. Thus
diffusive motion requires more time for the completion of
orbits, and hence provides more time for spin precession
around the local field direction, which preserves adiabatic
alignment.

IV. APPLICATIONS

In this section we shall apply the results of the previous
sections, together with certain standard results, to three
illustrative examples of experimental interest concern-
ing transport in disordered conductors in inhomogeneous
magnetic fields. First we make some qualitative remarks
regarding a geometrical analogue of anomalous weak-field
magnetoconductance due to weak-localization effects in
simply connected structures. Then we address weak-
localization effects in multiply connected structures, i.e. ,
rings and cylinders, and the consequent magnetoconduc-
tance oscillations. Finally we turn to implications of un-
conjugated quantum Aharonov-Bohm and Berry phases,
analyzing issues concerning conductance fluctuations and
associated oscillations in multiply connected structures.

A. Analogue of anomalous weak-Beld
magneto conductance

Perhaps the simplest application of conventional (i.e. ,
Aharonov-Bohm phase controlled) weak-localization
ideas concerns the anomalous sensitivity of the low-
temperature conductance of a macroscopic disordered
metallic film to a homogeneous perpendicular magnetic
field. As discussed, e.g. , in Ref. 24, in the absence

of spin-orbit scattering the leading quantum correction
to the Boltzmann value decreases the conductance (in
other words, the interference of time-reversed paths en-
hances backscattering, i.e. , suppresses difFusion). Via the
Aharonov-Bohm phase the application of a perpendic-
ular magnetic flux can moderate this quantum correc-
tion, as it destroys the constructive interference between
terms each associated with a pair of conjugate paths. As
the strength of the magnetic Beld is increased, the quan-
tum correction begins to be eliminated at the scale of
fields Bo for which the largest phase-coherent paths en-
close roughly one quantum of electromagnetic lux, i.e. ,
BpDT& @p, where 4'p = hc/e is the elementary Aux
quantum. As the strength of the Beld is increased beyond
Bp (while remaining weak on the classical scale) the con-
ductance continuously increases towards its Boltzmann
value.

What is the analogue of this suppression of the quan-
tum correction to conductance in the presence of an in-
homogeneous magnetic field, i.e., due instead to the ge-
ometric phase? To answer this question it is useful to
note &om Eq. (3.6) that As ~V'(B/B)

~

= E&, i.e. , the
inverse field-reorientation length (up to a pure geomet-
ric gauge term that does not contribute to the geometric
Aux through the path). The essence is then identical:
the quantum correction begins to be eliminated when
A rises to such a scale that the largest phase-coherent
paths enclose roughly one quantum of Berry flux, i.e. ,
As/Dr~ 1 or, equivalently, EI3 L~. In other words,
just as one would anticipate, as E~ is decreased (i.e., the
inhomogeneity of the field is increased) the quantum con-
tribution begins to be eliminated when E~ is reduced be-
low I~. Further increase of the inhomogeneity causes the
conductance to increase continuously towards its Boltz-
mann value. (For an estimate of the scale of magnetic
fields typically required to observe this effect see the dis-
cussion at the end of the following section. )

B. Magnetoconductance oscillations

We now turn to implications of weak localization in
contexts where the paths can be classified into sectors
so that, under appropriate circumstances, all (or at least
most) paths in a given sector acquire more or less the
same modulation of quantum phase under the applica-
tion of an inhomogeneous field, and the phases acquired
by paths in distinct sectors are simply related. One then
has the possibility of observing oscillatory quantum ef-
fects, because increasing the (electromagnetic or geomet-
ric) flux will sequentially smear and then resharpen the
interference contributions from conjugate pairs of paths
accumulated in different winding number sectors.

Perhaps the simplest condensed matter contexts in
which such effects may arise are multiply connected
structures, e.g. , as rings and cylinders. Optimally, the
circumference of the holes should not greatly exceed the
dephasing length L~ (to avoid strong attenuation of the
amplitude of oscillations), and the radial (i.e. , wall) thick-
ness should be sufIiciently small that the geometric Aux
penetrating the sample itself (e.g. , due to radial varia-
tions in the field inhomogeneity) does not strongly smear
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the contributions from a given winding number sector.
We introduce the conductance g = ager of a d-

dimensional system, where the appropriately chosen geo-
metrical factor ag relates the conductance to the conduc-
tivity 0. We denote the weak-localization correction to
this conductance by Ag (cu) = age ApP (u), where EpP

is given by Eq. (3.1), with the cooperon propagator y+ of
Eq. (3.12) carrying identical fields, i.e., A' = A and
B = B. Under these particular circumstances (viz. , iden-
tical fields and closed paths), the sum over spin matrix
elements is elementary, and leads to

R(t) =x 1C (t) =P y (x, x;t, 0)=) I&Rexp
R(0)=x 4D

t t
dv R +2( duR. A (R(r))),

0

(4 1)

where we have invoked the translational invariance of y
Note that the dynamical Zeeman terms have canceled,
whereas the gauge-Geld terms have reinforced, thus pro-
ducing the factor of 2 in the gauge-Beld term in the ex-
ponent. From this form of the cooperon it is evident that
the "up-spin" (i.e. , the spin component parallel to the lo-
cal field direction) and "down-spin" (i.e., the antiparallel
spin component) contributions are entirely uncorrelated
and thus can be treated as independent species, as ob-
served by Stern. We emphasize, however, that such a
decoupling of the two spin channels occurs only under the
particular circumstances mentioned prior to Eq. (4.1);
as we shall see shortly, this property is not shared, for
instance, by the expression describing the conductance
fI.uctuations.

