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Current-voltage relation of a normal-metal —superconductor junction
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We calculate the electrical and heat currents flowing through a narrow, mesoscopic, normal-
metal —superconductor (NS) junction containing a single point impurity. The NS junction exhibits
large subgap conduction steps in its current-voltage (I-V) relation when the impurity is located in
the normal metal. One new subgap step appears in the I-V characteristic whenever an additional
quasiparticle is trapped between the impurity and NS interface. Locating the impurity inside the
superconductor produces both an "excess current" and oscillations in the I-V characteristic anal-
ogous to the Tomasch efFect. A maximum excess current of 2eA/h, slightly less than the BeA/3h
found for a ballistic NS junction, is obtained when the impurity is located a few coherence lengths
inside the superconductor.

INTRODUCTION

The Bogoliubov —de Gennes (BdG) equationsi s de-
scribe the coupled motion of electrons and time-
reversed electrons. Coherent scattering of this quasi-
particle, &om both the superconducting "pairing po-
tential" A(x) and the ordinary electrostatic potential
V(z), produces wave interference patterns in its mo-
tion. Introducing such an "impurity" potential V(x)
into a ballistic normal-metal —superconductor or bal-
listic superconductor —normal-metal —superconductor
(SNS) junction therefore modifies the wave interference
pattern of the quasiparticles in these junctions, chang-
ing the current-voltage (I V) and/or c-urrent-phase (IP)-
characteristics of the junction. For example, an impurity
in the SNS junction forces quasiparticles in the normal
region to form standing waves near P = m, opening gaps
in the energy-phase relationship and suppressing the
critical current of the Josephson junction.

An impurity also modifies the current-voltage relation
of an NS junction. Blonder, Tinkham, and Klap-
wijk (BTK) demonstrated that a tunnel barrier, lo-
cated at the NS interface, produces an I-V characteristic
which interpolates smoothly between the tunnel junction
("dirty") and ballistic junction ("clean" ) limits. [The
same electrostatic potential V(x) can represent disorder,
an insulating barrier (I), or a tunnel barrier. ] We adopt
the model and formalism of Ref. 3, but extend the calcu-
lation by allowing the impurity to exist anywhere inside
the normal metal or superconductor. We assume that
the superconducting order parameter is not degraded by
either the impurity or the normal metal, and thus ne-
glect the proximity eKect. We also neglect the charge
imbalance generated by quasiparticles entering the su-
perconductor.

When the impurity is located inside the normal
metal, forming a normal-metal —impurity normal-metal—
superconductor (NINS) junction, the multiple Andreev
reflections &om the NS interface and normal reflections
&om the impurity produce long-lived quasibound states

inside the normal metal. These bound states give rise
to sharp transmission resonances for energies inside the
superconducting gap and to corresponding steps in the
current-voltage relation for eV & L. The subgap current
carried by the quasibound states is large, of the same or-
der of magnitude as the normal tunneling current. These
quasibound quasiparticle states can also be observed in
scanning tunneling microscope (STM) experiments.

When the impurity is located inside the superconduc-
tor, producing a normal-metal —superconductor impurity
superconductor (NSIS) geometry, a substantial "excess
current" appears in the I-V characteristic for eV )) L.
Quasiparticles having energies outside the superconduct-
ing gap can no longer contribute significantly to the ex-
cess current I, in an NSIS geometry, so that I „, is
smaller in an NSIS junction than for a ballistic NS junc-
tion. In addition to this excess current, the multiple
reflections of waves between the NS interface and the
impurity also produce quasibound states inside the su-
perconductor. The quasibound states in an NSIS junc-
tion only form outside the superconducting gap and are
very short-lived because the Andreev reflection probabil-
ity outside the gap is small. These weak transmission
resonances produce correspondingly weak oscillations in
the I-V curve for eV & L, analogous to the Tomasch
erect. "

Finally, we develop a transmission formalism to de-
scribe the heat current in NS junctions. Andreev reflec-
tion reduces the electronic entropy flowing into a super-
conductor, suppressing the heat current carried by the
quasiparticles. For energies inside the superconducting
gap, where the Andreev reflection is perfect, we show
that no heat flows into the superconductor.

I. CURRENT-VOLTAGE CHARACTERISTICS

We solve for the motion of the quasiparticles using the
BdG equation
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so that we ignore the proximity efFect. We disorder the
SN junction by placing a point impurity anywhere along
the x-axis, namely

FIG. 2. Differential conductance for a NINS geometry,
formed when the impurity resides in the normal metal
(L = 100 nm). Each subgap (eV ( A) transmission reso-
nance corresponds to an additional quasiparticle trapped be-
tween the impurity and superconductor.

V(x) = V;b(x —a). (4)

26
[f (E —«) —fs(E)l6
x [I —R, (E) + Rh, (E)]dE .

