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Quantum structures created by nonhomogeneous magnetic fields
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We study a system consisting of magnetic tunneling barriers, in particular we have studied the
following structures: magnetic quantum steps, barriers, and magnetic wells. The energy spectrum
(bound and scattered states) for these systems is obtained and the nature of the states is discussed.

I. INTR.ODUCTION

The behavior of electrons in homogeneous magnetic
fields has been used extensively to obtain experimen-
tal information on properties of charge carriers such as,
e.g. , their density and the Fermi surface (through the
Shubnikov de Haas efFect), and their mass (e.g. , using
cyclotron resonance). Scattering of electrons on mag-
netic impurities form the other limit in which electrons
experience locally (on an angstrom scale) strong mag-
netic fields which may act as scattering centers in, e.g. ,
diluted semimagnetic materials.

In the present paper we are interested in the inter-
mediate limit in which electrons interact with magnetic
fields which are inhomogeneous on a nanorneter scale.
There has been recent experimental interest in such
systems where it has become possible to create mag-
netic dots and integrate ferromagnetic materials with
semiconductors where patterning of such films was re-
cently demonstrated experimentally. This new technol-
ogy will add a new functional dimension to the present
semiconductor technology and will open new avenues for
new physics and possible applications such as switches
based on the Lorentz force and nonvolatile memories
based on the Hall voltage generated by a local magnetic
field. A different route to create inhomogeneous magnetic
fields is through the integration of superconducting mate-
rials with semiconductors. This was realized experimen-
tally using type-II superconductors which were deposited
on a Si-metal-oxide semiconductors or a GaAs/A1GaAs
heterojunction. ' Magnetic fIux lines penetrate the two-
dimensional electron gas (2DEG) which act as nanometer
scale scattering centers for the electrons, offering the
possibility to study weak localization and the dynamics
of vortices. Using lithographic techniques, these super-
conducting films can be patterned into any desired form.
The geometry of the patterning determines the geometry
of the inhomogeneous magnetic field.

In general the shape anisotropy of the magnetic film
(or the stripes) will force the magnetization in the plane
of the film. Other mechanisms can be active which can
lead to a magnetization vector perpendicular to the film,
which is the situation we are interested in. Out-of-
plane magnetization has been realized in ultrathin lay-
ers of Fe on Ag (Ref. 15) or Cu (Ref. 16) compounds
such as MnA1Ga, Co/Ni multilayers, ~s ultrathin MnGa

II. NONHOMOCENKOUS MACNETIC FIELDS

We consider a 2DEG moving in the (x, y) plane with
a magnetic field B along the z direction. In the single-
particle approximation such a system is described by the
Hamiltonian

p+ —A (2 1)

We take the vector potential in the Landau gauge A =

films, and the metastable MnAl 7 phase, which can be
grown epitaxially on GaAs/A1As heterostructures using
molecular-beam epitaxy.

The creation of superlattices by an inhomogeneous
magnetic Geld was proposed theoretically in Refs. 19 and
20. Vil'ms and Entin presented a theoretical analysis of
the energy spectrum of 2D electrons near domain walls
and in a system of parallel magnetic strips. Transport
of a 2DEG in the presence of a perpendicular magnetic
field modulated weakly and periodically along one direc-
tion was studied in Ref. 22. The generalization to 2D
magnetic-field modulation is given in Ref. 23. Recently
Van Roy, DeBoeck, and Borghs studied the geomet-
ric factors controlling the magnitude of the demagne-
tizing field of ferromagnetic thin films with perpendic-
ular magnetization. Different geometries were studied
and they found that a grating-type structure with peri-
odicity of a few 100 nm to 1 pm would give the maxi-
mum magnetic-field strength in the underlying semicon-
ductor heterostructure. Muller considered a different
system in which a 2DEG strip is placed in a perpen-
dicular magnetic field which increases linearly along one
direction. He showed that this system has a remarkable
time-reversal symmetry.