We now evaluate the spin-averaged cooperon propaga-
tor C for the illustrative cases of hollow metallic rings
and cylinders, having circumference L = 2mr, height b,
and thin walls of thickness a « L~. The magnetic Geld is
assumed to have constant magnitude, and not to vary ap-
preciably either radially across the wall or parallel to the
(ring or cylinder) axis. In this special case, the effective
gauge potential A can be replaced by its tangential com-
ponent A~ (where P is the azimuthal angle), which can
be expressed in terms of the associated spin-dependent
fluxes (see also Ref. 16):

27rr A~ = C) = 4' /C)p + o.4~, (4.2)

where r is the radius of the structure, 4' is the electro-
magnetic Aux through the area vrr2, which contributes in
units of C'e, and the geometric flux (i.e. , Berry phase) is
given by

1 1 (ag &
4'~ = —— dO = — dP [cosy(P) —1]

z 4~ 0 (d

(4.3)

This formula shows that (up to a factor of minus 4vr)
the Berry phase is equal to the area of the surface Z
on the unit sphere whose boundary is described by the
direction of the magnetic field B/B, as this field varies
around the circumference of the ring or cylinder. The
Berry phase takes a particularly simple form in the case
of a cylindrically symmetric texture (i.e. , q = P), namely,
C)g = (cosy —1)/2, where y is the (constant) tilt angle
away from the cylinder axis.

The subsequent evaluation of the cooperon propagator
C is standard. ' '4 As is evident from Eq. (4.1), one
simply has to replace the Aharonov-Bohm flux C)' /C)o
of previous (spinless) calculations by the spin-dependent
Aux 4 and then sum over n = +1. We remark that a
similar property emerges in the calculation of equilibrium
quantities such as the free energy and persistent charge
current; this simple replacement rule has therefore been
correctly anticipated in Ref. 7 for the case of arbitrary
textures and also in Ref. 11 for the special case considered
in this subsection. As we shall see, however, this rule fails
for conductance Huctuations.

For the sake of completeness we state without elabo-
ration the resulting expressions for the magnetoconduc-
tance, following Ref. 4. For this purpose, and also for
later use, we note that the cooperon/diffuson propaga-
tors are explicitly given by

(4.4a)

(4.4b)
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Here, we have used the definitions

m - = (nB —6B),
2h

(4.4c)

where we have used oq = ab/L, the magnetic dephasing
length L is given by

(4.6)

and L~ = ~34p/27raB accounts for the dephasing ef-
fect of magnetic flux penetrating into the sample. The
geometric phase gives no contribution to the dephasing
length because we have assumed that the field configura-
tion excludes the geometric flux &om the sample. Note
that the conductance correction is periodic in 4 with
period 1/2; this includes the well-known periodicity in

I

k = (27m/L, k~) and k~ = (27rm/a, 2vrp/b) with n, m, p
integral, and the volume 0 is given by 0 = abL. For
convenience we have incorporated the upper cutoff of
the time integration, ~~, directly into the propagator.
Note that for the present case of magnetoconductance
oscillations the dynamical Zeeman terms cancel because
m = 0 for B = B. (This, however, is no longer the
case in the expression describing the conductance fluctu-
ations; see below. )

To study the case of a ring of small height b (& L~, in
which diffusion is effectively one dimensional, we insert
Eq. (4.4b) into Eq. (4.1) and retain only the kz = 0
term in the summation over wave vectors. Thus, for
the weak-localization correction to the conductance (per
unit length) along the circumference of a quasi-one-
dimensional ring, we find

& ] sinh(L/L )Lbg (v=0 = — L
7rh ~ 2 cosh(L/L&) —cos(4lr4 )

'

(4.5)

with period 4p/2. ' (For different periodicities in
C" in ballistic rings see Ref. 29.) Equation (4.5) was
given by Stern for the case of a certain cylindrically
symmetric field configuration.

We remark that LI3 should be regarded as a loner
bound to the true magnetic dephasing length, which
ought to incorporate the fact that the penetrating field is
generally not parallel to the cylinder axis. For instance,
for a cylindrically symmetric texture one would expect
that the magnitude B occurring in the above definition of
Lgy should be replaced by ~B, ~, as only the z component
contributes to the dephasing effect caused by the width
of the distribution of magnetic fluxes enclosed by conju-
gate pairs of paths in the cooperon/diffuson description.
The resulting dephasing length LI3 is then in general
larger than LIB a situation more favorable for possible
experiments. However, we shall ignore such refinements
and use the more conservative length L~ for the quan-
titative estimates given below. For further refinements
due to various other possible dephasing mechanisms see
Ref. 4.

To illustrate the result (4.5), consider a planar conflg-
uration, i.e. , y = m/2, say for the ring, with g(P) equiv-
alent in winding number to P. An electron that orbits
the ring once is rotated through 2m and accordingly ac-
quires a Berry phase factor of minus unity. As, however,
the conductance correction comes &om conjugate pairs
of paths, each mate of the pair brings an equal factor of
+1, for any winding number. Thus such a field config-
uration has no net effect on the conductance correction,
as indicated by Eq. (4.5). As it is unconjugated paths
that are responsible for them, such a field configuration
would have a net effect on conductance fluctuations.