We review the derivation of Eq. (5) in Appendix C.
Figure 2 shows the differential conductance dI/dV

from Eq. (6) when the impurity is located in the nor-
mal metal. Large subgap transmission resonances hav-
ing height 4e2/6, twice the value of the quantized ballistic

Dirty NS Junction

NORMAL
METAL

SUPER-
CONDUCTO

V(x)

X

FIG. 1. Impurity potential V(x) and pair potential A(x)
used in this calculation. The point defect V(x) can be located
either in the superconductor or normal conductor.

The geometry corresponding to the potentials A(x) and
V(x) is shown in Fig. l.

To calculate the current voltage relationship of the SN
junction, we use the formalism of BTK. We obtain the
Andreev reflection probability Rh, (E) and normal reHec-
tion probability R, (E) using a scattering matrix tech-
nique described in Appendix A. The energy dependence
of R, (E) and Rh (E) is discussed in Appendix B.The IV-
characteristic is then found from

conductance, are observed in dI/dV. Appendix B shows
that there are approximately (2I /(a) of these subgap res-
onances, where L = ~a~ is the extent of the normal region
and (a ——hv~/2A is the Cooper pair size. An additional
resonance therefore appears whenever the size of the nor-
mal region increases by a pair distance. The resonance
width hV in voltage is approximately ebV v+Th/4L,
where T = 1 —B is the normal state transmission prob-
ability through the insulator.

The same dI/dV characteristic shown in Fig. 2 should
be observable in STM experiments, for tunneling through
a normal metal droplet on a superconductor. The
droplet must have a radius larger than the Cooper pair
size (o to form the quasibound states. Only weak reso-
nances in the dI/dV characteristic have been observed in
STM experiments to date, presumably because electrons
are tunneling into a two-dimensional film rather than a
zero-dimensional droplet, and also due to the roughness
of the normal metal film.

If the NINS structure is formed in a two-dimensional
semiconductor layer, as is possible on InAs, no such res-
onant transmission (as shown in Fig. 2) should appear in
the conductance (I/V) versus Fermi energy p. For a nor-
mal conductor, dI/dV versus V and I/V versus p show
similar behavior. However, the resonant states formed
inside the superconducting gap move with the Fermi en-
ergy and are not probed by conduction when V 0. The
resonant states can be probed by a finite temperature.

Figure 3 shows the I-V characteristic, computed from
Eq. (5), when the impurity is (a) in the normal metal
and (b) inside the superconductor. The usual I Vchar--
acteristic for a tunnel junction is obtained when the im-
purity is at the NS interface (L = 0) in Fig. 3(a). As
we move the impurity away &om the NS interface, sharp
current steps appear in Fig. 3(a). These current steps
again arise from quasibound states trapped between the
impurity and the superconductor.

Subgap conduction due to the quasibound levels in
Fig. 3(a) is substantial, having the same order of mag-
nitude as the normal state tunneling current. This can
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be reasoned as follows: The current carried by a single
quasibound state is (2e/h) f (1 —R, + Rg) dE, integrated
over the resonance. The integral is approximately equal
to the resonance width bE. Multiplying the number of
resonances inside the gap times the current carried by
each resonance gives the current flowing when the volt-
age is eV = 4 as

I (2e/h)(v~Th/4L)(2L/(a) = (2e/h)TA, (6)

approximately the same current as through a normal tun-
nel junction normal-metal —insulator normal metal (NIN).
The electrical current through a normal-metal —insulator
superconductor (NIS) tunnel junction near eV = A can
thus be viewed as flowing through a single quasibound
level near the gap edge.

Figure 3(b) shows the I Vrelationship -when the impu-
rity is located in the superconductor. The main feature
of Fig. 3(b) is the large increase in current as we move
the scatterer further into the superconductor. When the
impurity is at the NS interface, we obtain the usual "tun-
nel junction" I Vcharacteristic (lowest cu-rrent). The
largest current in Fig. 3(b) is for a ballistic NS junction,

1 2
Voltage eV/6

FIG. 3. Current-voltage characteristics of the SN junction
when the impurity is (a) in the normal metal and (b) inside
the superconductor. A large subgap current, due to conduc-
tion through resonant quasiparticle states, Qows when the im-
purity is located in the normal metal. When the impurity is
several coherence lengths inside the superconductor, the cur-
rent reaches its ballistic value for eV ( A, but is limited by
re6ections from the impurity when eV ) A.

where the impurity strength Z = V;/hv~ = 0. When the
impurity is well inside the superconductor (L )) (o), we
recover the I-V characteristic for a clean NS junction for
voltages eV ( A. This is due to conversion of the inci-
dent quasiparticle current to a supercurrent for E ( L.
However, for E ) 4, this current conversion process is
no longer efFective, so that the current becomes limited
by the impurity.

