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Based on the Chem-Simons gauge theory of the planar electrons together with the lowest-Landau-
level projection, we analyze the dynamical mechanism of a Josephson eKect predicted recently in
a double-layer quantum Hall (QH) system. It is shown that a Goldstone mode exists in a certain
double-layer QH system and that the mode induces the Josephsou effect through a weak iuterlayer
tunneling.

I. INTRODUCTION

Statistical transmutation is an intrinsic property to the
planar system, ' which leads to a remarkable possibility
that in the presence of an external magnetic field an elec-
tron can be turned into a boson by making an electron-
flux composite (bosonized electron) and condensed. It is
widely believed that the quantum Hall (QH) state is in-
deed such a condensed state of bosonized electrons which
forms an incompressible liquid. The peculiarity is that
the condensate must carry the charge —e of the electron,
in clear contrast, with the charge —2e of the Cooper pair
in a superconductor. An intriguing problem is how to
verify such a condensation of unpaired electrons experi-
mentally. Recently, for its verification we have proposed
one definite experimental test with some numerical con-
ditions to realize it using a Josephson effect in a double-
layer QH system.

It has been argued that in a certain double-layer QH
system there is a Goldstone mode associated with the
conservation of the electron number difference between
the two layers. Because of this fact one naturally antic-
ipates the Josephson effect in this system. However, it
is very difficult to make a precise formulation (or predic-
tion) of the Josephson effect without using a bosonic field
describing the coherent phase of the condensate. In the
case of a superconductor the essence of the Josephson ef-
fect is that the coherent current is induced by the phase
difference of the two condensates (Cooper pairs). Hence,
in proposing a mechanism of the Josephson effect in the
QH system, it is essential to identify what is the conden-
sate and to show that the current is actually induced by
the coherent tunneling of the condensate.

So far there are two different approaches to this prob-
lem. In the scenario of Wen and Zee the tunneling is
treated in a dilute-gas approximation of instantons (mag-
netic monopoles). Their effective Lagrangian, appropri-
ate only for long-range properties of the system, does not
contain any variable representing the condensate in the
QH state. Thus, a bosonic field is introduced so as to

reproduce the Coulomb interaction between instantons,
and it is claimed that this field induces the Josephson
effect. However, the connection of this 6eld to the phase
of the condensate is quite unclear.

On the contrary, the Chem-Simons (CS) formulation
of the planar electrons is adequate to analyze the co-
herent tunneling of unpaired electrons, ' where an elec-
tron is regarded as a composite of a boson (bosonized
electron) and a CS flux of the statistical field. When
this CS Aux precisely cancels the external magnetic fI.ux,
bosonized electrons see no net magnetic field and can be
condensed. Then, the Josephson current follows due to
the phase difference between the condensates on the two
layers. This formalism presents a microscopic picture of
the Josephson effect with some numerical predictions.

The aim of this paper is to clarify the mechanism of
the Josephson effect by making the lowest-Landau-level
(LLL) projection, which was not imposed explicitly in the
previous treatment. There is a merit of the LLL projec-
tion since it makes the diagonalization of the Hamiltonian
considerably simpler in the mean-field approximation.
First, we take the case of the single-layer Hall system,
and formulate the LLL projection as a constraint condi-
tion on the states in the CS gauge theory. Then, gen-
eralizing this to the double-layer case, we make a care-
ful analysis of the Goldstone mode, which is shown to
arise at a speciflc filling factor v = I/m with m an odd
integer. It is clarified that this mode is associated with
the electron number difference between the two layers,
whose canonical conjugate is the phase difference of the
condensates on the two layers. It is precisely this mode
that carries the Josephson current in the presence of weak
interlayer tunneling.

This paper is composed as follows. In Sec. II, 6.om a
physical point of view, we explain why unpaired planar
electrons may be turned into bosons in the presence of
an appropriate external magnetic Beld in addition to the
Coulomb repulsion. In Sec. III the LLL projection is for-
mulated in the CS gauge theory of planar electrons. In
Sec. IV we analyze the double-layer QH system together
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with the LLL projection. In Sec. V we focus our atten-
tion to the Goldstone mode and the associated Josephson
effect. We use the unit such that c = 1 and A, = 1.