We now turn to the case of a hollow cylinder of large
height b )) L~, and thin walls of thickness a (& L~.
The longitudinal (i.e. , axial) magnetoconductance follows
from Eqs. (4.1) and (4.4b) with ag = aL/b, and is given
by

e' L (L ~ (n,L) (47m,@'
Ag= — — ln

~ +2) Kp
( & ~cos)

~

coc j4c

ccrc�

) ),~'hb
~

t ~, qL~y
(4.7)

where Ko denotes a modified Bessel function. Note that
the spin sum has been performed explicitly, leading to
a Berry phase factor that modulates the magnetocon-
ductance oscillations due to the Aharonov-Bohm phase.
In particular, this formula predicts that, with regard to
the conductance, the addition of a Berry flux of —1/4 is
equivalent to the addition of 4p/4 to the electromagnetic
flux. For a cylindrically symmetric texture, for instance,
such a Berry flux requires a tilt angle y away &om the
z axis of m/3. Thus in. a possible experiment one could
search for this effective electromagnetic flux shift by com-
paring the magnetoconductance at, say, (C' /C'p, 4'll) =
(0, 0) with that at (4 /4p, O~) = (1/4, —1/4). The sit-
uation is somewhat simpler if the terms with n & 2 are

negligible, i.e. , for large ratios L/L+ To be able to. at-
tribute unambiguously the measured phase shift to the
presence of the Berry phase one has, of course, to take
into account a possible change of the Aharonov-Bohm
phase (i.e. , the flux through the cylinder) which might
simultaneously occur when changing the configuration of
the magnetic field.

In Sec. IIIC, we illustrated the adiabatic criterion us-
ing parameters roughly pertaining to recent experiments
on Au loops, Ref. 14, and found a field scale of order 240
G. If we additionally suppose that the linewidth a —100
nm then we find that one electromagnetic flux quantum
penetrates the sample at field scales of order 60 G. Thus
for the stated geometry we anticipate that the scale for
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adiabaticity is in the crossover regime, where the weak-
localization eKects start to become suppressed. More pre-
cisely, electromagnetic dephasing becomes relevant when
the magnetic field becomes larger than roughly 60 G, as
then the magnetic dephasing length I no longer exceeds
the observed dephasing length I~, which is reported to
exceed the ring circumference I at T = 40 mK. It is
reasonable, however, to expect that the magnetoconduc-
tance oscillations induced by an inhomogeneous magnetic
Beld via the Berry phase would remain experimentally
observable, albeit with a somewhat reduced amplitude.

Arguments similar to those given in the preceding
paragraph also apply to the observability of the ana-
logue of the anomalous magnetoconductance caused by
the Berry phase mechanism (see Sec. IV A). In particu-
lar, if we assume that typically EI3 L~ 7 pm, then
adiabaticity for the longest of phase-coherent paths (i.e. ,

A ~ L~) requires magnetic fields stronger than about
200 G. On the other hand, in a two-dimensional metal-
lic Blm, weak-localization eKects begin to be suppressed
when roughly one quantum of (electromagnetic) flux pen-
etrates each phase-coherent area (roughly L ). In other
words, the onset of suppression occurs at Belds of the
order C'0/L2 1 G. However, we emphasize that this
suppression of weak localization is far &om complete at
such field strengths. The suppression follows a power
law, behaving asymptotically as 1/B [see, e.g. , Eq. (7.11)
of Ref. 3], in marked contrast to the exponential sup-
pression found in multiply connected geometries. Con-
sequently, the suppression of weak-localization eKects in
two-dimensional films becomes complete only at much
higher magnetic Belds, typically of the order of a few
thousand G (see, e.g. , the measurements by Bergmann
on the anomalous magnetoconductance in thin Mg Blms
in homogeneous magnetic fields). Thus one should com-
fortably be able to satisfy the adiabatic criterion within
the weak-localization regime and, consequently, observe
the analogue of the anomalous magnetoconductance de-
scribed in Sec. IV A.

C. Universal conductance fluctuations

We now turn to our third example, namely, conduc-
tance fluctuations in mesoscopic metallic rings embedded
in spatially inhomogeneous magnetic Belds. In the con-
text of the Berry phase there is, as we now explain, an
essential advantage to studying fluctuations of the con-
ductance about the Boltzmann value at higher magnetic
fields, rather than the oscillatory weak-localization cor-
rections to the Boltzmann value (discussed in the pre-
vious example) at lower fields. The latter oscillations
(with period 4?0/2) are associated with the coherent con-
tributions of conjugate paths and are described by the
cooperon; for charged particles they are completely sup-
pressed at high fields, due to sInearing by magnetic flux
passing through the sample itself. However, the former
fluctuations are due to the incoherent contributions of
unconjugated paths. They include oscillatory Aharonov-
Bohm variations at the fundamental period 40. They

8a (8,B) = (cryo &) —(oa) (o&), (4 8)

where 0 &&& are now conductivities in the presence of

also include stochastic variations with flux, on the one-
quantum-per-sample flux scale (at which the 4o/2 os-
cillations become suppressed), but these stochastic vari-
ations are not suppressed by such fields In particular,
if the sample area is significantly smaller than the hole
then the conductance will show 4O oscillations at a cor-
respondingly higher &equency, superposed on the slower
stochastic variations, and they will continue to be ob-
servable even up to very high magnetic fields (e.g. , more
than 8 T, with r, remaining much larger than /).