Due to this lack of current conversion outside the en-
ergy gap, the I-V curve for an NSIS junction at large
voltages (eV )) 4) has approximately the slope as the
NIS or NIN tunnel junction I-V curve. In a clean NS
junction, the excess current is composed of a contribution
2eA/h, from states inside the energy gap and an amount
2eA/3h from states outside the energy gap. Placing
a strong impurity in the superconductor eliminates the
contribution from states outside the energy gap, reduc-
ing the excess current from 8eA/3h to approximately
2eA/6 for an NSIS junction. (This conclusion holds only
when the impurity is well inside the superconductor, i.e. ,
L»(a. )

When the impurity in an NSIS junction is less than a
Cooper pair distance inside the superconductor (L & (p),
not all of the quasiparticle current is converted to super-
current before reaching the impurity. The resulting I-V
characteristic is intermediate between the tunnel junc-
tion (NIS) and NSIS junction having L & (a. Figure 3(b)
shows that the excess current is now smaller than 2eA/6
and the I-V characteristic no longer clearly displays the
energy gap (L = 10 nm).

In our calculation, the I-V characteristic of the NSIS
junction will always approach the result for a ballistic NS
junction at low voltages when the impurity is well inside
the superconductor, i.e. , eV & 4 and L )) (o, regardless
of the impurity strength. This counterintuitive result
arises because we neglect the self-consistency condition
for the order parameter. If the impurity is located in
a narrow superconducting channel, it may be possible to
depress the superconducting order parameter locally near
the defect. In that case, some of the supercurrent will be
converted back into normal current, and reflection from
the impurity will again become efFective. Thus, the BdG
equations can be made to describe the standard "proxim-
ity efFect" type of superconducting weak link. However,
if the impurity is located inside the wide superconduct-
ing banks shown in Fig. 1, or if the order parameter is
otherwise dificult to suppress, our calculation remains
valid. "

II. HEAT CURRENT IN AN NS JUNCTION

The Andreev reflection process limits the electronic en-
tropy which can flow into a superconductor. Consider
an electron incident on a superconductor inside its energy
gap, carrying with it a given entropy current. To com-
pensate for this entropy current attempting to flow into
the superconductor, the superconductor ejects an equal
amount of entropy current flowing in the opposite direc-
tion in the form of a hole. No net particle current, and
therefore no net entropy current, can enter the super-
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conductor. Unless an electron tries to transmit into the
superconductor outside its energy gap, where it can enter
the superconductor as a quasielectron, the superconduc-
tor does not permit its electronic entropy to increase. It is
necessary that Andreev reflections limit the entropy Bow
into a superconductor, since a supercurrent itself carries
no entropy, and since Andreev reflections inside the su-
perconducting energy gap are the same as the motion of
a Cooper pair.

The amount of entropy current and heat current car-
ried by the quasiparticles can be computed in exactly
the same way as for normal electrons in mesoscopic
conductor. The needed formalism, developed by Sivan
and Imry, can be understood using the electron wave
packet picture of Martin and Landauer. Electron wave
packets Bowing out of a thermodynamic reservoir are in-
terspersed with the absence of such packets at Rnite tem-
perature. The entropy Bow out of the reservoir is given
by the logarithm of the number of different ways to ar-
range these packets. We modify the formalism of Ref. 22
to apply to an NS interface in Appendix D.

In the linear response limit, when the temperature dif-
ference and voltage difference between the two contacts
are small compared to the average temperature, we Gnd
a heat current I~ of

OO

(E v) [f~(—E V) ——f~(E)l
h

x [1 —R (E) —Rh, (E)]dE .

The average electrochemical potential p is determined
by P, = (p, g + p~)/2 = eV/2. The factor [1 —R, (E)—
Rh, (E)] in the integrand of Eq. (7) suppresses the heat
current relative to a normal junction, just as the factor
[1—R, (E)+ Rh, (E)] in the integrand of Eq. (5) enhances
the electrical current relative to a normal junction. The
factor [1—R, (E) Rh (E)] in Eq—. (7) is proportional to the
particle current j~, while the factor [1—R, (E)+Rh, (E)]
in Eq. (5) is proportional to the electrical current Jg.
We analyze the thermoelectric consequences of Eqs. (7)
and (5) for the linear response limit in Appendix D.

Another interesting limit of transport is the nonlinear
regime, where the bias voltage is large compared either to
the average temperature or to the temperature difference
between the contacts. An important quantity for heat
Bow in the nonlinear transport regime is the entropy S~
generated by scattering at a barrier, namely

+gy = &a[TInT+ R»—R] (8)

eV
IQ 2TQ Sg

where T~ ——Ts is the temperature of either contact. In
this nonlinear regime of transport, only a small amount of
entropy flows into the conductor at the Fermi energy from
either contact, but a large amount of entropy and heat
flow back into either contact due to entropy generation

For the normal state transmission problem, the heat cur-
rent flowing into either contact at large bias is approxi-
mately

Klc
Q ZI—

o ~
Q
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FIG. 4. Heat current Iiow in an NINS junction (having
L = 100 nm) compared to the heat current flow in the nor-
mal state (NIN). Heat currents are completely suppressed by
Andreev reflections inside the superconducting gap, produc-
ing a heat current deficit for eV )) A.

by the scattering obstacle. Equations (8) and (9) also
follow from the analysis in Appendix D.