The second quantization is also trivially made, which
leads to a CS gauge theory. After second quantization,
(2.2) yields

s„O;a~ = 2vrmgtg, (2.3)

II. BOSONIZATION OF PLANAR ELECTRONS

Let us review a physical picture of how unpaired elec-
trons can be condensed on a plane in the presence of
an external magnetic Geld. It is essential that electrons,
making cyclotron motions, are uniformly distributed on
the plane due to the Coulomb repulsion. It is reason-
able to simulate the system by placing electrons on lat-
tice points with equal spacing and with all lattice points
occupied. Due to the Coulomb interaction electrons ex-
change their positions. Thus, the electrons move around
all the lattice points. In this lattice approximation the
external magnetic Beld is also distributed among the lat-
tice points: to each lattice point the magnetic flux B/p
is attached, with p being the electron density. Then,
when two electrons exchange their positions, the wave
function reads as 4'(y, x) = e' —iIi(x, y) with n = eB/2p
by acquiring the Aharanov-Bohm phase e' . When the
magnetic Beld B is such that o. = arm with m being an
odd integer, @(x,y) becomes a wave function of bosons,
which are nothing but bosonized electrons. Then, these
bosonized electrons would make a condensed phase, the
QH fluid, at the magic filling factor v = 2vrp/eB = 1/m.

A field-theoretical realization of this picture of the QH
state is given by the CS gauge theory, as we now explain,
where the electron is described by the bosonized electron
together with the CS gauge Beld representing the statis-
tics of the electron. Namely, the electron is regarded as
a composite of a boson and a CS gauge flux. In the pres-
ence of a repulsive Coulomb interaction, the mean-Beld
ground state at the magic filling factor is such that the
CS flux is canceled out by the external magnetic flux, and
hence the bosonized electrons, thus identified as compos-
ites of electrons and magnetic flux, make a condensation.

As pointed out by Girvin and McDonald, bosonized
electrons are deBned trivially in terms of the wave func-
tions. Let ili(xi, . . . , x~) be the wave function of N
electrons on a plane. Then, the wave function of the
bosonized electrons @(xi,. . . , xiv) is defined by

4'(x„.. . , xiv)—:e' -&. *" *' 4'(x, xiv), (2.&)

d'*ID.OI'+ vX] (2.4)

with

iap ——iBg + aI, —eAI„ (2.5)

in terms of the bosonized electron field g and the sta-
tistical gauge field ak subject to (2.3); M is the effective
mass of electrons; N is the total number of electrons.
The external magnetic Geld B is applied perpendicular
to the layers with Ay = — Bar,~x~—. Term V[@] repre-
sents the intralayer Coulomb interactions that drive the
planar electron system into the QH liquid:

V[/] = — d x d y: (gtQ(x) —p)2G'

(2.6)

where p stands for the constant neutralizing background
charge and I for the dielectric constant. In these ex-
pressions the ordering of the operator lQl is OtC7, and
the dots: 0: denote the normal ordering of the opera-
tor O. With these operator orderings it can be proved
that the Hamiltonian (2.4) leads to exactly the N body-
Schrodinger equation of motion of electrons.

The statistical gauge field ak is also called the CS
gauge field since the Hamiltonian (2.4) together with the
constraint equation (2.3) follow from the so-called CS
Lagrangian; see the Appendix for the case of the double-
layer system.

It is convenient to rewrite the Hamiltonian by using
the Bogomol'nyi decomposition:

which defines the statistical gauge field aI, in terms of
the bosonized electron field g, satisfying [g(x), gt(y)] =
S(x —y). The bosonized electron is a hard-core bo-
son. The statistical gauge Beld ak, representing solely
the phase degree of freedom, has no independent dynam-
ics.

The Hamiltonian is simply given by

where 0(x„—x, ) is the azimuthal angle between two elec-
trons. We call an odd integer I, the statistics parameter.
By exchanging any two electrons, 4' transforms obviously
as a bosonic wave function. (The bosonic wave function
satisfies the hard-care condition, iIi = 0 for x, = x, .) The
momentum operator of the bosonized electron is given by
iB„"+ ar, (x ), with ag(x„) = mg, ~ 0„"0(x —x, ) or

(2.7)

where w = eB/M is the cyclotron frequency. Here, the
last term represents the contact interaction, which can be
discarded for the hard-core bosons. Hence, we obtain

c;,0;a, (x) = 2vrm) 8(x —x.). (2.2)
8

In this way the bosonization is simply a procedure to take
oK the phase factors. Obviously, it is only possible in two

spatial dimensions.

d xl(Di —iD2)gl + ~,N + V[@], (2.8)—
2M 2

which defines a microscopic field theory of the planar
system of N electrons.
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III. THE LLL PROJECTION by the solution

and have the energy 2u N of the LLL. We call this equa-
tion the LLI constraint. As we shall see, in order to
implement the LLL projection in the presence of the
Coulomb interaction, we can start with this LLL con-
straint as we do in this paper, or we can start without
it and take the limit M -+ 0 afterwards by using the re-
sults of our previous paper. Both of the methods give
the same results.

