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The Aharonov-Bohm (AB) interference patterns in ring-shaped conductors are usually dominated
by random features. The amplitude of the oscillations is random from sample to sample and from
point to point on the magnetic 6eld axis owing to random scattering of the electron trajectories by
impurities within the wires. We report experiments on devices made with wet etching and global
gates, which have shown major progress towards removing the random features. In loops that
exhibit ballistic conductance plateaus and cyclotron orbit trapping at 4.2 K, the random pattern of
AB oscillations (observed for T ( 0.1 K) can be replaced by a much more ordered one—especially if
only a few transverse modes are populated in the ring. The amplitude and shape of the oscillation
envelope function change systematically as subbands are populated in the wires forming the loops.
Mechanisms governing the AB eKect in the ballistic regime are discussed. Correlation has been
found between the G(Vs, B=O) staircase and the beating period of the envelope functions. Quantum
oscillations in G(Vs, B=O) are consistent with direct interference of paths of unequal length. Both
the correlations and the quantum oscillations in gate voltage are signatures of ballistic transport.

INTRODUCTION

The Aharonov-Bohm (AB) interference effectsi have
been studied extensively in small metallic rings. In these
devices, electrons encounter large amounts of elastic scat-
tering and move diffusively. The elastic mean free path is
typically L, 10—100 A. The AB effects are observable in
these systems because at low temperatures the quantum
phase information is retained over a much longer distance
l~, the phase coherence length, ' which can be 3—4 or-
ders of magnitude greater than /, at temperatures below
T = 1 K. In metals the electrons are highly degenerate
and the Fermi wavelength is much smaller than the diam-
eters of wires that form the loop (typically three orders
of magnitude); hence, there are a large number of states
on the Fermi surface contributing to the electron trans-
port, and there is no quantization of electron motion in
the direction transverse to the wire.

Following the discovery of the quantized conduc-
tance in semiconductor heterostructure point contacts, '

much work has been devoted to the study of one-
dimensional (1D) electron subbands (or modes) in elec-
tron transport. ' The subbands arise due to the low car-
rier density in semiconductor interfaces, which leads to a

long Fermi wavelength, which is, in turn, comparable to
the width t of the wire. Both theory and experiments
have shown that in a straight channel, the conductance
contributed by each subband is 2e /h (2 from spin degen-
eracy). If the carrier density is controlled by a gate volt-
age, the conductance will change in increments of the ba-
sic conductance quantum to 2¹/h, where % = 0, 1, 2...
is the number of occupied subbands. Recently, AB ex-
periments have been carried out in loops fabricated on
high electron mobility GaAs/Al Gai . As heterostruc-
tures, and large-amplitude AB oscillations have been re-
ported by several groups. Since electron conduction
is via the subbands, the subband population ought to
affect the AB interference pattern dramatically. If no
scattering occurs, and electrons are guided only by the
electrostatic confinement that defines the shape of the
device and the Lorentz force, we would expect the elec-
tron transmission to be very similar to microwave trans-
mission through waveguides, and that changing the elec-
tron density would be analogous to tuning the microwave
frequency. In a purely ballistic situation, such a device
would be a true solid state interferometer in a magnetic
field.

Consider what happens to the interference when the
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mode population changes. At zero magnetic Beld, con-
ductance G(Vz, B = 0) is a mode-counting staircase in
Vs. In the plateaus, the modes are well defined (trans-
verse momentum is the conserved quantum number), and
in the regions linking plateaus new modes are just turn-
ing on. At low enough magnetic fields, we may sup-
pose that the field does not alter the subband population
substantially. Correlations should be expected between
AB oscillations at fixed gate voltage G(Vs=const, B) and
the mode-counting staircase G(Vs, B=O): for Vs on the
plateaus of the mode-counting staircase, the AB oscil-
lations are larger and more ordered than Vz in the re-
gions linking plateaus. As a result, the large ordered and
somewhat small and disordered patterns will appear al-
ternatingly in the AB oscillations as we sweep the gate
voltage. At the same time, we also expect that as more
and more modes are populated the structure of the AB
efFect will become more and more complicated. This
can be understood in analogy with a waveguide oper-
ated in a single-mode (or few-mode) transmission and
in multi-mode transmission. Earlier experiments, how-
ever, failed to confirm the expected correlations. Ap-
parently, the interference pattern was dominated by ran-
dom scattering from donors and surface defects, ' and
our ballistic picture simply does not apply. (An excep-
tion occurred at high magnetic fields in the regime of the
quantized Hall efFect, where beautiful regular oscillations
were observed from a single point contact and from open
cavities bounded by point contacts in the transition be-
tween two successive Hall plateaus. )

This paper will report the results from devices in which
scattering has been eliminated to a large degree. Correla-
tions have been found between AB interference patterns
and subband population. In addition, quantum oscilla-
tions were seen in G(Vs) at B = 0, which are consistent
with direct interference of paths of unequal length. These
are signatures of pure ballistic transport, and so our re-
sults contain an encouraging step toward the ultimate
goal of completely ballistic devices.