Figure 4 shows the heat current Bowing into either con-
tact in the nonlinear transport regime, normalized to that
of Eq. (9). For normal contacts (NIN), the heat current
closely follows Eq. (9). However, for the NINS junction a
heat current deflcit is evident at large voltages. This heat
current deficit is simply Eq. (9) evaluated at eV = 4,
so that heat currents Bowing inside the superconducting
energy gap are completely suppressed. The small oscil-
lations in the heat current for the NINS case arise from
wave interference of the quasiparticles in the normal re-
gion. The heat current Bows in Fig. 4 and Appendix D
are only the thermoelectric components, and have noth-
ing to do with Joule heating.

III. CONCLUSIONS

The tunneling Hamiltonian method explains the non-
linear I-V of an NIS junction by noting that, since there
are no quasiparticle states available inside the supercon-
ducting energy gap, no current can tunnel into the su-
perconductor. This type of reasoning breaks down for
the ballistic NS junction, since the electrical current sim-
ply Bows into the superconducting gap and is converted
to a Cooper pair. Our calculation provides a different
perspective to explain the nonlinear I-V of an NIS tun-
nel junction. The tunnel junction carries little current
at low voltages, eV ( ~A~, because there are no resonant
energy levels available to support the flow of quasiparti-
cles. Since the insulating barrier is located directly at the
NS interface in a tunnel junction, the lowest energy qua-
sibound state occurs at E = L. Therefore, the smallest
voltage at which electrical current can flow is eV = L.
The superconducting tunnel junction conducts primarily
through a resonant state at the gap edge near eV
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so that the nonlinear I-V characteristic of an NIS tunnel
junction (Giaever tunneling) must itself be considered a
mesoscopic phenomenon.

If we move the tunnel barrier away from the NS in-
terface, forming a NINS junction, a resonant Andreev
level can exist between the impurity and superconductor
for energies E ( lAl. The electrical current is carried
through these resonances when eV & 4, producing a
new subgap step in the I-V characteristic whenever an
additional quasiparticle can fit resonantly between the
tunnel barrier and the NS interface. The total electri-
cal current carried by the quasibound states in an NIS
or NINS junction is approximately equal to the normal
state tunneling current at eV = A, namely I = eAT/h.
These quasibound levels therefore carry a sizeable elec-
trical current.

For energies outside the superconducting gap, no res-
onance condition need be enforced in order for electri-
cal current to How in an NIS or NINS junction. This is
because the superconductor no longer strongly confines
electronic states outside its gap. A scattering state inside
the superconductor can then simply carry the quasiparti-
cles away from the NS junction when E ) lAl, permitting
good electrical conduction when eV ) lAl. The electri-
cal current per unit energy carried. by scattering states
outside the energy gap is approximately the same as for
a normal conductor. Combining the scattering state cur-
rent and bound state current gives approximately the
same total current in an NINS junction as for a normal
(NIN) tunnel junction when eV & Z. We find, however,
that the "gap edge" in the I-V curve near eV = L can
be somewhat blurred if the impurity is not located ex-
actly at the NS interface. One cannot accurately infer
the superconducting gap by tunneling measurements in
that case.

Our calculation gives further insight into the conver-
sion of normal current to supercurrent in a dirty su-
perconductor or NSIS junction. Incident quasiparticle
currents are only converted to supercurrents (when the
source term in the BdG conservation laws is the only
mechanism available for such conversion) for energies in-
side the superconducting gap. Outside the gap, the inci-
dent quasiparticle currents remain as quasiparticle cur-
rents and are not converted to a supercurrent. This lack
of current conversion outside the gap is observed in the
I-V characteristic of an NSIS junction if the impurity
is several Cooper pair distances inside the superconduc-
tor. In such an NSIS junction, the electrical current
for eV ( A approaches that of a ballistic NS junction,
while the difFerential conductance dI/dV for eV & A ap-
proaches that of the normal tunnel junction (NIN). The
excess current is then limited to approximately 2eA/6
for such a dirty superconductor or NSIS junction.