First, let us prove that the LLL constraint (3.1) defines
surely the states in the I.LL. For this purpose we analyze
the wave function

@X = (01@(»)@(»)".@(»)If} (3.2)

with @(x)~0) = 0. Introducing the complex coordinate
z = x+i y for each electron, we rewrite the LLL constraint
(3.1) as

If the Coulomb interaction is switched off the Hamil-
tonian (2.8) simply describes cyclotron motions of elec-
trons. When all N electrons occupy the LLL, the total
kinetic energy is z~,N. In this case it is obvious from
this Hamiltonian that such states

~ f) satisfy the condi-
tion

(3.1)

ay = eAg, (3.6)

(3.7a)

with constant phase 0, as corresponds to a uniform distri-
bution of electrons. It is realized only at the magic filling
factor v = 1/m due to the constraint equation (2.3).

This mean-field ground state illustrates our physical
picture of the condensation of bosonized electrons, as
we have promised. Although the decomposition of an
electron into a bosonized electron and a CS flux is just
a mathematical trick, the CS flux is traded with the
external magnetic flux in this mean-Geld ground state.
Then, the bosonized electrons acquire a physical reality
as composites of electrons and magnetic flux. They are
condensed in the zero-momentum state; the QH state
is a condensed phase of bosonized electrons. Note that
this condensation occurs only at the magic Ailing fac-
tor; in its vicinity the ground states contain ensembles
of topological vortices (quasiparticles) which are excited
but trapped by impurities on this condensate.

We next study the Gaussian fluctuations around the
mean-field ground state (3.6) at the magic filling factor.
Choosing 0 = 0 for simplicity, we set

(8 eB m 1

iBz 4 2 z —z )8g1'
(3.3)

with

(3.7b)

This equation can be exactly solved. ' Recovering the
phase factor given by (2.1) we obtain

Iy = B(z) (z„-z.)"ezp( —'eB) ~z-„~'), (3.4)

where E(z) is an arbitrary analytic function. The arbi-
trariness in F(z) implies the degeneracy of the states in
the LI L. As is well known, this is the most general form
of the wave function of the electrons in the LLL. Hence,
the condition (3.1) selects the LLL states in the second
quantized formalism of bosonized electrons.

The real ground state is determined by minimizing the
Coulomb energy (2.6) in the LLL states. Namely, we
diagonalize the Coulomb interaction V, i.e. , the matrix
(g(V( f) with

~ f}and ~g} being LLL states obeying (3.1).
An exact treatment is practically impossible. We use
the mean-field approximation and then take into account
Gaussian fluctuations. As we shall see, the Laughlin wave
function is obtained for the QH state in this approxima-
tion.

In the mean-field approximation, the LLL states are
given by solving the classical equation

and

s,~B;a, = 2z-m[p+ ~p(g + gt), (3.9)

respectively. Now, using a scalar function a, we may set

a; —eA; = —e,~B~a. (3.10)

Then, &om (3.8) and (3.9) we obtain

(3.11)

and

where V is the volume of the system and a~ is an anni-
hilation operator satisfying [a~, a j = Sz z. Substituting
(3.7a) into the LLL constraint (3.1) and the constraint
equation (2.3), we linearize them as

(Di —iD2) @ = 0, (3 5) (9 a = 2~pmvr(gt + g), (3.12)

which is found to contain ensembles of vortices in gen-
eral, implying the degeneracy of the LLL states. One
vortex carries a Coulomb energy of the order of e2/E~
with /~ = 1/geR being the magnetic radius. Among
these solutions the Coulomb energy (2.6) is minimized

)7 —~pa = ) 1 + 2/x~T~e*~'",
V

(3.13)

where we have used eB' = 2+pm. Using the mode expan-
sion (3.7b) for q this equation is solved as
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where x~ = p /27rmp and

at + (1+xp)a~
Tp

x +2x
(3.14)

We have normalized the operator Tp so that [T&,Tt] =
biz and [Tp, Tz] = 0. Therefore, the LLL constraint
(3.11) is equivalent to the condition

pansion (3.7b) are allowed around the mean-field ground
state in the LLL. To go beyond the approximation and
to recover other LLL states with higher Coulomb energy
we need to take into account vortex excitations (quasi-
particles) which arise as soliton solutions in (3.5). We
wish to discuss this problem in a future work.

We proceed to calculate the wave function (3.2) of the
mean-field ground state (3.6) in the Gaussian approxima-
tion. It is expressed in terms of two-point wave functions
as

T If) =o. (3.15)

This condition implies that the LLL states have no exci-
tations of the Tz modes.

