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Coulomb attraction in the optical spectra of quantum disks
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In this paper we present a theory that describes the inhuence of the Coulomb interaction between elec-
trons and holes on the optical spectra of Oat quantum dots within the envelope-function formalism.
Starting from a nonlocal Elliott-like formula, absorption and luminescence characteristics are traced
back to properties of two-particle wave functions and energies, which are solutions of the corresponding
Schrodinger equation for an electron-hole pair under the inhuence of the Coulomb attraction and
confinement potentials, determined by the spatial variation of the band edges of the considered micros-
tructure. We present a complete numerical solution of the two-particle problem for Aat quantum dots,
i.e., disks for which the size quantization in the growth direction is much stronger than that in the per-
pendicular plane. The resulting theoretical line shapes are compared with luminescence spectra ob-
tained recently for quantum dots fabricated by laser-induced thermal cation interdiftusion in quantum-
well structures.

I. INTRODUCTION

Crystal-growth techniques together with nanometer
lithographic techniques have made it possible to fabricate
various semiconductor microstructures, ' among them
quasi-zero-dimensional (OD) quantum dot or box systems.
The recent technological progress has allowed the study
of dots with tailored geometries. The size stochastics
appearing in the earlier systems of semiconductor micro-
crystallites embedded in some host materials, e.g., glass,
can now be avoided. A very interesting preparation tech-
nique in this respect is the focused-laser-induced thermal
cation interdiffusion of narrow quantum-well structures.
The interdiffused regions induce lateral barriers for the
electron and hole motion. The form of the laser lines
determines the resulting microstructure, e.g. , a Oat quan-
tum wire or quantum disk.

The spectroscopy of optical interband transitions
across the band gap, in particular photoluminescence, is a
powerful tool to study these systems. Their photo-
luminescence spectra are governed by efIicient intrinsic
radiation of free excitons, and exhibit a superior optical
performance. ' Studying the development of the corre-
sponding line spectra, one can learn about the mutual in-
teraction of excited electrons (e) and holes (h) and its in-
terplay with vertical and lateral confinement potentials.
This holds especially for the increase of the Coulomb in-
teraction due to the confinement, resulting in enhanced
oscillator strengths and room-temperature stability of the
excitons.

Many theoretical studies have been devoted to ex-
citon states in microcrystals. Most of them are related to
variational studies of the excitonic ground state in spheri-
cal dots or to calculations in some limiting case.
Typically, infinite barriers are considered. Only a few pa-
pers' ' consider the incompleteness of the confinement.
A full numerical analysis of this problem is done by Hu
and co-workers, ' ' expanding the excitonic wave func-
tions in terms of solutions of the single-particle

Schrodinger equations. There are also papers studying
nonspherical dots, e.g., boxes, ' square Aat plates, ' and
cylindrical quantum dots. ' ' Effects such as dielectric
confinement and electron-hole exchange interaction on
excitonic states in semiconductor quantum dots are also
studied. ' Furthermore, some authors ' have tried to
include the complicated structure of the top of the
valence band.

In this paper, we follow the line of studying cylindrical
quantum dots. However, we solve the excitonic problem
of the ground state as well as excited states completely
numerically. Solutions for wave functions and energies
are used to calculate optical properties, in particular the
excitonic luminescence, for Bat dots, i.e., disks, which
have been observed recently. In Sec. II, the basic equa-
tions are given. We define the relevant optical quantities
starting from a spatially nonlocal susceptibility. This is
related to wave functions and energies of the electron-
hole pair equation. In Sec. III, an explicit solution for
the electron-hole problem in single quantum disks is de-
scribed for different dot confinements and strong
confinement in the growth direction of the structure.
The quantization of the center-of-mass motion and the
inhuence of the disk confinement on the 2D excitons are
separately studied. We discuss exciton energies, wave
functions, and oscillator strengths versus the disk radius.
Optical spectra are explicitly calculated. The results are
compared with recent luminescence measurements for
disks fabricated by laser-induced cation interdiffusion of
narrow quantum wells. Finally, in Sec. IV a short sum-
mary is given.

II. BASIC EQUATIONS

A. Optical spectra and exciton states

For systems in which the spatial variation of the pho-
ton propagator may be neglected, optical properties can
be expressed in terms of a frequency-dependent optical

0163-1829/93/48(20j/15077(9)/$06. 00 48 15 077 1993 The American Physical Society



15 078 B. ADOLPH, S. GLUTSCH, AND F. BECHSTEDT

susceptibility

y(co)= —f dx f dx'g(x, x', co),
1

V v v

where the integration runs over the optically active
volume V. However, when the lateral structure of a cer-
tain dot array as well as the vertical layers in the system
should also be taken into account, certain field distribu-
tion functions appear in expression (1). Both the absorp-
tion coefficient of the transmitted light and the intensity
of the luminescence light emitted spontaneously can be
related to the iinaginary part of the susceptibility (1). In
the absorption case, Imp(co) can directly be used to de-
scribe the spectrum. In the luminescence case, more
strictly for an optically pumped semiconductor structure
in the quasiequilibrium regime, that is nearly character-
ized by a sum hp of the quasichemical potentials for elec-
trons and holes with respect to the gap center, the fre-
quency dependence of the emitted light is nearly de-
scribed by Imp(co) multiplied with a Bose function
g(irico —b,p).