Although Andreev reflections enhance the electrical
current at an NS interface, they suppress the electronic
entropy fIow and heat How into the superconductor. A
corresponding heat current deficit appears at large volt-
ages in the NINS junction. The transmission formalism
we used to calculate the thermoelectric properties of the
NIS junction can be applied to many other thermoelec-
tric transport properties of superconductors.
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AP PENDIX A: PARTICLE CURRENT
SCATTERING MATRIX

The particle current Jp and electrical current Jg are
determined from Eq. (I), as Eq. (I) embodies the two
conservation laws '

BPV JJ + =0
Bt (AI)

and

V.Jg+ = S.BQ
Bt (A2)

Here P is the density of both ordinary and time-reversed
particles

&(x) = lu(*)I'+ lv(*)l' (A3)

and is coupled to the conserved particle current J~,
where

J~(x) = —Im (u(x)*[Vu(x)] —v(x)*[V'v(x)] j . (A4)
m

Q is the density of particles relevant to electronic trans-
port, namely the particle density minus the density of
time-reversed particles

Q(x)/e = lu(*) I' —lv(x) I' . (A5)

The efFective transport charge density Q is coupled to an
electrical current Jg, with

eh
JQ(x) = —Im(u(x)*['7u(x)]+ v(x)*[«(x)]) («)

The source term S has the form

4e
~( ) = —™[u(x)*&( ) (*)] .

h
(A7)

b+
a

t r' a+
r t' b

(As)

We use a scattering matrix technique to obtain the
particle current amplitude j~ everywhere, and hence the
particle current J~ ——j&j~. As in Fig. 1 of Ref. 18, let
a denote the particle current amplitudes to the left of
the scattering obstacle and b denote those to the right.
We wish to calculate the scattering matrix S which con-
nects the incoming particle current amplitudes a+ and
b to the outgoing particle current amplitudes b+ and
a according to
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The 6+, a, a+, and 6 are two component column vec-
tors. The upper component is the amplitude for electron-
like particles and the lower component is the amplitude
of the holelike (time-reversed) particles. The matrix el-
ements t, t', r, and r' are each themselves 2 x 2 matri-
ces. Diagonal elements of the submatrices t, t', r, and r'
correspond to normal reflection and transmission, while
off-diagonal elements correspond to Andreev reflections
or transmission with branch crossing.

The individual scattering matrices for the different re-
gions are found using the BdG equations. Let k be the
wave vector inside the normal metal

and

t = v'lu I' —lvol'

2 2up —Vp

up —Vp

e
—ip

up

0
up

ei@

up
1

0
up

(A13)

(p, +E) (A9) Vp

up

Vp e'
up

0
up

up
0

. (A14)

and q the wave vector inside the superconductor Here P is the phase of the superconducting order param-
eter. The up and vp are standard "coherence" factors

p+ E2 Q 2 (Alo)

To match the wave function and its derivative every-
where, we use Andreev's approximation that all wave
vectors are approximately equal. This approximation is
valid when p )) L. We therefore take q+ q k+
k except in an exponent.

For the impurity potential V(x) we find the scattering
matrices

and

v'z
up —— — 1+

2
~

E

&E2 —l~l21

(A15)

(A16)

1 +zz
0

—iz
1+iZ

1 —iZ

iz
1 —ZZ

(Al 1)

The scattering matrix for the electrical current amplitude
jg, where the electrical current is Jg ——jjg, can be
obtained by sending gluol —lvol m gluol + lvol in
Eq. (A13).

The overall scattering matrix S is obtained by combin-
ing the scattering matrices of each successive region

S=S,gS2g S3 (A17)

The symbol denotes combining the scattering matrices
according to their compostion law. If S = Si S2, then

where Z is the dimensionless barrier strength Z
V, /hv~. The normal state transmission coeKcient T re-
lated to Z by T = 1 —R = 1/(1 + Z ). Equation (All)
holds when the impurity is located in either the normal
metal or superconductor.

For a region of free propagation in the normal metal
we have

t = t, [I —r', r, ]

I —1r —ri + tir2 [I —rir2] tl
&

t' = t, I+r2 [I —rir2] ri

(A19)

(A20)

ik+ L 0
—ik L

0 0
0 0

(A12)

where L ) 0 is the size of the region. To describe a re-
gion of free propagation in the superconductor we replace
k+ ~ q+ and k -+ q in Eq. (A12).

The scattering matrix for the NS interface is

r = r2+ t2 [I —rir2] r', t2 . (A21)

Let the transmission probability for the quasiparticle
current J~ of an electron incident from the normal con-
ductor onto the superconductor be T for normal trans-
mission, R for normal reflection, By, for Andreev re-
flection, and Ty, for transmission with branch crossing.
Then let T', B'„By„and Ty', denote same quantities
for a quasielectron incident from the superconductor.
Equations (A17)—(A21) then determine the needed par-
ticle current transmission and reflection coeKcients from
Re +e+e & BQ pg py ~ Te —~e~e &

and Th, = &hth. We
find that the detailed balancing condition T, = T,' and
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scattering potential. When the impurity is in the normal
metal, Eq. (A26) requires

Z vp

( 1+Z') &up)
2

2i(k+ —k )I
d (1+iZ) (up)

(A22) while Eq. (A31) enforces

Th ——T& holds. Further, the S matrices are unitary so
that 1 = B, + Bh + T. + Th. and 1 = B.' + B'„+T,' + T„'.