We now diagonalize the Coulomb term within the LLL
states. Substituting the mode expansion (3.7b) into the
Coulomb term (2.6) we obtain

@a= (oI (v~+ n( .))If)

= ~"'(olf)

= s'"'*(o~I(~+ —) n(*.)n(*.))If)P„(,

s( If&
(3.21)

pP

(3.16)

Using (3.14) we can express this in terms of operators T~
and Tt. Since Tpl f) = 0, when V acts on the states in
the LLL, it reads (oln o If) = — +,b, (olf) (3.22)

Now, using a&lo) = 0, T&If) = 0 and (3.14), it is easy to
verify that

e 1
Vlf) =

I
E.+ ). ' T'T 'If) -(3»)

where

27t e p ~ 1

,- lpl x~+2
e2N~

2+2sE~
(3.18)

is the Coulomb energy of the state. Hence, we obtain
(glVI f) = E„hy ~, which is the result of the diagonaliza-
tion of the Coulomb term. The QH state is incompress-
ible since there are no degeneracies in the ground state.

In the previous paper without imposing the LLL con-
straint we have diagonalized the Hamiltonian (2.8) by
way of the Bogoljubov transformation. As we have de-
rived in the first paper of Ref. 9, the result is

0 = ~,N+ E„+) E~btb~,
pro

(3.19)

where the Coulomb energy E„ is given by (3.18), and

p 27te p (3.2o)

The operator bp is defined by Eq. (4.7) therein, which is
the one obtained by the Bogoljubov transformation of ap.
It is easy to see that the mode operator Tp is identical
to the mode operator b~ when the limit M ~ 0 is taken.
Note that the gap energy E~ of the mode b~ is given by
the cyclotron energy. It is natural that the excitation
of this mode is suppressed when the LLL projection is
made.

We conclude that the LLL constraint (3.1) specifies
uniquely the LLL state in this approximation: namely,
no perturbative excitations associated with the mode ex-

which yields

(ol&(x)~(g)lf) = ms~0(/—2m~& I* —ul)(olf), (3.23)

I 4 ~

v+8
J(x, —x,), (3.24)

where

p p4
J(x) = M

(2~)' (pz + 2eB)(pz + eB)2
V p e'",

(3.25)

with

with Ko being the modified Bessel function. As is ex-
plained in Ref. 9, the wave function (3.21) together
with (3.23) leads to the characteristic short-range cor-
relation of the Laughlin wave function, that is (3.4) with
F(z) = 1, for Ix~ —x,

l
( E~. (Note that E~ 1/~p inthe

QH state. ) It turns out that the statistics parameter m
determines the short-range correlations of the electrons
in the QH state at v = 1/m.

It is remarkable that the Laughlin wave function is ob-
tained without using the explicit form of the Coulomb in-
teraction once the mean-Beld solution is determined as in
(3.6). Thus, the actual form of the repulsive interaction
is irrelevant when the LLL projection is made. To make
this observation clear let us recall our previous result on
the wave function which is obtained without imposing
the LLL projection. In this case there is a correction to
(3.22) and hence also to (3.23), which depends on the
actual form of the interaction. As we have derived in the
second paper of Ref. 9, the ground-state wave function
is given by the Laughlin wave function multiplied by the
factor
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2''e
V(p) = f de V(e)e (3.26)

IV. DOUBLE-LAYER QH SYSTEM

for the Coulomb potential V(x) = e /(s~x~). It is clear
that, for the interaction V(z) for which J(z) is well de-
fined, the correction term vanishes as M + 0. In this
way the Laughlin wave function is obtained regardless of
the form of the repulsive interaction V(z) when the LLL
projection (M -+ 0) is inade.

We have found that the present analysis together with
the LLL constraint is consistent with the previous one
based on the Hamiltonian (2.8) together with the kinetic
term. Namely, all the present results are reproduced from
the corresponding ones in Ref. 9 by taking the limit M ~
0.

2It p
eB

2
m+n' (4 7)

and that this state is described by the Halperin wave
function

z z z z z z

12+ 22

(4 8)

where d~q ——d22 ——0 and. di2 ——d is the interlayer dis-
tance (d = E~); Cii ——C22 ——1 and Ci2 ——2; po is the
background charge in each layer.