EXPERIMENT

Our samples were fabricated on a standard high-
mobility GaAs/Al Gai As modulation-doped layer
(x = 0.3, carrier density n, = 2.3 x 10is/m2, and mobility
p = 90 m /V sec) grown by molecular beam epitaxy. The
ring geometries were de6ned by shallow trenches formed
through a wet etching technique. Metal gates covered
all active portions of the devices. We attribute the ex-
cellent quality of these devices directly to the softness of
the etching and screening eKect of the global gate. The
effect of the gate in reducing the long-range interaction
of ionized dopants should not be underestimated. More
details of the fabrication are reported elsewhere. An
earlier paper by the authors discussed an experiment on
a similar single-ring device at T = 4.2 K. Although that
temperature was too high to see any AB oscillations, cy-
clotron orbit trapping was observed, which, in turn, is
convincing evidence of substantial ballistic transport in
the device.

The samples were a single ring and two and four cou-
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I'IG. 1. Schematic drawing with lithographic dimensions
for a two-ring sample. The loops and ports are to scale, but
the large area regions are not. The region comprising the
rings and the ports is covered by a Ti/Au gate.

pled rings. The lithographic geometry for the coupled
two rings is illustrated in Fig. 1. The two parallel rings
share one arm. The four-ring sample is the obvious ex-
tension of the series with four parallel rings. The rings in
all the samples are of the same size. The lithographic pat-
tern has the average radius of r = 0.8 pm and linewidth of
t = 0.4 pm. Previous analysis of the data in similar sam-
ples leads to a more realistic estimate of the width of the
conduction channel to be t = 0.3 pm. The temperature
at which the data was taken was 0.04 K unless specified.
This temperature is in the regime of large phase coher-
ence length, where interference eKects are quite apparent.
The resistance was measured through the standard low
frequency ac technique with PAR 124A lock-in amplifiers
and Ithaco 1211 or 1212 current amplifiers. The excita-
tion voltage ranged from 1 pU to 4 pU at a frequency
of 13 or 278.5 Hz. During the measurements, the sam-

ples were immersed in the mixing chamber of the dilution
refrigerator to ensure good thermal contact.

ANALYSIS OF THE MAGNETORESISTANCE

In Fig. 2, curve 6 displays magnetoresistance for the
single ring in a "random" state. At this Vz, there
are 4 filled subbands [judged by the conductance
G(V&,B=O), which is not shown] in the ring. The in-
terference pattern in this state is similar to the data
from earlier experiments in heterojunctions, and
also from diffusive metallic loops —namely, rather weak
oscillations, and the phase and amplitude of the os-
cillations are uncorrelated from point to point along
the magnetic field axis. The je/h (j is an integer)
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FIG. 2. The magnetoresistance for the single ring at the
gate voltage of V~=0.15 V (a) and V~=0.24 V (b). The smooth
line through the 0.15-V data is the background resistance (its
reciprocal is Go which will be used later), calculated by aver-
aging the original data in 0.005 T intervals. The peaks near
+0.07 T are due to trapping of cyclotron orbits.

Aharonov-Bohm frequencies are mixed with consider-
able amounts of other "frequencies" of oscillation yield-
ing a random amplitude for the AB oscillations. In
the random state, no correlations among the data at
different V~ or between the AB oscillations and the
G(Vs, B = 0) staircase are apparent.

In Fig. 2, curve a displays magnetoresistance data for
the single-ring sample in the "ordered" state. V~ = 0.15
V, which corresponds to having one filled spin degen-
erate subband in the ring. In contrast, it is dramati-
cally different from the bottom curve, and from what
has been observed typically in the metal rings by many
authors, ' and also from the previously reported results
in GaAs/Al Gaq As heterostructure rings. s ~~ rs There
is a strong correlation in the oscillation phase and ampli-
tude throughout the magnetic field range. This implies
that the scattering events are "gentle" in the sense that
backscattering is largely eliminated. A small amount of
forward scattering to mix the modes is necessary to ac-
complish the interference process, but it does not appear
to corrupt the interference pattern. The latter prospect
is consistent with the disappearance of noise in filled
subbands. ' Different sweeps at the same gate voltages
are in good agreement. The reproducibility of two traces
at a fixed Vs is 99%%uo with a time delay of 5 h between the
up and down traces in magnetic field, which is compara-
ble to earlier work on GaAs/Al Gaq As. If we use the
same data and subtract the smooth background (see be-
low), the envelope of the 6/e oscillations, which account
for 5—15%%uo of the total conductance, has a reproducibil-
ity of 70—90%.