When the impurity is in the normal metal, we find
from Eqs. (A17)—(A21)

iP i(k+——k )I
d pup) (1+Z

(Qlupl2 —lvpl2) r' e '4'e*k+~ 5

d ) (up(1+ iZ) )

(Q~ve~e —~ve~el t'ver t' e '~e'"+

)d ) (up) (up(1 + zZ)

( zZ

(1 —iZ)

(A23)

(A24)

(A25)

I

—'I e"'+ '-"=1
&1+ Z'

& )
(A33)

when the impurity is in the superconductor. A complex
energy E = ER + iEI is required to solve Eq. (A32)
and (A33), where ER is the energy of the resonance and
h/lEIl its lifetime. The left-hand sides of Eqs. (A32) and
(A33) can be interpreted as the product of probability
amplitudes for an electron moving &om the impurity to
the NS interface, Andreev reHecting as a hole, the hole re-
turning to the impurity, normally reHecting, propagating
back the NS interface, Andreev reHecting as an electron,
returning again to the impurity, and normally reHecting
as an electron.

2(k —k )I
&1+ Z ) (up)

(A26)

APPENDIX B: TRANSMISSION COEFFICIENTS

—iZ ) vpb
' e"&+~

ql+iZ) up) d

Z2

(.1+Z') . & ~ ) (, dr

(A28)

Results similar to Eqs. (A22) —(A26) were obtained in
Refs. 4 and 5.

A calculation analogous to Eqs. (A22) —(A26) can be
performed when the impurity resides inside the super-
conductor. Equations (A17)—(A21) then give

2zrin lnB+ 2i cos ([ER+iEI]/4)
+2z(lER+ zEII/&)(Ll&p) . (Bl)

For opaque barriers having B 1, we find the positions
ER of the bound levels are approximately determined by

We graph the transmission and reHection coefFicients
for the particle currents J~ in Fig. 5. The electron energy
is measured. relative to the Fermi energy in the supercon-
ductor. In Fig. 5(a), the impurity is located in the normal
metal. The Andreev reHection probability Bh shows res-
onant peaks inside the superconducting gap (E ( 4),
while the normal reHection probabilty B, is suppressed
near these resonances. The resonances are well described
by Eq. (A32), which requires

v'lupi' —lvpl' & e ' e"+' &

d (up(1+ iZ) )
(A29)

, (E ) 62I ) (E
2 cos +

)
2zrni&) & )&& (B2)

v ) (e '4'e "-v)
d '( up) ( up(l —iZ)
iZ )—

x e '~+
pl+ iZ) (A30)

(1 + Z') (, up)
(A31)

A quasibound state is defined as a complex energy pole
of the current transmission amplitude. Setting d = 0 in
Eqs. (A26) and (A31) determines these poles and there-
fore determines the bound and quasibound states of the

while the leakage rate 2EI/5 is set approximately as

2EIL = lnB —T.

Note that EI ( 0, as required for the linear system to be
stable.

Equation (82) is similar to the condition for Andreev
bound levels in an SNS junction, except that the An-
dreev bound levels in the NS junction are leaky. The
width of the transmission resonances is limited by the
partial leakage through the impurity, so the resonance
lifetime is approximately h/2lEIl 21/V~T. For larger
values of L more resonances appear in the Andreev re-
Hection, approximately one new resonance whenever L
increases by (p.
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We can now explain Fig. 5(a) qualitatively. In a clean
NS junction, only Andreev reflection occurs inside the
superconducting energy gap. In the NINS junction, An-
dreev reflection occurs inside the energy gap only if the
resonance condition (A32) is met. On resonance, the
scattering potential can accommodate a new quasiparti-
cle between the impurity and superconductor. An elec-
tron can then reach the superconductor and reflect as a
hole. If the resonance condition (A32) is not met, no
waves can propagate to the superconductor, and elec-
trons mostly reflect as electrons inside the energy gap.

2ERL
A(p

(B4)

Outside the energy gap there is little Andreev reflection,
so that no resonance condition is strongly enforced. In-
cident electrons then either transmit or reflect mostly as
electrons, according to their corresponding probability
for doing so in the normal state.

Some weaker resonances in Bh outside the supercon-
ducting energy gap are also visible in Fig. 5(a). For an
energy ER near the gap edge, and for a long junction
having L )) (p, we find the approximate poles of the
transmission amplitude at an energy E = ER+ iEI, with

1.0
and a resonance width ~EI~ determined from

EIL in(BB ) .
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FIG. 5. Transmission coefficients versus energy, when the

impurity is (a) in the normal metal (L = 100 nm), (b) at the
SN interface (L = 0 nm), and (c) inside the superconductor
(L = 100 nm). The oscillating transmission arises from guasi-
bound states forming between the impurity and SN interface.