In the present paper we will consider different con-
figurations of nonuniform magnetic Gelds in which the
nonuniformity is only along one direction and has a typi-
cal length scale of the order of nanometers. The electron
spectrum of a 2DEG in simple magnetic structures, such
as a magnetic step (Sec. III), magnetic barrier (Sec. IV),
and magnetic well (Sec. V), is considered and discussed.
The similarities and differences between similar potential
problems are pointed out.
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(0, A, 0) and the magnetic field is modulated along the z
direction, and thus

A(x)

B, = B(x) = —A(x).
d

(2.2) (a)

Let us introduce the following characteristic parame-
ters: (i) the frequency w, = eBp/mc with Bp some typ-
ical magnetic field, and (ii) the length lay = ghc/eBp.
From now on we will express all quantities in dimen-
sionless units: (1) the magnetic field B(x) -+ BpB(x),
(2) the vector potential A(x) -+ Bpl~A(x), (3) the time
t -+ t/ur„(4) the coordinate r -+ l~r, (5) the velocity
v ~ t~w, v, and (6) the energy E ~ Ru, E

In these dimensionless units the 2D Schrodinger equa-
tion becomes

q /2

v(xj

/

/

~

~

/ o]

, +
]

+ iA(T)
]

+ 2E) e]T,y) = o.
'o]z (Oy )

(2.3)

@(x,y) = e ""g(x), (2.4)

where —q = k„ is the wave vector of the electron in the y
direction. The wave function Q(x) actually satisfies the
following 1D Schrodinger equation:

(
d2

, —]A]T) —q]'+ 2E) @]x)= 0, (2.5)

where the function

V(*) = -[A(z) —q]'
2

(2 6)

can be interpreted as a q-dependent electrical potential.
Note that in the case of 1D magnetic-field modulation
studied in the present paper there is an analogy between
the magnetic Geld and the potential given by the follow-
ing relation:

1 dv(x)
/2V(x) dx

(2.7)

A jump in the magnetic Beld will result in a discontinuity
in the derivative of the potential V(x).

III. MAGNETIC STEP

First, let us consider the most simple shape for a non-
homogeneous magnetic field: the magnetic step. In this
situation the magnetic Geld fills the half space x ) 0, as
shown in Fig. 1(a) (solid curve), which is described by

Because of the special form of the gauge the system is
translational invariant along the y direction and as a con-
sequence we can choose the following form for the wave
function:

FIG. 1. Magnetic step: (a) the magnetic field B(z) (solid
curve) and the vector potential A(x) (dashed line), and (b)
the equivalent potential for q & 0 (solid curve) and q & 0
(dashed curve).

d z 1
dz2 4

——+ p+ — @(z) = 0,
2

(3.3)

with z = v 2(z —q) and p = E —0.5. The solutions of it
are the Weber functions2~ D~(z), which have the follow-
ing asymptotic behavior: D„(z)

~ ~+ ~ 0. Taking into
account (3.2) and comparing Eqs. (3.3) and (2.5) we see
that in the region x ) 0 the wave function becomes

where 0(x) = 1(x ) 0), 0(x & 0) is the step function.
There are two different cases which we have to consider,
and of which the resulting potential is illustrated in Fig.
1(b).

Case I (q & 0). As seen in Fig. 1(b) (solid curve), the
potential V(x) has the form of an asymmetric quantum
well which deepens with increasing q. It is well known
that such a well can have a bound state if the well is
suKciently deep. Thus we have to consider separately
(a) E & q2/2, where bound eigenstates are expected to
appear in the region x q; and (b) E ) q2/2, which
corresponds to scattered states, describing the electron
reflection by the magnetic step. The appearence of bound
states makes this system essentially different from the
usual potential step problem where only scattered states
exist.

Case 2 (q & 0). In this case the equivalent potential is
a constant V(x) = q /2 for x & 0 and a barrier in the re-
gion x & 0 [Fig. 1(b), dashed curve], which is unbounded
for x —+ oo. In this case there are only scattered states
which correspond to electron reflection by the magnetic
barrier.