The exact reason that the devices get into one or the
other state is not clear yet. A more systematic study
of device processing and low-temperature transport is
needed. It is suggestive that under conditions where
good plateaus exist in G(Vs, R = 0), the AB effect is
cleaner. For two of the samples used in this paper, the

initial cooling (300 K to 0.04 K) obtained noisy data,
one with very active time-dependent conductance fluctu-
ations on the time scale of seconds, which almost totally
buried the AB efFect (nevertheless, reasonably good con-
ductance plateaus were seen at T 1 K in the same
cooldown). After bringing the samples to 300 K in the
dark and recooling back to 0.04 K, the same sample was
in a quiet, ordered state, and clean AB oscillations were
then observed. Once the sample is in the ordered state, it
is fairly stable unless it is raised to a very high tempera-
ture ())4.2 K) or suffers an electrical shock. Based on the
theory and experiments on universal conductance fluctu-
ations, this is not so surprising, because only a few active
impurities are enough to kill the correlations and even the
AB effect itself, even when transport through most of
the conducting channel is ballistic. The regions near the
ports are especially critical and an inconvenient impurity
configuration there can have a huge effect, and this is
just the region where the strongest electric fields appear
during transport experiments. So we speculate that the
above randomness and changes from ordered to random
states is related to the movement of a few impurities or
defects, probably near the ports. With the view towards
the ultimate goal of pure quantum waveguides, these re-
sults imply that the task is even more formidable. Not
only a very clean channel is needed, but also the elimi-
nation of all backscattering within It'@ of the ports.

Each trace (random or ordered) can be described by a
field-dependent smooth background resistance summed
with Aharonov-Bohm oscillations of frequencies 6/e,
6/2e, and so on. The background resistance (the smooth
line through the oscillations of curve o, in Fig. 2) is cal-
culated by averaging the original data in every LB =
0.005 T interval of magnetic field. This background
resistance can be attributed to two parts. One is
the overall parabolic component, which we believe to
be the magnetic steering of electron away from head-
on collisions with the inner wall of the ring. Other
physics might contribute, however for instance, the
electron-electron interactions can cause a similar nega-
tive magnetoresistance. The electron-electron interac-
tion should be strongly enhanced by the 1D nature of
the transport, but (perhaps) suppressed by the screening
from the gate and complicated by the donor charges.
The cause of the large negative magnetoresistance will
not affect the analysis to follow. The second component
of the smooth background resistance comprises the broad
peaks at +0.07 T, which agree well with a model of
trapped classical orbits in the loop. The peaks in re-
sistance arise when the cyclotron orbit of an individual
mode matches the size of the ring, so that the electrons
in that mode are guided away from the outlet port and
remain in the ring. A peak appears for each individual
value of forward momentum, i.e. , for each occupied trans-
verse mode, so at the same Fermi energy more than one
trapping peak could be seen. In this figure the trapping
peaks, except for being dressed by the AB oscillations,
are not different from the equivalent data taken at high
temperatures. The lack of temperature dependence pro-
vides further support for our semiclassical trapping pic-
ture, and rules out interference-related models for this
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resistance enhancement.
To be able to see the AB oscillations better, the smooth

background Go (reciprocal of the dark line) has been sub-
tracted from the original conductance in Fig. 2. ince we
will compare the AB efFect from a wide range of Vg and

B, in which the background itself changes (typically) by a
factor of 5 we will study the relative conductance change
AG/Go, and this relative conductance oscillation for the

i . 3~a~ ~Fi . 2 is cut
to +0.1 T to show the detailed structure of oscillations. )
The envelope function here is mainly from the contribu-

adjacent nodes is 0.07 T, spanning about 34 fundamenta

e idealIt is straightforward to realize that even in the idea
case when absolutely no random scattering is involve
the envelope function will not be featureless; instead, it

sized in the difFusive case. First, due to the finite wi t
of the ring arms, i erenh

'
difFerent modes with difFerent trans-

verse spatial distribution will encircle difFerent amounts

A simple calculation of the Aux difFerence between t e

vr r~ r~j I, w ere r~
inner radii o e ring.d" f th 'n . For our geometry we estimate a
4% diiference between the two frequencies, and for hig er

result. The result of the composition of two close frequen-
cies is perio ic ea ing od b t f the oscillation amplitude rather
like that in Fig. 3(a). If we attribute the change in ampli-
tude to such a mechanism, then typical h/e frequencies
diIIer on y y p,'ii I b 3% which is in reasonable agreement
with our estimate. From this point of view, Fig. (a) is
very close to what we can see from an ideal solid s a e
interferometer. We note, however, that even when on y

0 500 1000
& (T-')

FIG. 3. (a) &G/Go is the relative conductance oscilla-
tions calculated by subtracting the averaged (heavy) line from

F 2 (b) The Fourier transform amplitude oofcurve a in ig.
AG/Go from (a).