Here B = ~vp/vp~ is the Andreev reflection probability
of the clean NS junction, evaluated at E = ER. The
large width of the transmission resonances outside the
superconducting gap in Fig. 5(a) is not due to a very
transmissive impurity, but is instead due to the relatively
weak Andreev reHection probability B outside the su-
perconducting gap. Even though the potential barrier
may be effective at confining an electron, the pair po-
tential discontinuity is no longer effective at confining
the electron, increasing the resonance width to approxi-
mately 2~El~ hvar(T+ 1 —R )/2L near the gap edge.
Since the Andreev reflection probability B continually
decreases as the electron energy moves further outside
the gap, the resonances eventually disappear at large en-
ergy. These weak resonances outside the superconducting
gap carry the "continuum" contribution to the Josephson
current in a long SNS junction.

When the impurity is located exactly at the NS inter-
face, as in Fig. 5(b), the transmission coefficients show
a single Andreev resonance at the energy gap of the
superconductor. This single quasibound state has the
same origin as the single bound state responsible for the
discretization of the supercurrent in a quantum point
contact, i.e. , Eq. (B2) with L = 0 is similar to the
point contact bound states. At least one bound state is
always possible because the wave functions have a finite
decay length ((E) inside the superconductor, producing
an efFective potential well of size ((E) = (pA/QE2 —42.

As we move the impurity inside the superconductor,
corresponding to Fig. 5(c), Andreev reflections inside
the superconducting gap begin to increase while the nor-
mal reflections decrease. In Fig. 5(c), for example, elec-
tron reflection B inside energy gap is negligible, while
Ag 1. This change is due to the conversion of nor-
rnal current to supercurrent within a length ((E) of the
NS interface. By the time the impurity is several (p in-
side the superconductor, essentially all the quasiparticle
(normal) current is converted to a supercurrent before it
reaches the impurity. As in Fig. 5(c), normal reflections
inside the gap are then completely suppressed. The im-
purity is therefore essentially absent for electrons incident
inside the superconducting gap.
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L
ln(BB ) + 2i g(ER + iEI)2 I+l = 2vrin . (B6)L p

We find the resonances at an energy ER

~a ——I&II'+ (~ ) (~h)'

and a resonance width lEI l
determined from

(B7)

2

2E~ ( L )
These same resonances were previously observed in the
Tomasch effect.

However, for electrons incident on the superconduc-
tor outside the gap, normal reBections from the impurity
are effective, no matter how far the impurity is removed
from the NS interface. This is because conversion from
quasiparticle current to supercurrent is no longer effec-
tive outside the superconducting gap. The source term S
in the BdG electrical current conservation law, Eq. (A7),
is either zero or oscillates as a function of position. The
integral —I S(x)dx—:Jg, which converts quasiparticle
electrical currents Jg to supercurrents Js, therefore gives
no net current conversion outside the gap. Electrical cur-
rents carried outside the superconducting energy gap (for
particles incident on the superconductor from the normal
metal) are therefore purely quasiparticle currents and can
be reBected by a scattering obstacle.

Oscillations in the transmission coeKcients above the
gap also begin to appear when the impurity is several

inside the superconductor, as in Fig. 5(c). These
oscillations again arise from quasibound states inside
the superconductor, found from the complex energy
poles of Eq. (A33). Using the equality q+ —q

kz(QE2 —lAl2/p), the required condition is

E ( —A. ) The particle current per unit energy flow-
ing from the normal side is

+(
luol')

(Cl)

and the electrical current per unit energy is

2

J (E)N~+(E) =
l
1+ (C2)

The normal density of states for rightmoving electrons is
N~(E) = 1/v~6. In contrast, the particle and electrical
current per unit energy Bowing from the superconducting
side are

v 2

eJ~ (E)N~ (E) = Jc (E)Ns (E) = —
l

1—

(C3)

The density of states for leftmoving quasiparticles in the
superconductor is N& (E) =

1/vugh(luol

—lvol ).
Equations. (Cl)—(C3) show the detailed balance of the

quasiparticle current J~ and the detailed imbalance of
the electrical current Jg. Similar diKculties arise for the
NINS and NSIS junctions. The incident wave functions in
both the normal metal and superconductor have a nor-
malization P = 1, i.e. , one quasiparticle per available
state. Changing the normalization of the states cannot
bring both the quasiparticle and electrical current into
detailed balance. One should be able to derive Eq. (5)
of BTK (Ref. 3) from an electrical current transmission
approach, but we have been unable to do so. Equa-
tion (7) for the heat flow we have obtained from a trans-
mission formalism.