Now, from the adiabatic criterion given above it is ap-
parent that high magnetic fields are precisely what are
required to guarantee the accuracy of the adiabatic ap-
proximation invoked in our formalism. This means that
even though it may be diKcult to avoid the suppres-
sion (by electromagnetic Hux penetration) of magneto-
conductance oscillations resulting from conjugate paths,
implications of the Berry phase should remain accessi-
ble through the modulation that it causes iri the contri-
butions to the conductance of mesoscopic samples aris-
ing kom unconjugated paths. In particular, the con-
ductance of simply connected mesoscopic samples should
vary stochastically, with a scale of order e /h, as alter-
ations of the field inhoinogeneity (at fixed uniform elec-
tromagnetic Hux) change the geometric Hux penetrating
the sample. These stochastic variations should have the
statistical property that the value of the conductance re-
mains correlated, as the field inhomogeneity is varied,
until of order one additional quantum of geometric flux
penetrates the sample. The conductance of multiply
connected mesoscopic samples should show oscillations
(with unit period in the geometric Hux) superposed on
the stochastic variations, as the field inhomogeneity is
altered.

The subject of conductance fluctuations in mesoscopic
systems originating from the absence of self-averaging
has been addressed extensively over the last few years,
both theoretically ' '3 ' and experimentally. ' We
therefore confine our discussion to the novel theoretical
aspects that result from the inhomogeneity of the mag-
netic Beld. Most notably, the Zeeman interaction causes
nontrivial correlations between the "up" and "down" spin
channels, and thus a careful analysis of the conductivity-
conductivity correlator is required in order to determine
the complete spin dependence of the relevant propaga-
tors. The purpose of this subsection is to provide such
an analysis, which we perform along lines similar to those
introduced for the above computation of the disorder-
averaged conductivity. In passing, we note that in the
absence of the Zeeman interaction conductance fluctua-
tions have been calculated by several authors. However,
results have been obtained that difI'er in the numerical
prefactors, partly as a consequence of the retention of
diferent sets of diagrams.

To be specific, we focus on the evaluation of the
conductivity-conductivity correlator defined by
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the (possibly different) magnetic fields B and B, as
given in Eq. (2.2) but now without the disorder aver-
age. The dominant contribution once again comes &oin
the current-current correlator t p . We evaluate this

I

quantity explicitly in Appendix B by making use of dia-
grammatic and path-integral techniques with subsequent
adiabatic approximation. The result of this calculation
is [see Eqs. (B8)—(B10)]

e2
her ' =

~

—
~

(2D)' de de'n'(e)n'(e') —) —
[~y p(0, x;~)~'+~y~p(0, x;~) ~']

+ oRe[x p[o, x; ~)x p(~, o;~) + x p(o, ~;~)x p[~, o;~)]), (4.9)

where y &
is given by Eq. (3.10) or, equivalently, by

C/D

the cooperon/difFuson differential equation, Eq. (3.12),
and h~ = e —e'. We note that the term whose real
part is taken can be interpreted as arising from fluctu-
ations in the density of states, whereas the other terms
arise from fluctuations of the difFusion coefBcient. The
fluctuation bo.

&& of a single diagonal component OA, I,

(with k = x, y, z) is obtained from Eq. (4.9) by setting
d = 1. In the limit of vanishing Zeeman interaction our
result comes closest to the one reported by Aronov and
Sharvin; the structure of the expressions is the same,
only the numerical prefactors differ slightly.

It is apparent from Eq. (4.9) that in the present case of
conductance fluctuations the two spin channels "up" and
"down" are in general no longer uncorrelated and instead
are mixed, in contrast with the case of magnetoconduc-
tance oscillations. As a consequence, the cooperon part
now includes a contribution involving the Sum of the two
Berry phases as well as a contribution involving their dif
ference; and similarly for the diffuson part.

Evidently, this spin-channel mixing invalidates the
simple replacement rule, mentioned above, for incorpo-
rating the efFect of an inhomogeneous Beld into the mag-
netoconductance fluctuations via the Berry phase. How-
ever, it is clear Rom our result, Eq. (4.9), how this rule
is to be generalized to the case of the universal conduc-
tance fluctuations. Indeed, in the adiabatic regime the
eKect of the inhomogeneous magnetic field can simply
be accounted for by replacing F [y+~D] by P & P[y & ],
where E is a certain functional that is quadratic in y

and where y+)'~ obeys the generalized cooperon/difFuson
difFerential equation, Eq. (3.12), which includes the Berry
phases as well as the dynamical Zeeman terms. The
dynamical Zeeman terms lead to a suppression of the
spin-channel mixing for suKciently high magnetic fields
and/or low temperatures, as we shall discuss below.

To exhibit the physical consequences of the channel-
mixing result in more detail, we now evaluate the con-
ductance correlator, Eq. (4.9), for the illustrative exam-
ple of a quasi-one-dimensional mesoscopic ring of circum-
ference L, height 6 « L~, and wall thickness a && I~,
embedded in an inhomogeneous magnetic field. More-
over, we shall focus on the limiting regime typically en-
countered in metals: LT (( L~ ( I, where LT ——y'DhP
is the thermal diffusion length, which provides a mea-
sure of the smearing of the conductance fluctuations due
to nonzero temperature. ' ' This example will then al-
low us to make quantitative statements about the regime
in which correlations between the spin channels may
be found. We begin by noting that in the specified
regime the second term in Eq. (4.9), i.e. , the term whose
real part is taken, turns out to be of higher order in
LT /L~, and thus is omitted from the following analy-
sis (see also Ref. 4). Focusing, then, on the first two
terms, ~y

~ ~, we insert the explicit solution for the
cooperon/difFuson propagator, Eq. (4.4b), into Eq. (4.9).
The remaining integrations over e and e' can then be
evaluated by standard Matsubara techniques, and for the
fluctuations of the tangential conductance per unit length
L bg = (ab) 8o we obtain the result

a,n I,m, n $ (A;) —(m+n)+2m'b - (k) (LT/L) +i (P/2x) m~~

(I') = (r/L~)'+ Ik —(@-+@-)]'.