COMPARISON WITH MODE- CO UN TIN G
STEPS

Before using more sophisticated met o
~ ~

s we will look
at the Fourier transform (FT). Figure 3 b shows the
FT amplitude of the data in Fig. 2(a). Since the smooth
background has been subtracted, the zero frequency com-

t ' th FT spectrum is not present. e e ec-
tive cut-off frequency(1/AR) due to this filtering is
T . To compare the FT spectrum wi th the mode-
counting steps, systematic measurements have been con-
ducted for the double-ring sample.

V at theIn Fig. 4 the zero-field conductance G versus Vg
temperatures 2 K 0.74 K, and 60 mK is shown. The
conductance staircase is clearest at 0. . Th q4 K. The uan-
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FIG. 4. G(Vg) at several temperatures and B=O recorded
upon a second cooldown with a considerably shifted threshold
voltage. The temperatures for the curves are a:a: T=2 K 6:
T=0.74 K, and c: T=0.06 K. The difference between c and b,
which is attributed to interference effects from changing
is plotted as d.

one mode is populated there is still some beating of the
interference amplitude, although over a longer field scale.
Another more plausible explanation is directly related to
the cyclotron orbit trapping. When the electron is guided
away from the outlet, the amplitude of the oscillations,
which results from interference of trajectories escaping
the ring, will be suppressed too. As a result, a node will
develop in the AB oscillation amplitude accompanying a

k
' the resistance. This naive mo e is no

completely supported by curve a in Fig. 2, w ere t e
envelope nodes do not line up with the trapping peaks,
but the average period is approximately correct.

Ordered data such as curve a in Fig. 2 occur at specific
values of Vg, while at other Vg the data are not as satis-
fying, but as long as the sample stays in the quiet state,
the typical data are much more ordered than the ran om
case curve in ig.b~

' F 2 So we generally characterize our
"ordered" data as in an intermediate scattering regime,
where analysis of the envelope functions based pure y on
ballistic transport is not entirely adequate. But, as we
will see statistical methods are appropriate and useful
in this special regime.
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tized conductance height is 1.3e2/h. As discussed
previously, ' the conductance step does increase with
the number of parallel rings in the sample and is repro-
ducible from sample to sample with the same geometry.
In addition, we notice that the step height 0.75e /h from
the single ring is very close to the the classical addi-
tion of two-ports and two-ring arms (2e2/h each), which
would be —e2/h. But why the classical conductance ad-
dition rule should be applicable here is an open question.
The clear conductance staircase (sometimes up to nine
plateaus) suggests adiabatic coupling between the ports
and the ring, which should lead to larger step height than
the classical value. On the other hand, the (parallel)
ring arms support the same number of modes as the in-
let ports, so the arms are "underutilized" as transport
paths.

At 60 mK an oscillatory feature dresses the staircase.
The oscillations in G(Vg) always accompany the AB ef-
fects. At temperatures where the staircase was smooth
(T ) 1 K), no (or very small) AB oscillations were ob-
served. In this figure, we also show the 60-mK data after
subtracting the 0.74 K sweep. The average magnitude of
the G(Vg) oscillations agrees with the magnitude of the
AB effects at a given temperature. This leads us to relate
the G(Vg) oscillations to quantum interference. s These
features differ from the AB effects in that they are not
caused by the magnetic fIux; they are related, instead, to
the change of the Fermi wavelength with changing elec-
tron density. From the AB effects, we know that the
dominant contribution to the interference oscillations is
from the fundamental h/e signal. This frequency results
from partial waves from the two ring arms interfering
at the outlet. If there is a difference in the two arm
lengths, when the Fermi vector changes, the phases ac-
cumulated on the trajectories through each arm will be
different, the difference being Al Ak~. ' The average
period of the coherence oscillations in G(Vg) is AVs = 3
mV. Using our previous Shubnikov —de Haas measure-
ments of Fermi energy in similar samples, we have es-
timated that the corresponding change in Fermi wave-
length is Ak~ ——40 pm . Prom ALAk~ ——2a, we have
AI/I, = 2~/(Aky~r) 6%%uo, or Al = 0.15 pm. This is
certainly plausible. The existence of so many oscillations
(about 30 total), however, implies that the simple pic-
ture above must be modified, since it would account for
about ten oscillations at most. If the modes are distinct
within the wire then each subband can contribute sepa-
rate oscillations, which is consistent with the increase in
the number of oscillations per plateau as more subbands
are populated. Another possibility is that of Fabry-Perot
interference between the inlet and outlet ports, which
has been reported in similar structures. Further exper-
iments are required to sort out the detailed explanation
as well as the rest of the phenomenology.