The space-dependent optical function appearing in Eq.
(1) can be related directly to the electron-hole pair wave
functions @ (x„x&) and energies E, with a as the com-
plete set of quantum numbers for the two-particle prob-
lem'4"

@ (x,x)@'(x',x')
y(x, x';co)= —

~p, ~i+

riers in the quasi-OD structures under consideration is
written as a sum. The confinement in growth direction z
of the quantum-well structure is represented by the po-
tentials V, (z;). The lateral confinement in the disks per-
pendicular to the growth axis is described by the poten-
tial W, (r;), with r;=(x;,y;, 0) as a vector in the corre-
sponding horizontal plane.

B. Specification for flat dots (disks)

Following the preparation method described in Ref. 3,
one has a situation in which the thickness of the underly-
ing quantum wells, e.g. , 30 A, is much smaller than the
lateral extent of the disks. In this strong confinement
limit in the z direction, it is convenient to expand the op-
tical susceptibility (2) and, respectively, the pair functions
4&„(x„xl,) in terms of the wave functions p,.„(z,. ) (i =e, h;
n =1,2, 3, . . . ) for the vertical electron and hole motions
in the potential V;(z, ). For spectroscopic reasons these
expansions can be restricted to the n = 1 subbands of elec-
trons and holes in the quantum-well structure. More
strictly speaking, we only study the most interesting spec-
tral region of the first heavy-hole —to —conduction-band
transition. The corresponding exciton peak is well
separated from all others. As a result, pair equation (3)
can be rewritten for motions in the xy plane. The impor-
tant change in the resulting equation concerns the
Coulomb potential averaged in the growth direction:

=E 4& (x„xi,), (3)

where electrons and holes interact via a Coulomb attrac-
tion potential screened by a relative static dielectric con-
stant e of the underlying semiconductor material forming
the disks. Complications in the screening due to the real-
istic layered and lateral structure of the system ' are21,26

avoided, assuming that the dielectric constants of disk
and barrier materials are not so very di6'erent as in the
case of GaAs and Al Ga& As. Eg denotes the energy of
the allowed optical transition in the underlying bulk ma-
terial. The single-particle Hamiltonians for electron and
hole in Eq. (3) are (i =e, h)

H, (x, )=— V„V'„+IV, (r;)+ V;(z, ) .
1

2 'm. (4)

For the sake of simplicity the potential that confines car-

In general, the dipole matrix elements ~p~ contains the
complete polarization-vector dependence of the problem.
We assume that the optical dipole transition is allowed
and nearly state independent. Its polarization depen-
dence is not discussed in detail below. c.0 denotes the vac-
uum dielectric constant, and I indicates a certain damp-
ing of the electron-hole pairs.

In the framework of the e6'ective-mass approximation
and masses m, (mh) of electrons (holes), the electron-hole
pairs obey a Schrodinger equation of the form

2

E + g 8;(x;)—,
~

@~(x„xl,)
47TC0E

~
X Xh

i

u(r) = — f dz
e +~ w(z)

4' eoE —co 'il r 2+z 2

w(z) = f dZ iy„(Z+ —,'z ) i iq)i„(Z —
—,'z ) i

According to Zimmermann the normalized weight can
nearly be replaced by a step function w(z) = 1 l
(2zo)e(zo —

~z
~ ), at least in the strong-localization limit.

Then one has u(r)= —e l(4 r iEzoe) or asichn( zlor), which
seems to be reasonable for not too thick quantum wells.
For infinite barriers zo=0. 4L (L is the thickness of the
well) approximately holds. This means that since the
characteristic values for r are of the order of the excitonic
Bohr radius or the disk extent, the averaged Coulomb po-
tential can usually be replaced by the 2D one,
u(r) = e l(4irsosr). —

Since the Coulomb attraction of electron and hole,
u(r), depends only on a relative coordinate, the introduc-
tion of center-of-mass (c.m. ) and relative coordinates

PlhR= r + -r r=r —re ~ h & e h
0 0

M0 =m, +mh, m0 =m, mh /M0

should be helpful. With E as the energetical distance
of first heavy-hole and first electron well subband, and a
reduced set of quantum numbers P, the Schrodinger
equation for the pair motion in the xy plane follows from
Eq. (3) to be
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fg2 mh

2Mp 2mo 0

me+ Wh R— r +u(r) &b~(R, r)=E&N&(R, r) .
0

2

fp= I dR@p(R, O) (10)

We mention that in the quasi-OD case expression (9) re-
places the Elliott formula we11 known for the 3D and 2D
cases.