+ [b~~ M b~~

(4.10)

Here, the prime on the summation indicates the constraint that I, and n are to be positive, odd integers. Next,
we expand the foregoing result in powers of LT/I and LT /L~ and, passing to the Fourier representation, for the
tangential conductance fluctuations (to in leading order) we finally obtain

bg = bg~ + bgD,(2) (2) (2) (4.11)

OO

vr ( Ii) L' (4.12)
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where we have introduced the magnetic dephasing
lengths associated with the cooperon and diffuson prop-
agators (see, e.g. , Ref. 4)

1

Le(a
1 a2 8+8+—

12 27t @O
(4.13)

Furthermore, the spin-dependent pre factor resulting
from the dynamical Zeeman term measures the degree
of the spin-channel mixing, and. is explicitly given by

1I -=Re
[1 + i Pg pI3 (nB —nB) /4~] s (4.14)

This expression now shows that the spin channels, "up"
and "down, " are mixed provided that I - is of order unity
for all n P n. More explicitly, we see that ~I

if /3gp~~nB —nB~ ) 4m. For instance, if B B
5 T and if the temperature T —40 mK then the spin
weighting factor I becomes exceedingly small and
the spin-channel mixing is completely suppressed, which
reduces the magnitude of the conductance fluctuations
by a factor of 2. An additional reduction by a factor of
2 is provided by the suppression of the weak-localization
contribution (i.e. , the cooperon part 8'g& ), as typically
I~ && L~ & L for fields higher than a few hundred G, as
follows from Eq. (4.13). This reduction of the universal
conductance fluctuation is well known for homogeneous
magnetic Gelds.

On the other hand, if the magnetic Gelds are smaller
and/or the temperature higher, then the "up" and
"down" spin channels do mix. This is the case, for in-
stance, if B B = 0.5 T, and T 0.4 K, at which

Gelds the weak-localization contribution bg& is still sup-
pressed. This magnetic Geld strength is by far sufIicient
to satisfy the adiabaticity criterion, which requires the
Geld to be greater than roughly 100 G.

As with the case of magnetoconductance oscillations,
the Berry phase leads to a phase shift of the conven-
tional Aharonov-Bohm oscillations. We emphasize that
(in comparison with the Herry phase sensitivity of weak-
localization corrections to the conductance) the primary
advantage of conductance fluctuations is that their sensi-
tivity to the Berry phase persists to much higher regimes
of magnetic Geld, in which the the adiabaticity criterion
can be readily satisfled.

gauge potential.
We have seen that there arise analogues of quantum

interference phenomena that are familiar &om the trans-
port of charged particles through disordered conductors
in the presence of homogeneous magnetic Gelds, with
the role of the Aharonov-Bohm phase essentially being
played by the Berry phase. In particular, analogues have
been examined of the anomalous weak-field magnetocon-
ductance of macroscopic metallic Glms, oscillations in
the conductance of metallic mesoscopic rings and hollow
cylinders, and stochastic variations in the conductance of
mesoscopic metallic structures. Although our focus has
been on the low-temperature conductivity of normal dis-
ordered metallic conductors, we stress that implications
of quantum interference should be anticipated in the low-
temperature transport of mass and spin by neutral parti-
cles through disordered media (such as the normal Fermi
liquid He through Vycor).

For certain properties, e.g. , conductance oscillations in
cylinders, it has been found that the system can be re-
garded as comprising two independent subsystems that
experience a common electromagnetic flux but an oppo-
site geometric flux. Such properties can be described by
importing results derived for charged but spinless par-
ticles and simply superposing the results for a pair of
shifted electromagnetic fluxes: P Q(C' + C'~ ). How-
ever, for other properties, e.g. , conductance fluctuations,
such a simple structure does not emerge and, instead,
off-diagonal aspects of the spin subsystems are needed to
complete the description.
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APPENDIX A: WEAK-LOCALIZATION
CORRECTION TO TRANSPORT

COEFFICIENTS

V. CONCLUSIONS

In this paper we have aimed at presenting a detailed
theory of quantum interference effects in the transport of
particles with spin through disordered conductors in the
presence of spatially inhomogeneous but static magnetic
fields. By using diagrammatic techniques, along with
the semiclassical Feynman-path-integral formulation of
weak-localization theory and an adiabatic approxima-
tion, the present approach is capable of describing the
effect of essentially arbitrary magnetic Gelds, by encoding
their impact into an effective spin-dependent geometric

In this appendix we derive the formula for the weak-
localization correction to the spin and charge current-
current correlators, using the diagrammatic impurity
technique ' in combination with a semiclassical analy-
sis in terms of path integrals. ' We emphasize that the
Zeeman interaction with the inhomogeneous magnetic
field is treated exactly in this semiclassical approxima-
tion. (The subsequent adiabatic approximation is intro-
duced in Sec. III.)