In Figs. 5(a) and 5(b) we show the Fourier spectrum
of the relative AB oscillations at a series of gate voltages.
The surface represents 32 magnetoconductance measure-
ments equally spaced between Vg:0 5975 and 0.6700 V
and interpolation between successive curves. Three peaks
(h/e, h/2e, and h/3e) are clearly seen throughout the
range of gate voltage, and the h/4e peak can be seen

at high Vg. The average &equencies for the first three
peaks are 506.6+6.4 T, 1011+11 T, and 1511+18T, respectively, which scale fairly linearly with the har-
monic order, as expected. To obtain the frequencies, each
harmonic peak at a specific Vg is fitted with a Gaus-
sian. There is no systematic dependence of the frequen-
cies on Vz for any of the peaks. These &equencies are
typically larger than corresponding frequencies from the
single ring, where h/e oscillation is at f = 482.2 T
We speculate this is due to the widening of the ring at
the shared arm region between the two rings.

In the same figure we include a panel at the left con-

Ooo 's

0~oO

FIG. 5. The Fourier transform of AG/Go as a function of
gate voltage for the double-ring sample, in frequency ranges
from 300 to 1300 T (a), and 1300 to 2300 T (b). The
vertical axis in (b) is the same as for (a). The surfaces are
constructed from 32 equally spaced measurements between
V~=0.59 V and Vg:0 67 V recorded on the second cooldown.
Four peaks are seen at the frequencies 506.6 +6.4 T, 1011+
11 T ', 1511+18T ', and 2020 T '. The G(Vg, B=O) and
(the negative of) its derivative —dG/dVg (in 0 V ) versus

V~ are drawn on the z-y panel and compared with the skyline
(dotted line) consisting of the highest points from h/e peaks.
The correlation between the mode population and the height
of the 6/e peak is obvious; there are four main "hills" in h/e
and the same number of peaks in —dG/dVg. The strongest
h/e oscillations are found around the conductance plateaus,
i.e., the zeros of —dG/dV~.
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taining G(V~) at 0.06 K and for comparison, the (nega-
tive of the) transconductance —g = —dG/dVg has also
been plotted in the same kame. In —g the plateaus
of G correspond to zeros between —50 and 50, and the
regions linking plateaus appear as valleys. In this range
of Vg the conductance G(Vg) increases from 0.94e2/h
to 4.2e2/h, corresponding to switching on of modes
1—4. We can see that despite the large change in G(Vg),
the average relative AB oscillation AG/G for h/e is ap-
proximately constant (although there are order of mag-
nitude fiuctuations), implying that the contributions to
h/e frequency Rom each mode are about the same. In
contrast, there is a slight increase in AG/G with Vg for
the higher harmonics, especially 6/4e. In principle, this
is not expected. At low Vg our resolution in LG de-
creased because the detected current was smaller, so it
is possible that the apparent increase in the fourth peak
is an instrumental artifact. Other possible explanations
include a longer phase coherence length at higher V~ or
an effect of the intermode scattering when many modes
are populated.

For the h/e frequency, there is an obvious correlation
[four main peaks in the Fourier transform lying approx-
imately in line with the four plateaus in G(Vg, B=O)]
between the spectral density and the population of the
modes. For ease of viewing, we also include the projec-
tion of all the h/e peaks onto the panel (dotted line), i.e. ,
a "skyline" consisting of the highest points at each V~.
Prom the graph it is evident that when the B=O con-
ductance is at the center of a conductance plateau, the
AB oscillations are stronger, and on the region linking
plateaus weaker.

Now examine the scattering processes when a new
mode is turned on. Because the subband bottom mainly
comprises states with small k, it is sensitive to imperfec-
tions of the conducting channel. As a result, the scatter-
ing is stronger when a mode is newly populated, which
is the reason for the Rnite width of the regions linking
plateaus in V~. According to the Landauer formula, small
angle, intraband scattering has very little effect on the
conductance. So we see that the regions linking plateaus
are merely manifestations of heavy interband or large-
angle intraband scattering (generically called backscat-
tering). Both of these will reduce the 6/e AB oscillation
size (their roles in general, and for h/2e will be discussed
later). Following this line of thinking, we expect a good
staircase in G(Vg, B=O) (not counting the fine interfer-
ence pattern in curve d in Fig. 4) to foretell observation
of a periodic oscillation of the scattering strength, and
an observation of a correlation between G(Vg) and the
AB magnitude is thus inevitable. The lack of observa-
tion of such correlations in earlier experiments in hetero-
junctions is consistent with the absence of a clear zero
B staircase in their experiments. The above analysis
is based on a static scattering potential, and not time
dependent events which may serve as a phase-breaking
source but not a conductance killer (e.g. , spin-spin inter-
actions). In this case we may see a staircase at T 1 K,
but at lower temperatures might not be able to observe
any correlations in the AB effect (or, in fact, any phase
coherent response at all). This may be the reason for