For x ) 0 the Schrodinger equation takes the form

B(z) = 0(x) (3 1)
tP( )xD~ p [ sv( 2—x q)], (3.4)

A(x) = x8(x), (3.2)

with the corresponding vector potential [dashed curve in
Fig. 1(a)] up to a normalization constant, while for x ( 0 there is

no magnetic Geld and the wave function is proportional
to
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Q (x) exp(x Qq2 —2E) (3 5)

when E & q /2. Matching the wave functions (3.4) and
(3.5) and its first derivative at x = 0 we obtain the fol-
lowing equation:

d
gq2 —2E = —ln D@ Q 5[~2(x —q)] (3.6)

dx

whose solutions lead to the electron eigenvalues E
E (q) with the corresponding wave function i/) ~(x).

Once we know the eigenvalues and the corresponding
wave function we can obtain the other characteristics of
the bound states. Differentiating Eq. (2.5) by 8/Bq, mul-
tiplying it by the corresponding wave function Q ~(x),
and integrating over x we Gnd

ex@ ,(z) .2 &(*)—v+~ &.(v) @..(*)+ ~, —)&(*)—vt'+'&. (v) z @-.(*))="
Bq

The second part of Eq. (3.7) contains the Schrodinger equation and is equal to zero. Finally we obtain the average
electron velocity of the bound state along the magnetic step (y direction)

dx 4.', (x) [q —&(x)] = E-(q—)
dq

(3.8)

where the minus sign results from the deGnition q = —k„. Analogously the mean electron position along the x axis
X (q) can be obtained. We multiply Eq. (2.5) by dg ~/dx, integrate over x, and find

— (&(*)—~)' —2E.(v) @.', (*)) =(1 d dg„q(x) l 1-
(2dx dx ) 2- - dx

dx&.', (x) [&(x) —
ql ~(x) = o, (3.9)

which can be reduced to

dxg„(x) [A(x) —
q] = 0. (3.10)

Now taking into account Eqs. (3.8) and (3.10) and the fact that the electron wave function has the simple form (3.5)
in the region x & 0 we Gnd the simple relation

X„(q) = 1
dx x/2, (x)= q + 1 + i)„(q).

2q q2 —2E (q) )
(3.11)

The numerical results of the solution of Eq. (3.6) are
depicted in Fig. 2(a) by the solid curves, for the lowest
three eigenvalues. These curves start at a certain q value
(denoted by the solid dot in Fig. 2), which is a function
of n. The corresponding results for the average electron
velocity v (q) (solid curves) and mean electron position
X (q) (dashed curves) are shown in Fig. 2(b). Notice
that the eigenvalues asymptotically, i.e. , q ~ oo, reach
the values (n+ 1/2) for Landau levels in a homogeneous
magnetic Geld, as it should be. In this asymptotic limit
the mean electron position approaches X (q) q and
the average electron velocity tends to zero. In this limit
the electron is situated far from the magnetic step and
is not influenced by the x & 0 region. With decreasing q
the electron wave function starts to experience the mag-
netic step: (1) its energy decreases, because part of the
wave function will be situated in a region with zero mag-
netic field where the electron will have a smaller kinetic
energy; (2) its average position is less than q, because the
wave function is sucked into the x & 0 region; and (3) its
velocity increases and the electron runs along the step.
From Figs. 2(a) and 2(b) we notice that the width of the
transition region, i.e., the q region where E & (n+ 1/2),
is narrower with increasing n. The above properties of
these bound states forces us to make the analogy with

edge states. Nevertheless there are a number of diKer-
ences: (1) the available q space for edge states increases
with increasing Landau level number n, which is oppo-
site to the behavior of the present bound states; (2) the
direction of the velocity is opposite as compared to those
of the usual edge states; and (3) the magnitude of the
velocity satisfies ~v (q) & q, which is different from edge
states which do not have an upper bound on their veloc-
ity.

From Fig. 2 we notice that there exist critical values q
such that for q & q* no bound states are found. These
points are indicated by the dots on Fig. 2(a) and are
situated on the free-electron spectrum curve E = q /2
[dashed curve in Fig. 2(a)]. For the plotted curves we
found the critical values qo: 0 768 qy: 1 623 and
2.155 at which the eigenenergy curve E (q) is tangent to
the E = q /2 curve. At these points the electron velocity
equals the free-electron value —v = q, and X (q)
—oo. The electron wave function g ~(x) is shown in Fig.
3 for the n = 0 case and diferent values of the wave vector
q. This figure nicely illustrates the increasing leakage of
the wave function into the x & 0 region with decreasing q
value and the concornittant increasing asymmetry of the
wave function.