We have already analyzed the double-layer electron
system in detail for the statistics parameters m g n, and
we have found that the QH state is realized at the magic
filling factor

The role of the statistics parameters m and n is manifest
in this wave function: m describes the intralayer correla-
tion, while n is the interlayer correlation. For instance,
the QH state at v =

2 recently observed experimentallyi~
is explained by choosing m = 3 and n = 1. The double-
layer QH state is incompressible when m g n, and
the Josephson efFect is hardly expected. Although our
analysis was made without making the LLL projection,
all the results are correct; the results with the LLL pro-
jection are produced simply by taking the limit M + 0
in the corresponding formulas in Ref. 7.

When m = n, it has been argued that the system
contains a gapless mode, which we have related to a
Goldstone mode associated with the spontaneous break-
down of a global phase symmetry in the double-layer QH
system. However, our previous analysis does not seem
to be fully satisfactory from the point of view of the LLL
projection. In what follows we analyze this mode care-
fully by making the LLL projection, and make clear the
microscopic mechanism of the Josephson efFect induced
by this mode.

It should be remarked that, when m = n, the QH state
exhibits the same intralayer and interlayer correlations as
in (4.8). Hence, in order to realize such a QH state it is
necessary to choose the interlayer distance d to be the
order of the magnetic radius S~.

In this choice of the statistics parameters (m = n), only
the combination of the CS gauge fields al, =

2 (az + aI, )
is relevant, since the combination (a& —aI, ) decouples
&om the system; see the Appendix. Namely, we need
only one CS gauge field to extract the phase degrees of
freedom &om the electron system. This is the crucial
difference &om the general double-layer system with m g
n. Indeed, the constraint equation (4.2) is reduced to a
single equation:

The CS gauge theory of the double-layer electron sys-
tem is similarly constructed. The wave function of the
bosonized electrons 4 is defined by taking oK the phase
factors from that of the electrons 4' as in (2.1):

i' P„,0(x„—x, } im Q„o(x„—z ) i~ g g(~ —~ ) @

(4.1)

with the statistics parameters m and n; here, m is an
odd integer but n is any integer. In second-quantized
theory, the phase degrees of freedom are extracted as the
CS gauge fields aI, , which are defined by

s;,0;a,'= 2~(meit@i + ng2t@2),

s,,a;a,'. = 2~(nuit@, + m@2tq, ), (4.2)

in terms of the bosonized electron fields @,where n is
the layer index: o. = 1, 2. In this way we need two CS
gauge fields in general.

The Hamiltonian is given by

with iD& ——it9y + a& —eAI, . The potential term H~ is
given by

He[/) = ) f d'eeA, d~d (4.4)

with Ao the electric potential at the layer o, . The
Coulomb term P is given by

[f] —+11[@]+ ~22 [@]+ l 12 [@] (4.5)
s;, (9;a, = 2vrm(@i/i + Q2g2).t

The Hamiltonian is given by

with
2

V dX') = &-~-fd'ed*&: (@.'d'-(e) ——~ )
W. = ) f d e~(De —eDe)ed ~*+ —te.N

+H&[Q] + Hz[@]+V[@], (4.10)

1 8pV p(u) —po):,
(x —y)2+ d2p

(4.6)

N. = ) f d' ~(DP —eeD, )d ~'+ te.N-
+~a W l + &[@1 (4.3)
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with iDI, ——i', + aI, —eAk, where the potential term
II@[vg] and the Coulomb term V[vP] is given by (4.4) and
(4.5). Here, we have introduced an interlayer tunneling
term with strength A:

~ (~+ —K«)l&) = o,
c),i) if) =0,

(4.17a)
(4.17b)

with q+ = (qi + q2)/i/2, and that a is determined by

(4.11) c) a = 2 ~pm7r (q+t + q~) . (4.18)

where A should be much smaller than the Coulomb en-
ergy (A « e /E~) so that the formation of the double-
layer QH state is not ruined by the interlayer tunneling.

Except for the Goldstone mode which we discuss later,
all the analysis proceeds in parallel to the case of the
single-layer Hall system. First of all, the LLL constraints
read

(D, —'D, )@.ly) = 0, (4.12)

which are exactly solvable: The wave function is given by
(4.8) with m = n and multiplied by an arbitrary analytic
function I"(zi, z2). This arbitrariness is fixed in the real
ground state by minimizing the Coulomb energy (4.5), as
has been explicitly shown in the single-layer case.