We start with Eq. (2.1), which, evaluated in the posi-
tion and spin representation, becomes
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8 h 8
((u) = ) S" S" dxg dxs hm —. —. (G", , (x4, xsI ey + h(u) G, , (xg, xt, ep)).m2d - ~1~4 ~3~2

X4 —+X1 Z OX2 Z BX4~1 &
~ ~ ~ )&4

X2 WX3

(A1)

( G (x4, x~', 6) G (x&,x; e') &
a+a&

(x&,a&) (x4, u~}
ret

(x&,a&)
Qdv

(x],a])

(b)

(z, P)
I

I

I

I

(z, p )

(c)

Due to the presence of the Zeeman term the disorder-
averaged Green functions are no longer translationally
invariant, and it is thus more convenient to work in po-
sition space than momentum space. After performing a
perturbation expansion in the impurity potential, we ap-
proximate the impurity-averaged product of Green func-
tions [represented by Feynman diagram (a)], as shown
graphically in Fig. 1. In this diagrammatic iteration pro-
cedure the impurity-averaged product of Green functions
also appears on the right-hand side of the graphical equa-
tion shown in Fig. 1.

This graphical scheme includes the Boltzmann contri-
butions [Figs. 1(b)—1(d)] and a contribution containing

all maximally crossed diagrams [Fig. 1(e)]. As we shall
show, the latter generate the leading weak-localization
correction to the transport coeKcient. [Although it is
not needed for the calculation of the leading quantum
correction to p"" we also evaluate Fig. 1(d), as it oc-
curs in the calculation of conductance fluctuations. ] For
use in the calculation of the conductance fluctuations we
have also included higher-order diagrams [Figs. 1(f) and
1(g)]. The dashed lines resulting from the averaging of
impurity scattering correspond to a factor n, V&2b(x —y),
where n; is the impurity concentration and Vo is the inter-
action strength. (For simplicity, we model the impurity
potential by an uncorrelated distribution of randomly
located isotropic b-function potentials of strength Vo. )
The full lines in the Feynman diagrams correspond to
exact disorder-averaged retarded/advanced Green func-
tions, with the convention that retarded propagators (up-
per lines) carry energy e = e~+hw (with hu && e~), while
advanced propagators (lower lines) carry energy e' = e~.
As usual, we are interested only in the Geld dependence
resulting from interfering paths (see below). Therefore
we ignore the less important field dependence of the
disorder-averaged single Green functions themselves, as
explained in Sec. III C. Then, in the standard Born ap-
proximation to the self-energy the disorder-averaged
single Green functions read

(&".p (x y)) = (&".I (x»)) . , —= b-p g"'(x —y),
(A2)

g'~ (k) = 1
E —E'g + th/27'

( ~, p~)

I

I

I

I

(zz, p2)

(z],P~)

I

I

I

I

(zi, pi)

(z~, P~)

(z~, pz)
(e)

i zz, pp)

izi, pi)

Here, eg is the &ee one-particle energy spectrum,
and the elastic scattering time r is given by 1/v
n;Vo227rNF/h = v~/E, where N~ is the density of states
at the Fermi level (per spin and d-dimensional unit vol-
ume; i.e. , mk~/2vr h in d = 3). Figure l(d) then trans-
lates into the following expression:

2' ]/
a'

(g)
FIG. 1. Diagrammatic representation of the leading con-

tributions in the perturbation expansion of the current corre-
lator. For explanations see text.

FIG. 2. Diagrammatic representation of the leading con-
tribution in the perturbation expansion of the mean square
value of the conductivity Quctuation. We use the abbrevia-
tions 1 = (xq, aq), etc. , and a = (adv, B,e), a' = (adv, B,e'),
etc. Note that n~ ——n4, nq ——n3, and nq' ——o.'4', n2' = ~3' ~
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I-n,'. V4
Ap~ ((u) = dzldz2(zllg'pg l»)(Z2lg pg" Iz2) ) S. S.".g .. (Z„z„~),

A1 )...)Ct4

(A3)

and Fig. 1(e) corresponds to

n'
Ap~ (~) = ' dzldz2(zl~g"pg ~Z2)(zlig pg" iz2) ) S" S" y, (Z„Z2;ur),

Ct1 )...)M4

(A4)

which represents the leading weak-localization correction. We have used the definition

X~ ~ ~ ~ (zl& z2', M) = (G~ ~ (z21 zlI eF' + 5&) G~ ~ (z2/1 1 zl/2] eF)). (A5)

Note the difference in the position arguments in the above expressions.
Next, following Ref. 3, we evaluate the propagators y / in the semiclassical limit, and show that they obey a

cooperon/diffuson type diB'erential equation that is modified by the presence of the exact Zeeman term. For this
purpose we first write

G"( eF+ her) G (eF) =-
h,

COO t
i~~t'/h —iHt/h iH (t—t'}/h

a —OO

(A6)

and then express the orbital part of the transition amplitude as a Feynman path integral by formally decoupling
orbital and spin motion (for details see Ref. 3 or 16):

x(t) =x

( ~

—' /"~ ' ') — / ' o["]/"( ~7
* []/

~

')
x(O) =x

t
So[x] = dt'(-2, m]x~]' —V(x)),

0
t

Sl[x] = dt'(ex A (x) + gpI) B o -j.
0

(A7)

Here, 7 denotes time ordering with respect to the spin operator. Next, we invoke the semiclassical approximation for
this path integral,

x(t) =x
iS[x]/S, ) g[ ]

iS[x)]/rL

(o)=x'

where the sum runs over all classical paths x,~ that start at x', end at x, and make stationary the orbital part of the
action. [As mentioned above, in the semiclassical limit we can safely ignore the (nonquantal) dynamical effects of the
field-dependent terms on the orbital motion in the semiclassical limit. ] The prefactor A accounts for the inclusion
of (Gaussian) quantum fiuctuations around the classical paths. Collecting the above results and inserting them into
Eq. (A5) we obtain

OO t

(z z ~) = — dte' ' dt'e" '
~a ~2)~3~4

0 —OO

x Q ~[x ]~ [y ]
'i .[ ~ ]—.[y. ])/ (~ ~7-e* .I ~ 1/ ~~ )(~ ~7-e' .[v. ]/ ~~ )*

Xcl) Ycl

(A9)

where the paths x,) and y, ) satisfy the boundary conditions x,i(0) = zl, x,)(t) = z2, y, i(0) = Z2/l, and y, )(t —t') =
&a/a.