The wave functions corresponding to the scattered



48 QUANTUM STRUCTURES CREATED BY NONHOMOGENEOUS. . . 15 169

0 l~ I I

2.5

/
/

/
/

/

I I I I I I I I

5/2

3l2

1l2

(a)

states [case (1): q ) 0, E & q /2 and case (2): q ( 0]
can be constructed by matching the function (3.4) valid
forx) Oand

@ - sin (/2E —q'z + b), (3.12)

valid for x ( 0 at x = 0. This matching has to be
done at any electron energy E & q /2. Examples of
those scattered state wave functions are shown in Figs.
4(a) for case (1) and 5(a) for case (2). Notice that the
wave functions have a difFerent penetration depth into
the magnetic-field region which depends on the sign of
q. The physical meaning of the di8'erent penetration is
clear from the classical electron trajectories in the x, y
plane which are shown in Figs. 4(b) and 5(b) for the
corresponding q values and which will be discussed in
next paragraph.

For comparitive purposes we include here the classical
analysis of the problem. In the above dimensionless vari-
ables the electron trajectory in a magnetic field is given
by

2.0

1.5

x(t)= xp + V'2E sin(t+ P),

y(t) = yp —+2E cos(t + P),

1.0 and the corresponding velocity components are

0.5

0.0

-0.5
I

I (b)
I I i I , t I I I i

FIG. 2. (a) The energy spectrum for the bound states (solid
curves) and (b) the corresponding average velocity along the
magnetic step v (q) (solid curves) and the electron average
position A (q) along the x axis (dashed curve) for the mag-
netic field configuration of Fig. 1.

v (t)= V'2Ecos(t+ P),
vy(t) = v 2E sin(t + P).

ReHected states originate from the x ( 0 region and im-
pede (v ) 0) on the magnetic barrier. When the elec-
tron penetrates the barrier with velocity [v (0), v„(0)] it
performs a circular orbit around the point (xp, yp)
[
—v„(0),v (0)] and leaves the magnetic step with a

velocity [
—v (0), v„(0)] after a dwell time tq = vr-

2arctan[v„(0)/v (0)]. The electron is shifted by 2v in
the y direction. Notice that for negative v„(0) we have
xo ) 0 and the dwell time tp is larger and consequently
also the penetration of the electron in the barrier region
as is also apparent from Figs. 4(b) and 5(b).
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FIG. 3. The electron wave function for the lowest bound
state for different values of the electron momentum in the y
direction (q) in the case of a magnetic step.

FIG. 4. For E = 2 and q = 1 we show: (a) the wave func-
tion for a scattered state (solid curve) together with the po-
tential V~(z) (dashed curve), and (b) the classical trajectory
of the electron which is reBected by the magnetic step.
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p(xj & v(x) B(x)

A(x)

-d/2 ~ 0

q&d/2 V(x)

(b)

FIG. 5. The same as Fig. 4, but now for E = 2 and q = —1.

q&d/2

-d/2 d/2

(b)

In the case of bounded states we formally connect the
classical electron energy with the Landau level energy
E = n+ 1/2 and find for the characteristic radius of the
electron trajectory R, = /2n+ 1. Classically the elec-
tron is confined when xo ) B and consequently we ob-
tain for the confinement condition q = xp ) v'2n+ 1 =
q*. These classical critical values qo ——1, qz

——1.732, and
q2 ——2.236 are more restrictive than those obtained from
our quantum-mechanical calculation. For large n the
classical values for q* approach the quantum-mechanical
results.

Notice that in the present magnetic step case the trans-
mission coefFicient is always zero. Independent of the
strength of the magnetic Geld and the magnitude of the
electron energy, an electron impeding on the magnetic
barrier will always be reflected, which is a consequence
of the Lorentz force acting on the electron. In this respect
this system is different from the textbook potential step
problem in which the reflection coefFicient becomes dif-
ferent from zero when the electron energy is larger than
the potential barrier height.

FIG. 6. Magnetic barrier: (a) the magnetic field (solid
curve) and the vector potential (dashed curve), and (b) the
equivalent electric potential V~(x) for two values of the elec-
tron wave vector.