In the absence of the interlayer tunneling (A = 0) the
mean-field ground state is given by

aI ——eAk 0~ = v poe*', (4.i3)

with constant phase 0 . This solution exists only at the
magic filling factor

2Ãp

eB (4.14)

with p = 2pp. There is an essential observation. The
LLL condition (4.12) and the constraint equation (4.9)
allow an infinite number of solutions given by aA. ——eAI,
and @ = gp e' with pi g pq at the saine filling fac-
tor provided that pi + p2 ——p is fixed. They are also
condensed states of bosonized electrons, although they
have higher Coulomb energy. Therefore, retaining the
coherent phases in each layer, electrons in one layer can
move to the other layer. This fact leads to the Josephson
effect in the presence of the tunneling (A g 0). Recall
that this is not the case for the general QH states with
statistics parameters m g n, where the constraint condi-
tions (4.2) fix the electron numbers in each layer uniquely
as p~ ——p2 = pp. Then, a movement of electrons from
one layer to the other breaks the coherent phases in each
layer.

We study the Gaussian fluctuations around the mean-
field ground state (4.13) by setting

Let us make the mode expansion of i)~ as in (3.7b); we
denote the corresponding modes by a(+)p.

The condition (4.17a) with (4.18) is formally identical
to (3.11) with (3.12) in the single-layer case; hence, the
analysis is identical. Thus, this LLL condition yields

T(+)pl&) = o (4.i9)

where T(+)& is defined by the equation identical to (3.14)
with the replacement of az by a~+~&. On the other hand,
the condition (4.17b) simply means

a( )~~f) = 0 for p g 0. (4.20)

2

V~[@~] = d xd y: g~t(x) +7)~(x)
2E'

(
X

g(* —y)'+ d')
x [n~(y) + n+(y): . (4.21)

The Coulomb term V+[@+] is calculated precisely as in
the single-layer case, and we have a similar expression to
(3.17). Hence, the diagonalization is trivial in the LLL
states. On the other hand, with respect to the Coulomb
term V [q ], using the mode expansion for g we obtain

7t C
V-[n-ll&) = ) (

—' "'")
( ) (-) ~~)

It is important to recognize that this condition does not
restrict the number of the zero-momentum mode, a~
with p = 0, in the LLL states, although it requires the
number of the nonzero-momentum modes to be zero.
Hence, even in the mean-6eld approximation there are
many LLL states in this double-layer case.

As in the single-layer case, we can derive the ground-
state wave function by evaluating the two-point wave
functions (O~q (x)qp(y)~ f). The result is the Halperin
wave function (4.8) with m = n; see Ref. 7 for more
details where the LLL constraint has not been imposed.

We go on to diagonalize the Coulomb term (4.5) within
the LLL states, which can be expressed in terms of gg as
V = V+ + V with

= ~no+@ (4.i5)

where we have chosen 0 = 0 for simplicity. Linearizing
the LLL constraint (4.12) as in the case of the single-layer
case, we obtain that

( tet + cc+ 2ct ) ~g),
7T'6 ppd (4.22)

c), (i) —
kappa)~ f) = 0, (4.16)

where a is defined by (3.10). Now, it is trivial to derive
that

where we have set c = a~ ~p for simplicity. Hence, the
diagonalization of V [q ] is also trivial in the LLL states
obeying (4.20), as far as the nonzero-momentum modes

(a( )~ with p g 0) are concerned.
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V. GOLDSTONE MODE AND JOSEPHSON
EFFECT

With the LLL constraints (4.12) imposed we have
found that the only dynamical mode is the zero-
momentum mode c = a~ )p. We first show that this is
a Goldstone mode related with a global phase symmetry
in the double-layer QH system.

In the absence of the interlayer tunneling (A = 0), the
Hamiltonian (4.10) is invariant under two global phase
transformations:

(5.1)

n =jq.t y.~'* (5.2)

Both of these symmetries are broken by the mean-field
solution (4.13), and as a result two Goldstone modes are
generated. However, one of the Goldstone modes asso-
ciated with Nq t ~ is absorbed by the CS gauge field aI,
via the Anderson-Higgs mechanism and disappears. The
other Goldstone mode, which remains to be unabsorbed,
is associated with the electron number difFerence

One of the generators (conserved quantities) is the to-
tal electron number Nt~t~~ = Ni + N2 for the choice of
Ai ——A2, while the other is the electron number difFer-
ence LN = Nq —N2 for the choice of Aq ———A2, where

It is seen that the states with AN g 0 degenerate with
the ground state in the limit V + oo, which demon-
strates that LN is indeed the Goldstone mode.