poor AB oscillations in the random state (see above).
The discussion in the last paragraph implies that the

quality of correlation closely depends on how clean the
staircase is. We note that the low-temperature oscilla-
tions at B=O (curve d in Fig. 4) contribute a significant
amount to the conductance ( 10%). The nonideal cor-
relation may be attributed to the substructures in the
curves of Fig. 4. One should in principle self-consistently
model the AB interference patterns with the dressed B=O
transmission coeKcient.

As a final remark we note that if, starting in Fig. 5 at a
peak in the FT at h/e frequency, we move towards lower
or higher Vg or B, the peak height decreases smoothly
while the peak position drifts. As a result, rather than
uncorrelated random spikes, hills with significant foot-
prints are seen. The gate voltage correlation range among
the hills is 20 mV, which is about the change required
to turn on a new mode. This correlation with gate volt-
age may be a manifestation of the response of a partic-
ular mode evolving its detailed charge distribution as V~

changes, but more detailed investigation of this physics
is required. Another consequence of the frequency shift
is that the peaks move as V~ changes, so if we show a
cross section at any particular f, the global correlation
seen in Fig. 5 will not be apparent. For the higher har-
monics (6/2e, h/3e, and 6/4e), no obvious correlations
can be seen between the peak heights and the plateaus
in G(Vg, B=0) .

ANALYSIS OF THE ENVELOPE FUNCTIONS

Besides studying the magnitude of the AB oscillations,
we also investigated the patterns of the envelope func-
tions with respect to the subband. populations. Similar
data have been discussed previously for the disordered
(metallic) limit. 2 One expects the interference contribu-
tion to the conductance to be of the form '

AG = ) G, (B,Vg) cos + n~(B, Vg)
2~i e

j=o

where C is the average amount of magnetic Hux enclosed
by the electron trajectories encircling the ring, while G~
and o.~ are the envelope function and phase that account
for individual harmonics. Information about the details
of the scattering are contained in G~ and a~ while the
oscillatory components contain only the size of the ring.
For metal samples these functions have been random in
B. The correlation scale for an envelope function G~ is
B„which, in the diffusive case, is just the field scale to
introduce a fiux 6/e into the sample (i.e. , the ports and
the arms of the ring). But this difFusive description for
B, does not appj. y to our data because, even though the
effective width of the wire does increase with Vz, it is
too small [only 40% (Ref. 16)] to account for what we
have observed in our samples; in addition, for our data
the B changes periodically rather than monotonically
(see below). Here we will borrow this vocabulary, such as
envelope function Gz and correlation field B, to describe
our data, and we will explore the degree of "order" in



15 154 LIU, GAO, ISMAIL, LEE, HONG, AND WASHBURN

the envelope functions G~ through their autocorrelation
functions.

Now consider the two contrasting curves in Fig. 2 erst.
In order to analyze the envelope Gi for the h/e oscilla-
tions, we use a Gaussian Alter and reverse Fourier trans-
form each 6/e peak back into B space. Figure 6(a) illus-
trates the result for hje oscillations from the spectrum
in Fig. 3(b). The h/e signal accounts for about 80%
of the total oscillation magnitude in Fig. 3(a). To ensure
that the information in the chosen peaks is fully included,
generous filters of half-width 100 T around the center
frequencies were used. These are at least three times
bigger than the widths (15 T i and 30 T ) of the It/e
and Ii/2e peaks calculated by fitting Gaussians to the
peaks. To reaKrm the validity of the filter, we have done
a FT for Fig. 6(a). If we plotted the result in the same
picture with 3(b), no difFerence could be seen between
these two curves in the region +100 T around the cen-
ter frequency. The same filter width was used throughout
the analysis. The same operation for the bottom curve in
Fig. 2 obtains the result in Fig. 6(b). Both curves contain
AB oscillations of the same average frequency. The dif-
ferences between the two curves are in correlation scales
of the envelope functions Gi (dark curves that bound the
oscillations) .