Next, observe that t' h/eF (( 1/w t, i.e. , t' (( t. Thus we can expand the action around t:

S,(t —t') = S,(t) + t'
[ e]x+ O(t' '), (A10)

where e)[x,i] = zm]x, i(t)~ + V(x,i(t)) (which is a constant of motion), and where we have used the Hamilton-Jacobi
equation BSo/Ot = —e&. By neglecting the t' dependence of Sl we arrive at

x.,'..,....(», »;~) = —, «~' '( ) &I»|l&')»|1&(~if&.|l —«)
0

Xcl ) Xcl

iiSo[x.)]—So[y )]l/~ (~ )7 i%[x )]/s I& L/ 17 iSI[y 1]/sl (A11)
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Note that the boundary conditions in the sums over classical paths have become x,)(0) = y, )(t) = zi and x,i(t) =
y, i(0) = zq (for y ), and x,)(0) = y, )(0) = zi and x,)(t) = y, i(t) = z2 (for y ).

Now, in Eq. (All) we retain only those paths x,) and y, i with So[x,i] = So[y,i], because they give the dominant
contribution to the sums over classical paths. In y one must take pairs of paths consisting of a path and its time-
reversed partner; in y one must take pairs of paths that are identical. The remaining sum over a single Boltzmannian
path is described as Brownian motion in terms of a Wiener path integral [see, in particular, Eqs. (4.9), (4.12), and
(6.1) of Ref. 3]. The result is

) l&I".&)I'~(«I"e) —ee) . .
)

= &
3Cci

K(t) =z2 —(i/417l Jo dv-~H. ~'
7

R.(0)=z1
(A12)

where the dots stand for appropriate phase factors. Thus we obtain

oo K(t) =z2
dte' ' 17Re ' ~" {n [7 e' ' ")(o(s){o. i7 e' ' ")o( )

R, (O) =~,
(A13)

where R (7)—:R aw + 2(1 —n)(t'+ t)I with n = —1 giving the time-reversed path associated with R+ [= R].
Next, by using Eq. (A2) for g"(, setting E = e~ and passing to Fourier space, we find that

{x~g"pgg ~x') {x~g p g" ~x') = ()), b—(» —x') rn'v~ 47r&J;7'/dh, , (A14)

where we have anticipated the fact that g )' only gives an essential contribution for ~q~ (( k~. Observe the minus
sign here, which reflects the fact that coherent back-scattering reduces the conductivity. (A plus sign would be
obtained if one of the factors on the left-hand side were replaced by its complex conjugate; such a situation arises in
the calculation of the conductance fluctuations. ) Using this result, and inserting g into b,p& we obtain

dz ) S&,S, ~~ (z z t 0),
CX1 ).. . )CX4

{A15}

where we have introduced the inverse Fourier transform of y ~ (zi, z2,'w) [:—h y (' (z2, zi, (v)/2xXp, in which we

have for convenience reversed the order of the arguments], which is explicitly given by

(z', z;t', t) =0(t' —t)
R(t') =z'

(t) =z

t'
1BR exp dT/R/4D

t'

xexp i — d7R. A R r +A R+ w
n

.gpssx o 4o2 exp z
2h,

t

de(B(R(e)) e, —H(R+(e)) e,)) eee«). (A16)

We have included the possibility of propagation through di8'erent fields (i.e., A' and A' can differ) to encompass
conductance fluctuations, for which the path and its conjugate partner generally experience different fields ' ' (see
Appendix B). Furthermore, we have used the fact that

t'

ai 7 exp i d7 B(R+(w)) . cr n2
.gpss

25
tl

0!2 exp —z l7 B R 7 0 o.'y )2h
(A17)

and thus that

~

~

t' t

n4 7exp i d~B(R(i)) . cr, o.s n, 7 exp i ChB(R+(~))
2h t

tI

feeeee 7 exp e de(B(R(e)) eee —H(R (e)) ee]I eeeeex),
.gpss

2h
(A18)

with the notation ((nso. i) = ~os) (3 ~ni). Finally, it is not difficult to see that Aqui" vanishes upon insertion of y
which simply reflects the well-known fact that the vertex corrections [diagrams (c) and (d) in Fig. 1] to the Boltzmann
value [Fig. 1(b)] give a vanishing contribution to the transport coefficient for the case of isotropic scattering considered
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here. (Consequently, the elastic scattering time and the mean free time become identical. )
The path-integral representation for y can be transformed into a differential equation, which eventually brings us

to the cooperon differential equation with the exact Zeeman term

(() . () ——[A (x') + A' (x')]

(B(x') xi —B(x') op]I i (x', x; t', t) = b(x' —x) 6(t' —r) (), (A)9)

where y (x', x; t', f) is a 4-spinor in a four-dimensional spin space. The diffuson satisfies a similar equation. Note
that this partial diIII'erential equation can be interpreted as a Schrodinger equation in imaginary time for a particle
with effective mass m = h/2D The .corresponding efFective Hamiltonian, however, is no longer Hermitian, due to the
presence of the Zeeman terms.