We assume that the tunneling strength A is much
smaller than the Coulomb energy e pd O(e /I~) so
that the double-layer QH states are realized. Substitut-
ing (5.7) into the term (4.11) and taking only the Gold-
stone mode we find

HT = —2ApoV cos(AO) + cos(AO).
A(AN)

ppV
(5.10)

H@ = 2e(Ao —Ao)AN . (5.11)

After the LLL projection, by combining (5.8), (5.10), and
(5.11), the total Hamiltonian (4.10) amounts to

71 e
H~M = (AN) + (AN) cos(AO)

2eV ppV
—2ANo cos(AO) + 2e(Ao —Ao)AN, (5.12)

The second term in this equation may be regarded as a
chemical potential term induced by the tunneling inter-
action. This term vanishes in the limit V + oo just as
the electric potential term does for a fixed value of AN.
Hence, the energy of the system does not change even
when some electrons tunnel from one layer to the other.

We now analyze the mechanism of Josephson tunneling
by using b,N and AO. The term (4.4) reads

b,N = Ng —N2 ——+2No(ct+ c), (5.3) up to an irrelevant constant term.
The Heisenberg equations of motion follow:

z
AO = 02 —Og —— (c —ct),

/2No
(5 4)

whose canonical conjugate is the phase difFerence of the
condensates 1 (Apl '

J—:Oq A p = —2A po 1 ——
~ ~

sin AO, (5.13a)
g po )

together with

40, —AN =i, (5.5) = «e.a(~)

4me dip 2AAp

po
cos(40)

(5.13b)

where Np ——ppV and

0 = — d T 0 (x)V
(5.6)

with ajar
= ~g ~

exp[i0 (z)j. Here, we have made the
following identification:

= V'po+4e*' = ~po+n (5.7)

v ="'" ' "'- (5.8)2V )
This implies that the double-layer system has an electric
capacity

with g —b /(2~po)+i~poO .
Using these variables the Coulomb term V given by

(4.22) is diagonalized within the LLL states as

@0 — ~g + (+SAS) (5.14a)

with

with bp—:AN/2V. Except for the chemical poten-
tial term these are the famous equations governing the
Josephson current familiar in a superconductor. In-
deed, in a superconductor the chemical potential term
is negligible compared with the electric potential term.
However, this is not so in the QH state. The chemical
potential difference (2AAp/po) cos(AO) is actually of the
same order as the induced electric voltage (4vre2dAp/e)
associated with the electric capacity (5.9). This is a pe-
culiar feature to the QH-state Josephson junction where
po 10 /cm, A 1K, d 100k, ands 10.

By solving (5.13a) and (5.13b) for small fluctuations
of 40 and Ap, it is easy to see that the Goldstone mode
acquires a gap energy:

(5.9) 4me dpp&sAs (5.14b)
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and Ls~s ——2A, where uJ is several times larger than
Ls~s in a typical junction.

As is well known, it is the total electrochemical po-
tential difference V & that is measurable experimentally
by a "voltmeter. " Therefore, the phase difference 40 is
controlled by (5.13b) and develops as in the well-known
way:

t
Ao(t) = ~ dt'V. „,(t') + Ao, ,

0
(s.is)

with 400 the initial phase difference and V t the voltage
measured. Here, the appearance of the unit charge e is
the consequence of the bosonized electron condensation.
Next, we examine the correction term (Ap/po) in the
Josephson current (5.13a). Obviously, there is no correc-
tion when the density imbalance Lp is immediately com-
pensated by the external supply (as in the dc Josephson
circuit). Otherwise, we need to estimate the correction.
It is easy to see that (Ap/po) (2A/eV, „&) 1/100
with 2A = 1 K and V „q ——1 mV. Therefore, it should be
possible to observe the Josephson efFect in the QH state
when parameters are adjusted as (2A/eV, „t) « 1. A fur-
ther analysis of the QH-state Josephson efFect is found in
Ref. 4, where the Meissner effect of the parallel magnetic
Beld is studied: In this reference the above chemical po-
tential term is missed but its existence does not modify
the topological property of vortices nor numerical esti-
mations.

A comment is in order. It seems that the phase sym-
metry (5.1) with Ai ———A2 is broken explicitly by the
tunneling interaction (4.11). However, this is not true
because the phase symmetry is a part of the electromag-
netic gauge symmetry. In this paper we have neglected
the electromagnetic fields except for a background mag-
netic Beld. When we recover them, the manifestly gauge
invariant tunneling Hamiltonian is given by

where the z axis is taken perpendicular to the layers and
the coordinates z are assigned to each layer. Note that
the tunneling interaction (4.11) is obtained simply by
making a gauge choice A = 0. Now, it is obvious that
the tunneling Hamiltonian is invariant under the local
gauge transformation

if(~,z )q

A, —+A +. cf f(x, z). —1

e

(s.i7a)

(5.17b)

Zl

'H7-= —A zt x exp ie dzA, z, z 2 x
Z2

Z2

+e), (z) exp ze dzA, (z, z) @,(z)),
Zl

(5.16)

quence of the spontaneous symmetry breakdown of the
electromagnetic gauge symmetry.