(solid curve) the potential consists of an asymmetric well
of Finite height, and when ~q~ ) d/2 (dashed curve) it
is a gradual step. The problem is symmetric under the
substitution q i —

q (and x —+ —x) and consequently we
may limit ourselves to the case q & 0.

By inspection of Fig. 6(b) we notice that there are
three different energy regions important to us: (1) 0 &
E & (d/2 —q) /2, where bound eigenstates can exist; (2)
(d/2 —q) /2 & E & (d/2 + q) /2, which is the reflection
region; and (3) (d/2 + q) /2 & E, where the electron is
transmitted through the magnetic barrier.

First let us concentrate on the situation in which we
have bounded electron states. In this case the electron
wave function in the barrier region, i.e. , ~x~ & d/2, is a
linear combination of Weber functions

gati(x) = aD@ p s[v 2(x —q)] + bD@ p s[v 2(q —x)],

(4.3)

IV. MAGNETIC BARRIER

The magnetic step can be used as a building block from
which more complicated structures can be built. As a
first example we consider the magnetic barrier in which
the magnetic field is diferent from zero in a strip of width
d, as shown in Fig. 6(a) by the solid line. In this case
the magnetic field has the following form in dimensionless
units:

which we must match (and its first derivative) to the free-
electron wave functions of the form (3.5) at the points
x = kd/2. This matching results into the equation

Ii+ (
—q + d/2) F (q + d/2) —G+ (q —d/2) G (—q —d/2)

=0 (4.4)

where

H(x) = 8(d /4 —x ),

and we choose the vector potential as follows:

(4.1) E (z): g(q 6 d/2) /2 —ED~ p s(v 2z)

+D~ o s(v 2z) (4 5)

—d/2, x & —d/2
A(x) = g x, ixi & d/2

d/2, x ) d/2,
(4.2)

and

G+(z) = Q(q + d/2)2/2 —ED~ o s(V2z)
—D~-o.s(~2z). (4.6)

as is depicted in Fig. 6(a) by the dashed line. The analo-
gous potential V(x) of (2.6) is shown in Fig. 6(b), which
depends on the value of the wavevector q: when ~q~ & d/2

Equation (4.4) was solved numerically. The results for a
wide magnetic barrier (d = 5) are shown in Fig. 7 by the
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d=5
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0 05 10 15 20 2.5

FIG. 7. The energy spectrum for the bound states (solid
curves) in a magnetic barrier of width d = 5. Dashed curve
E = (d/2 —q) /2 indicates the free-electron spectrum.

solid curves which end at the solid dots. The latter are
situated on the E = (q —d/2) /2 curve (dashed curve).
Notice that the spectrum resembles the one of the mag-
netic step case [see Fig. 2(a)] with the distinction that
the latter has an infinite number of branches while the
one for a magnetic barrier has a Rnite number of bound
states for each q. For d = 5 there are only three branches
in the energy spectrum. The number of energy branches
decreases with decreasing barrier width d. Irrespective of
the value of d there is always at least one discrete energy
value for q = 0. This is a consequence of the fact that
for q = 0 the potential V(x) is one dimensional and sym-
metric. Such a potential is known to have at least one
discrete eigenvalue irrespective of the size of the poten-
tial well. The value of the lowest branch in the spectrum
is plotted in Fig. 8 for q = 0 as a function of the barrier

width d. Notice that when d ( I (i.e. , when the mag-
netic barrier width is less than the magnetic length lg)
the eigenvalue approaches Eo(q = 0) —(d/2) /2, which
is shown by the long-dashed curve in Fig. 8. Although
the electron is bound to the barrier, in the case of small-d
values the electron wave function is situated mainly out-
side the barrier and consequently its energy approaches
the height of the potential well V(d/2). The width in q
space (Aq) of the lowest-energy branch is also given in
Fig. 8. It is seen that this width decreases rapidly to zero
when d ( I and in the opposite case (when d ~ oo) it
asymptotically reaches the line Aq/2 = d/2 —

qII (short-
dashed line), where qII ——0.768 is the value as obtained
from the magnetic step spectrum. Another distinction
as compared to the magnetic barrier spectrum [see Fig.
2(a)] is that the energy eigenvalues are smaller in mag-
nitude than those in the magnetic step case.