APPENDIX B: CQNDUCTIVITV FI UCTUATIONS

In this appendix we shall outline the calculation of the conductivity Buctuations using our scheme of combining
diagrammatic and path-integral techniques. The quantity of interest is the conductance correlator given in Eq. (4.8).
As with the case of the average conductance, the leading contribution comes from the correlator e goo; other terms
involve smaller numbers of current operators and lead to smaller powers of Fermi wave vectors; thus they can be seen
to be of higher order in 1/k~l (as we have checked explicitly). Restoring the Fermi function (to account for thermal
dephasing efFects) and using Eq. (Al) prior to disorder averaging, we then have

e'5
( x~x) =

(2 „,~ I ).
&1 ) .. ~ )&4

dKy dK3 dKy dK3 llm llm
X4~X1 x' -+x'

4 1

X HX2 3

x(h/i) (o)2 84) ((92 04 ) de de n (e) il, (e ) (G"', , (x4, xs, e/h) G ', , (x2, xi, e/h)

x G"~ (x4, x'„e'/h) G (x'„x', ; e'/h)), (B1)

where (9, = 0/gx; and n'(e) = Bn/cue, and where we have omitted higher-order terms. Note that the Green functions
depend on different magnetic fields. The four-point correlation function occurring in the above expression can now
be factorized into a number of terms, of which we retain only the contributions that pair: (i) G" with G '; and

(ii) G ' with G"' . Other pairings are either cancelled by ((r~)((r&) or involve averages of G G and/or of G"G,
which lead to smaller contributions, as they only involve terms with common analytic structure, and do not contribute
at leading order in 1/k~l. In terms of diagrams this means that we retain only the contribution shown in Fig. 2, where
the blocks A and A* can now be evaluated by the technique introduced in Appendix A. In fact, with the relation

G" (x4, xs; e'/6) = G (xs, x4; e'/h) *

the diagram in Fig. 2 translates into the following expression:

(B2)

where

e2h ).
~$ i ~ ~ ~ )~4 k fA:1

de de 'A (e) rl, (e ) I

(B3)

I = dxi . . dx4 (h/x) (o)4), 02~A)((9i

~Bshe

A*),

A = (G", , (x4, xs; e/h) G ', , (x2, x.i, e'/5) ),
where A is precisely the propagator occurring in Eq. (Al), but now with difFerent magnetic fields. We First concentrate
on the contribution coming from the retention in A and A* of diagrams (d) and (e) of Fig. 1. Denoting this contribution
by I~ we And
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I~= (nVe) f dz~. . .dze(z~~g peg ~z e)(z e~g peg ~ze)

3 g Prng 4 1 g Pmg 2 +~1~2 ~3~4 1) 4) +~1~2 ~3~4 2) 3)

+(zelg p g lzi)(zelg p g Ize)X (zl, ze;te)g (ze, ze', te) ), (B5)

where hu = e —~', the Cartesian index m is not summed, and where we have dropped the cross terms involving y
as they are of sinaller order in 1/k~l (which can be seen by going to Fourier space and estimating the available phase
space). y ~ is given in Eq. (A13).

A second contribution of the same order in 1/k~l is obtained by retaining Figs. 1(f) and l(g) in A. , while retaining
only Fig. 1(a) in A*, and vice versa. Denoting this contribution by I2 ——I2 + I2 we find

je = (nVe ) 2Re jdz~ . dze(ze~g ~z z)(z~~ gI ze)(zx~ gPeg Peg Ize')( elegP 2 P 2I
z)e

(Bo)

&e = ( V n)'2eR fde» .dze(ze~lg lze)(»~lg"~lze)(ze~lg peg"peg lzx)(ze~lg"p-2 p-g" lze)

Inserting I = Ii + I2 back into Eq. (B3) and making use of Eq. (A14), and similar relations for the other matrix
elements, we obtain

e2Dge™=
~ ~

dede'n'(e)n'(e') f dxdx'
(A~h)

x ) — Iy, (x, x';(u)l + Iy. . . , (x, x';od)I2
CX1 )...)&4

+2Re[y (x, x';le)g, , (x.', x;e)+y, , (x, x';z)g. . . (x', x;z)]l, (B8)

where we have used the relations D = v+7/d, and 2a&~n;Vz ——h/r. Up to this point the Zeeman interaction in
the cooperon/diffuson (as opposed, of course, to the averaged single Green function) has been treated exactly. We
now introduce the adiabatic approximation for the propagators occurring in the foregoing equation and thus, with
Eq. (3.9), we find

). I&.,'....-.(x x' ~)l' = ):I~.t' (x x' ~)l'
Q1 ) ~ )A4

(B9)

and similarly,

) y ~ (x, x';od) y ). . .(x', x;(u) = ) y p~ (x, x';su) y p~ (x', x;(u).
CX 1 i... i Ck 4

(B10)

It is quite remarkable that the overlap matrix elements of the instantaneous spin states disappear upon performing
the spin sums. Finally, inserting the last result back into Eq. (B8) and assuming translational invariance I'which holds
under the assumptions stated in the text before Eq. (4.2)j, we arrive at Eq. (4.9).
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