APPENDIX C: ELECTRICAL CURRENT
BALANCE

APPENDIX D: THERMOELECTRIC HEAT
CURRENTS

Equation (5) implies detailed balance for the electri-
cal current in an SN junction, i.e., it requires electrical
current balance at each individual energy. BTK (Ref. 3)
used a transmission formalism to compute the electrical
current due to quasiparticles incident from the normal
side of the NS junction. BTK then effectively invoked
time-reversal symmetry to obtain Eq. (5), i.e. , they im-
plicitly assumed detailed electrical current balance holds
at each individual energy. However, the transmission for-
malism of van Wees, I enssen, and Harmans allows us
to actually compute the electrical current carried by the
quasiparticles incident from the superconducting side of
the NS junction. After performing this calculation, we in-
deed find detailed balance for the particle current, but
not for the electrical current.

Consider the simplest case of a ballistic NS junction
(Z = 0). We also limit the discussion to E ) A. (In-
terchange lvol and luol to extend the discussion to

We modify the entropy current formalism of Sivan and
Imry to apply to the NS boundary. To do this, we re-
gard the electronlike and holelike particles as two phys-
ically distinct 'channels" and sum their contribution to
the entropy flow. (One must divide the total entropy
Bow by a factor of 2 at the end of the calculation to com-
pensate for overcounting the total number of states in
the conductor. ) Both electrons and holes incident from
the normal side are taken to be in equilibrium with the
Fermi occupation factor f~ for the normal metal reser-
voir, while those injected from the superconductor are
distributed in energy according to the Fermi factor fs

The total entropy Bowing out of the normal reservoir
is therefore

~N"' = k~ [f~ » f~ + (1 ——f~)»(1 —f~)I (»)
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The entropy associated with quasiparticles flowing back into the normal contact is

Sg/( kz—) = [(R, + Rh) fzv + (T,' + Th) fs] ln [(R, + Rz) f~ + (T,' + Th) fs] + [1 —(R, + Rh) fiv —(T,' + Th) fs]
x ln [1 —(R, + Rh, )ftv —(T,' + Th) fs] . (D2)

The net heat current III N flowing out of the normal reservoir is then, including spin,

,„az
IH, N —2TN

TN is the temperature of the normal contact.
Computation of the entropy and heat current flowing into the superconductor proceeds in the same fashion. The

entropy carried by quasiparticles flowing out of the superconductor is

~s"' = —ka [fs»fs+ (1 —fs)»(1 —fs)] . (D4)

Quasiparticles flowing back into the superconductor carry an entropy

~s/( ka) = [(R', + Rh)fs+ (T + &h)fN]ln[(R +Rt, )fs + (T + Th)fN]+ [1 —(R', + Rh)fs —(T + Th) fN]
x in [1 —(R', + Rh) fs —(T, + Th, ) fthm] (D5)

The total heat current IH s flowing into the supercon-
ducting reservoir is then

2c
h

( df
(1 —R, + Rh) dE „T)

dE, (Do)

—Ia,s = 2&s gout ginS S (D6)

I = GV+ L(ET) (D7)

and

Ia - GaV+ LH(ET) . (DS)

The linear response coefficients G, L, G~, and I~ are

Equations (Dl)—(D6) can be evaluated in the linear
response regime. Take the average temperature T as T =
(Ts + T~)/2 and the average electrochemical potential tt
as p = (ps + ptv)/2 = eV/2. The temperature difFerence
is AT = TN —Ts and electrochemical potential difference
is Ap = pN —ps ——eV. The Fermi factors can be
written as tv = f + Af and fs = f —Af, where f
is the average Fermi distribution set by p and T. The
essential approximation for the linear response regime is
that Kf &( f, which holds if T » AT, k~T && eV,
and p » T. Linearizing either Eq. (D3) or Eq. (D6) in
6f, we find I~ iv = IH s = I~ gi—ven by Eq. (7). The
electrical current is still found f'rom Eq. (5).

For small voltage di8'erences V and small temperature
difFerences DT, Eqs. (5) and (7) can be cast into the Form

1 2c
L = =— (1 —R, + Rg)(E —P,)T h, dE „- T)

dE,

(D1O)

2c
GIt = — (1 —R, —Rt, )(E —p)6 ~T)

(D11)

=12L~ = = — (1 —R, —Rh)(E —p, ) 1

—
~
dE,Th .T)
(D12)

analogous to Ref. 22. G and L are enhanced relative to
the normal state, while GH and LH are strongly sup-
pressed. The thermal conductivity LII in Eq. (D12) can
be evaluated for any type of scattering potential, includ-
ing the problem of thermal conduction in the type-I inter-
mediate state of a superconductor originally studied by
Andreev. A transmission calculation of the heat flow,
analogous to the one in this appendix, can also be per-
formed for a Josephson junction.
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