For the unbounded states we have calculated the trans-
mission coeKcient which now depends not only on the
electron energy but also on the electron wave vector q in
the y direction. In the present case tunneling is a two-
dimensional process in which the total electron wave vec-
tor and the electron energy is conserved but the direction
of the wave vector is altered. A contour plot of the trans-
mission coefficient T(q, E) versus initial electron velocity
components (v, v„) is shown in Fig. 9 for a magnetic
barrier of width d = 5. The quantum transition coef-
ficient is zero above the line v„= (v —d )/2d, which
is the result one would obtain from classical mechanics
and which defines a semi-infinite transmission window.
Below this line we have classically T = 1, but quantum
mechanically T(q, E) gradually increases with increasing
electron energy. For rather thick barriers (as in the case
of d = 5) there is some additional structure at low en-
ergy which is enlarged in the inset of Fig. 9. There is
an additional peak around (v, v„) = (0.3, —2.5), which

0.6 0

0.4
CF

C)
II
CF

0.2
UJ

FIG. 8. The lowest eigenvalue of the bound state in a mag-
netic barrier as function of the barrier width for q = 0 and
the width (Aq) of the lowest-energy branch in q space (solid
curves). The long-dashed curve indicates the height of the
potential Vq o(x = d/2) = d /8 and the short-dashed line
Aq/2 = d/2 —qo indicates the asymptotic value of that width
de6ned from the magnetic step spectrum.
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FIG. 9. Contour plot of the transmission coeKcient
through a magnetic barrier in the incident electron velocity
(v, v„) space.
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is a consequence of the presence of a virtual energy level
above the quantum well Vz(x). A(x) =

&

x —d/2, x & d/2
0, ix[ & d/2

x+ d/2, x & —d/2.
(5.2)

V. MAGNETIC WELL

The inverse situation of the previous problem is the
magnetic well case, which we will discuss now. Because
of the essential 2D character of the electron motion in a
magnetic field we should rather speak of a magnetic wire.
In dimensionless units the magnetic field is given by

The value of the vector potential is now unbounded, i.e.,
A(x)

~
~~ —+ +oo, and as a consequence the potential

satisfies V(x)
~

~~ ~ oo, which implies that the elec-
tron motion is confined. in the x direction and all the
states are bounded.

The corresponding wave functions are constructed by
matching the quasi-free-electron wave function (3.12) in
the region ~x~ & d/2 with the Weber functions

~( )
0, x &d/2
1, x &d/2

and the corresponding vector potential is

(5.1)
Q(x) = D~ p, [+y 2(x ~ d/2 —q)], (5.3)

which are valid in the regions ~x~ & d/2. This matching
of the wave function and its first derivative leads to the
following algebraic equation for the eigenvalues:

cos(kd)D~ p s(~2q) — sin(kd)D& p z(~2q) D& p z(—~2q)
A:

+ cos(kd)D~ p s(~2q) + sin(kd)D~ p s(~2q) D~ p s( —~2q) = 0I k

2
(5.4)

where k = /2E —q2 for 2E & q2 and k = i gq2 —2E for
2E & q in which case the trigonometric functions should
be replaced by their corresponding hyperbolic functions.

The results of the numerical solution of this equation
are presented in Fig. 10(a) for a wide well (i.e. , d = 5) and
in Fig. 10(b) for a narrow well (i.e. , d = 1). In the wide
well case [Fig. 10(a)] there are clearly two distinct regions
which are separated by the &ee-electron energy E = q2/2
curve [dashed curve in Fig. 10(a)]. For E « q /2 the
energy spectrum consists of Landau levels. The electron
is mainly located in the barrier where there exists a uni-
form magnetic field. For small-q values, i.e., E » q /2,
the spectrum consists of bands with free-lectron-like mo-
tion in the y direction. This is similar to the case of the
well-known quantum wire with electrical potential bar-
riers. When we decrease the width of the well the two
regions are less distinct, as is apparent in Fig. 10(b) for
the case of d = 1. For d = 1 the well is narrower than
the width of the electron wave function and consequently
there is always an appreciable overlap of the wave func-
tion with the magnetic barrier region. Notice that the
energy levels have almost no dispersion. The diferent
behavior between the two cases is also illustrated in Fig.
11 where the electron velocity is shown for the diferent
states. Notice that the velocity exhibits a maximum near
E = q2/2 and it diminishes quickly for q && i/2E, which
is the region where the electron is mainly located inside
the magnetic barrier. Notice that for wide wells, i.e. , see
the d = 5 case, the velocity curve v (q) can have several
local maxima, which is a consequence of the repulsion of
the difFerent energy levels as seen in Fig. 10(a). In the
case of the usual quantum wire constructed from walls
consisting of potential barriers the electron velocity is
v = hk„= —q and it is independent of the energy-level
index n and it is a uniformly increasing function of the