In Fig. 7, we have calculated the autocorrelation func-
tions (solid lines) for Gi in Fig. 6. The huge difference
between the two envelopes is rejected here. For enve-
lope 6(b), the oscillation amplitudes at a particular value
of B are not correlated with those at other places on
the B axis, so its autocorrelation function for the enve-
lope [7(b)] is mainly Gaussian-like: a single monotoni-
cally decaying peak signifying random correlations. The
long-dashed line is the autocorrelation function calcu-
lated from the average value of the envelope, which is
consistent with the constant onset. In contrast for enve-

lope 6(a), a much more regular envelope function seems
to prevail. The autocorrelation function for this enve-
lope contains a decaying peak and a regular oscillatory
"tail, " which indicates a nonrandom pattern in the enve-
lope function.

In general, the shape of the correlation function can
be understood as follows. Because the envelope func-
tion basically consists of the sum of two parts, Gi (B) =
P(B) + Q(B), where P(B) is a periodic function, and
Q(B) a random function. The autocorrelation function
of Gi(B) can then be calculated as

C(Gi) = IP(B) + Q(B)1[P(B+&B)

+Q(B+ AB)]dB
= C(P) + C(Q)

+ [Q(B)P(B+ AB) + P(B)Q(B + AB)]dB

= a c os(2 irB/B, i) + c exp( —B /B, 2) + const.

In the derivation, we have assumed that P(B) and Q(B)
are uncorrelated, so the cross term only contributes an
insignificant constant. The autocorrelation for P(B) is
simply a cos function, C(P) = acos(2vrB /B i); and
for the random function Q(B) a Gaussian C(Q)
cexp (—B /B22). The final constant is from all three
terms [cross term, C(P) and C(Q)], since both P(B) and
Q(B) have nonzero average values. B,i is the "beating"
period, and B 2 the random correlation scale. We ac-
knowledge that there are some problems associated with
performing the calculation in a finite G.eld range. The
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FIG. 6. Inverse Fourier transforms of the 6/e peaks are
calculated to obtain the oscillation patterns for the upper (a)
and lower (b) curves in Fig. 2. The two patterns are defined by
different amplitude envelope functions Gi/Gs(B), which are
drawn as the smooth dark lines along the oscillation maxima.

FIG. 7. The measured autocorrelation function (solid
line) of the envelope functions Gi/Go for the single ring for
(a) the upper curve and (b) the lower curve in Fig. 6. The
dashed line in (b) is the autocorrelation function calculated
from the average value of the envelope, which is consistent
with the constant background offset. They are Btted with
Eq. (2) (dotted line) to obtain the beat periods B,i and de-

cay scales B~2.
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consequence is that none of the above three terms would
be ideal; the random function Q(B) will produce oscil-
latory features in both the cross term and the Gaussian
term. This is clearly seen in Fig. 7(b); there are oscilla-
tory features in the tail, which would disappear if the field
range were long enough. But we also realize that if the
correlation B,2 does not exceed the long-range correla-
tion field B,i, only C(P) gives the long-range correlation
field B i.

If we use Eq. (2) to fit the two correlation functions in
Fig. 7 (dashed lines), it yields B,i ——0.069 T, B,2 ——0.015
T for curve a, and B q

——0.012 T, B 2
——0.0030T for curve

b C.(Q) is restricted to small AB; on the other hand,
C(P) persists to large AB. Here the beating period B i
represents the long-range order of the envelope function.
For both curves we can see that the fitted B,i are consis-
tent with the periods we get from the original envelope
functions in Fig. 6. So the beating period B i can be
used as a parameter to characterize the order of the en-
velope function quantitatively. Even for the metallic case
7(b), which is outside the realm of validity for formula
(2), the fit yields correctly, at least qualitatively, a very
small value of B i, but the fit quality is rather poor, indi-
cating that there is no long-range order in this correlation
function. In the very ordered cases such as 7(a), there
might be an even longer B,i if the measurement was ex-
tended to a wider range of field, because the window size
+0.2 T puts an upper limit of 0.2 T on B,i. Unfortu-
nately, this cannot be done because depopulation of the
subbands and Shubnikov-de Haas oscillations and finally
the quantized Hall e8'ect set in, and they cause dramatic
changes in the physics behind the AB oscillations, which
goes beyond the physics that this paper set out to study.

We have performed the same calculation for all three
samples. We notice that for coupled rings (two rings
and four rings), Eq. (2) does not always fit the data,
and the discrepancy worsens as more modes are occupied.
Representative data from the two-ring sample at Vg
0.660 V are shown in Fig. 8. The autocorrelation function
(solid line) contains two oscillation periods. Obviously,
a single beat frequency is not adequate in these cases.
Instead of invoking a more complicated model, we will

TABLE I. Envelope function oscillation scales.