VI. DISCU'SSION

The Josephson effect is described by the mutual con-
jugate variables LN and 40. Their existence is assured
by the Goldstone theorem. Therefore, it does not depend
on the detail of the dynamics. The essential point is that
the movement of electrons in one layer to the other layer
(namely AN g 0) does not destroy the coherent phases
of the QH states. Thus, the mode AN exists in the QH
states as the Goldstone mode. In the general QH states
described with statistics parameters m g n there exist
no such Goldstone modes.

Our Goldstone mode is rather peculiar since it is an
isolated mode without the nonzero-momentum compo-
nent. This does not contradict the Goldstone theorem.
In the derivation of the theorem we analyze a spectral
function o'(p I E) In t.he present case it follows that
o(p, E) (x 8(p)b(E) due to the LLL projection. It is
instructive to examine the problem by making use of our
previous formalism, where without imposing the LLL
projection we have derived the "full" Goldstone mode
such that

E(p) ~ vre2 pd (6.1)

When the LLL projection is made (M m 0), the nonzero-
momentum component disappears &om the dispersion re-
lation except for the zero-momentum component, just as
the nonzero-momentum component disappears kom the
spectral function. The isolated mode is indeed the Gold-
stone inode since the states with AN g 0 degenerate with
the ground state in the limit of large volume (V + oo).

Let us remark that a gapless mode with a linear dis-
persion relation has been found in other microscopic
approaches even when the LLL projection is taken.
(This gapless mode acquires a gap in the presence of the
interlayer tunneling as in our case.) A possible reason
why we do not have such a gapless mode with a linear
dispersion relation is because nonperturbative excitations
involving quasiparticles are missed in our analysis. How-
ever, the fact that such a nonperturbative excitation be-
comes gapless seems to be accidental. We are currently
investigating this puzzle. In any case, the Josephson ef-
fect is induced by the zero-momentum mode, that is, the
global mode LN and its conjugate 40.

In this paper we have made clear the dynamical mech-
anism of the QH-state Josephson efFect in the mean-field
approximation. Our analysis is based on the CS gauge
theory along with the LLL projection. Observation of
the effect constitutes an experimental veriBcation of a
possible statistical transmutation on the plane.

The global phase symmetry (5.1) is a special case with
f(x, z ) = A . In the covariant gauge with (5.16), the
Goldstone boson is absorbed into the electromagnetic
gauge potential, as is the Anderson-Higgs mechanism fa-
miliar in the case of a superconductor. Therefore, we
Inay say that the Josephson efFect is a natural conse-
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APPENDIX or

a„= —(a„'+ a2),
2

(A4)

As we have emphasized in the text, when the statis-
tics parameters are equal (m = n), there is only one CS
gauge Beld. This is why the system possesses the Gold-
stone mode driving the Josephson e8'ect. I.et us show
explicitly how the combination of the CS fields (a& —a&)
decouples from the system when m = n in the Lagrangian
formalism.

When two statistics parameters are not equal (m g n),
the I agrangian for the double-layer system is given by

1a = ap+ap,P a = a~ —a~.P (A5)

Substituting (A4) into the CS term (A2), we obtain

&cs =— 1
a„B ap

2(m + )z-

a~clvap.
2 m —n 7r

(A6)

After rescaling a~ as a~ = QIrn —nIb„, we take the limit
m —+ n+ 0. Then, the Lagrangian (Al) reads

together with the CS term

(Al)

(A7)

8 = ) i @tiDo@n — I(Di —iDz)@oI I + &cs2M

——cu, N —V[@j,

and

4 m2 —nz vr

e" "(a„'B„a'„+a'„cl„a„')
4 m2 —n2 vr

together with

&cs = — ~ a„O ap ——e 6„0„bpp, vA pvA
4m' 2a

and

iD„= iB„+a„—eA„.

(AS)

iD„=iB„+a„—eA„. (A3)

It is straightforward to see that the Hamiltonian (4.3)
and the constraint equation (4.2) are reproduced from
this CS Lagrangian. In particular, the constraint equa-
tion follows from the variation of the Lagrangian with
respect to ao.

The CS term Zt:s is diagonalized when we introduce

It is clear that the CS Beld 6& decouples from the system
since it does not couple with the field @ . Hence, a„
is the only relevant CS gauge Geld in the system with
m = n. It is easy to see that the Harniltonian (4.10) and
the constraint equation (4.9) follow &om the Lagrangian
(A7) with (AS) and (A9), except for the tunneling term
H~ neglected in this appendix.
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