(a}

0 I~ I I I I I I I I I I I I I

d=1

I~ I I I I

(b}

FIG. 10. The energy specrum of a magnetic well for two
diFerent values of the width: (a) d = 5 and (b) d = 1.
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electron wave vector. The behavior of v (q) as depicted
in Fig. 11 is also different &om the one of edge states in
which v (q) is a uniform increasing function of g.

The density of states (DOS) for the two cases is de-
picted in Fig. 12. Notice that, like for the quantum
wire case, the DOS exhibits singularities at the onset of
each energy level. But there is a difference: the width
in energy space of each level is Gnite and bounded by
a singularity in the DOS. Suppose we have a system in
which we are able to increase the Fermi energy gradually.
Starting &om zero, we erst populate the quantum wire
states and the electrons are mainly situated in the well
region. Further increasing the Fermi energy we see that
for d = 5 we first start to populate the next energy level,
which consists initially of states located inside the well.
For d = 1, on the other hand, we start to populate states
which are situated in the magnetic barrier region and
which are nothing other than 2D Landau states. Thus
by changing the Fermi level we are able to have 1D states
or 2D states at the Fermi level, which will have consider-
able influence on the electrical properties of the system.
The 1D states are quasi&ee while the 2D states are lo-
calized on Landau orbits and can only move if scattering
is involved.
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FIG. 12.. The density of states of the electron states in the
magnetic wells corresponding to Fig. 10.
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FIG. 11. The electron average velocity corresponding to
the energy spectrum of Fig. 10.

The spectrum of electrons moving in 2D and interact-
ing with nonhomogeneous magnetic fields is calculated.
Different structures of nonhomogeneous magnetic fields
in one direction are considered. The similarities and dif-
ferences between similar structures built &om electrical
potentials are pointed out. The motion in the present
case is essential 2D while in the electrical potential prob-
lems often a separation of variables is possible, which re-
duces the problem to 1D. In the present case the problem
can mathematically be cast into a 1D problem, but the
physics and the motion stay essentially 2D. In the mag-
netic case the potential V~(x) appearing in the mathe-
matical 1D problem depends on the electron wave vector
(q), which makes it inherently two dimensional even in
the case of one-dimensional magnetic-Geld modulations.

One of the interesting features of nonhomogeneous
magnetic-field structures is that a step in the magnetic
Geld can bind electrons. This is essentially different from
potential steps, which always act repulsive. As a conse-
quence magnetic barriers can exhibit bound states and
tunneling through them turns out to be much more rich:
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for example, tunneling can occur through such bound
states which may lead to quasiresonances in the trans-
mission coeKcient. Tunneling is essentially a 2D pro-
cess where only transmission is possible in a semi-infinite
window in velocity space. Such a magnetic barrier struc-
ture can be used as a filter for electron wave vectors.
A combination of such magnetic barriers will result in
more complicated structures such as, for example, res-
onant tunneling structures and superlattices, which will
be studied in a forcoming paper.

The inhomogeneous magnetic fields discussed in the
present paper can be created by depositing a type-I su-
perconducting film above a 2DEG and using patterning
techniques to create the desired magnetic-field profile in
the 2DEG. The use of ferromagnetic films will in gen-

eral lead to more complicated magnetic-field profiles, the
theoretical study of which is in progress. In the present
paper we have limited ourselves to the most simple struc-
tures from which the basic physics is already apparent.
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