Sample
one ring

two rings

four rings

B g

0.078 T
0.045 T
0.038 T
0.037 T

Number of V~

8
15
32
8

Mode range
1+2
1 m2
1m4
1m2

4

2

I

—100 &

-200

0.05

0
CQ

; h/2e

~ ~ x

keep using (2) to fit the original data by seeking a local
minimum in the sum of squares of differences starting
&om different initial conditions. This method yields the
two beat frequencies as shown (dotted and dashed lines)
in Fig. 8, where the two periods are 0.081 T and 0.019T,
respectively. The average beating periods B i for Gi of
the three samples are collected in Table I. In cases where
two frequencies exist, they were considered with equal
weight in the statistics.

Prom this table, we can see that, in the same mode
population range, the average beat period tends to de-
crease as the number of rings increases. For the two-ring
sample, the only sample for which a relatively wide mode
population range was measured, the average beat period
tends to decrease as more modes are populated. Among
all the samples, only the data from the two-ring sam-
ple allow us to make a detailed comparison between the
AB effect and G(Vg, B=O). The beating periods for 6/e
oscillations are summarized in Fig. 9(b). In the calcu-
lation the fitting results are constantly checked "by eye"
against the original envelopes to make sure that the fit re-

0.22
I I I

I
I I I

I
I I I
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I

0.05,

C3
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X
C)

C3

C3

0.2

0.18

0.16

0.05 0. 1
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FIG. 8. The autocorrelation of Gi/Go for the double ring
(solid line) at Vg=0.660 V (second cooldown). It contains
more than one beat frequency. It was fitted with formula (2)
with difFerent initial. conditions ta obtain the periods 0.081 T
(dotted line) and 0.019 T (dashed line).

I

0.6
I 1

0.625

v, (v)

I

0.65

FIG. 9. Comparison between the mode-counting staircase
G(Vg) (solid line) and transconduetance —dG/dV~ (dotted
line) recorded at B=O (a) and the beat periods for the Ii/e
(b) and h/2e (c) peaks from all of the measurements from
Fig. 5. In (b) when two periods are found for a single corre-
lation function as in Fig. 4, the extra one is shown as x. The
dashed lines connect the beat periods (the average in cases
where there are two). The solid line is a smooth (Gaussian
filtered) version of the dashed line. In (b) there is a correla-
tion to the staircase similar to that seen in Fig. 5 for the ii/e
amplitude of the oscillatious. In (c) the opposite trend to (b)
is seen.
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suits are reasonable. The biggest and the smallest period
difFer by almost an order of magnitude. In cases where
two periods exist, the extra one is plotted as an x. The
dashed line connects all points (in cases where there are
two points, the average is used) together, and the solid
line is a smoothed rendition of the dashed line. Again
G(V~) and —g are shown in Fig. 9(a). On the plateaus,
the correlation functions have relatively long periods B q,
and shorter periods on the regions linking the plateaus,
which coincides with the relationship between FT peak
amplitude and G(Vg, B=O) in Fig. 5.

We have also performed the reverse Fourier transform
for h/2e oscillations, and the resulting B,i is shown in
Fig. 9(c). However, the overall trend seems to be about
the opposite of that for h/e (There is no similar correla-
tion for the FT amplitude as a function of Vg in Fig. 5.)
This result was a little surprising to us at first, and we do
not rule out the possibility of an artifact. But it is also
plausible that the trend is an indication of real transport
physics. We have discussed the role of backscattering in
quenching the Ii/e oscillations. Now consider the case of
large-angle, intraband scattering, if a A: is reflected into
the —k state in the same subband with phase coherence
retained. This kind of scattering kills the h/e oscillation
if the scattering takes place either inside the ring or in
the ports. But if the scattering occurs in the ports it
could enhance the h/2e oscillation amplitude, by forcing
the electron to make another trip around the ring. So
the overall eff'ect of backscattering on h/2e is not nec-
essarily negative. A more detailed study of the roles of

specific backscattering mechanisms on di8'erent AB oscil-
lation components is necessary.

SUMMARY

We have performed a careful experiment on GaAs/
Al Gaq As rings to study the correlation between the
B=O subband population and the AB oscillation ampli-
tude at low magnetic fields. Strong correlations are ob-
served between the one-dimensional subband populations
and the Fourier amplitude of the oscillations. There is
also a correlation with the degree of order in the envelope
function as judged through its autocorrelation function.
These samples have shown improvements on eliminat-
ing most of the impurity scattering, pointing towards the
possibility of purely ballistic solid state interferometers.
Questions for further theoretical and experimental inves-
tigation include whether or not the modes contribute in-
dependently to the interference patterns and how classi-
cal mechanisms (such as scattering in the port junctions
and orbit trapping) affect the envelope function.
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