C. I.aterai con6nement

The excitons are considered to be optically excited in
an isolated cylindrical quantum dot of latera1 radius rp.
According to the preparation technique of Ref. 3, the
typical dot material is GaAs. Such a disk is embedded in
another infinitely large semiconductor layer with a higher
energy gap. This barrier material is Ga, „Al„As. How-
ever, the Al mole fraction x is a function of the distance
from the dot center. Because of the preparation by
means of cation interdiffusion, there is no sharp transi-
tion from the dot to the surroundings. Rather, there is a
smooth transition from the band-edge positions in the
barrier material to those within the dot. The maximum
variation is defined by the band discontinuities between
GaAs and the alloy of the well barriers, but somewhat
modified by the quantum size effects already present in
the underlying well structure. The smooth potentials can
be expanded in a power series. For symmetry reasons
one obtains (v even)

(8)

The optical susceptibility (1) can be rewritten as a sum
over oscillators:

V~"~'~ E —X + I
(9)

soV & E&—A co+il p

with oscillator strengths

mh m~
V„,t(r)= W, r + Wq

— r
0 0

(13)

V;„,(R, r, @ g)=—W, (r, )+ Wz(rh ) —V, (R) —V„~(r),

into confining potentials for the center-of-mass motion,
V, (R), as well as the relative motion, V„t(r), and a
coupling term of the two motions depending on the an-
gles 4 and y of the two vectors R and r with a certain
axis in the plane of the disk.

In special cases, such as parabolic disks with equal
single-particle quantization energies for electrons and
holes, the coupling V;„, between c.m. and relative motion
vanishes. ' ' In agreement with the "generalized Kohn's
theorem, " the two motions are separable and the
equation for the c.m. motion can be exactly solved. The
explicit separability of r and R coordinates in Eq. (8), and
the independence of this particular potential of the angles
W and y, means that the excitonic wave function can be
written as a product. In order to attack the real problem
we neglect the coupling of the two motions in a first step.
The total two-particle wave function remains separable.
The angular wave functions are (1 /&2' )e ' and
(1/&2~)e' ~ with M, I=0,+1,+2, . . . . The radial

, parts with certain radial quantum numbers iV and n as
well as eigenvalues E&M and c.„obey the equations

M
R

d 1 d
2MO dR2 R dR

+ V. «)—ExM '+xM«)=0
(14)

W, (r, ) + JV~ (ri, )

= V, (R)+ V„&(r)+V;„,(R, r, @ y)—, (12)

with

V, (R)= W, (R)+ Wh(R),

d 1 d
mp dr2 r dr

m

r

In explicit calculations we consider only one term
v= vo of expansion (11). In this way limiting cases of im-

portant dot potentials can be derived. The vp=2 term
gives rise to a parabolic disk. Excitons in spherical dots
with parabolic confinement have already been dis-
cussed, ' ' but not excitons in disks. By means of terms
with a power vp&) 1 the infinite barrier potential can be
modeled. Typically we use values vp=16, for which con-
vergence in energy eigenvalues is essentially reached.
The reason is that the complete numerical analysis of the
pair equation (8) is much simpler for smooth potentials

-(r;/ro) ' than for a steplike potential. Qn the other
hand, the preparation by means of laser-induced
interdiffusion seems always to produce smooth potentials
but not sharp barriers. Another advantage of a potential
in power form with a certain vp is the unique splitting of
the electron and hole confinement potentials,

+ V„,(r)+u(r) „e—'f„(r)=0 .

@p(R,r)=g g c~~ (N, n)'@~M(R)f„~(r) e'i(M4+ m qv)

(15)

From the definition (10) of the oscillator strengths
2

f&= g c~z&(N, n)g„o(0)j dR Rqi~~(R) (16)

it follows that only the s-like states of the two radial
equations with zero angular momentum are needed. The

The exact solutions of the pair equation (8) can be ex-
panded in terms of the functions obtained without cou-
pling. One has
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unknown coefficients c~&z(N, n) are derived from a system
of algebraic equations which results from Eq. (8), with
the ansatz (15).

In the explicit calculations we have solved the eigenval-
ue problems in Eq. (14) by means of a Rayleigh-Ritz-
Galerkin method. Arbitrary disk radii ro are discussed,
although in the experiment only ro ~a~ (as is the Bohr
radius of the exciton in bulk GaAs) seem to be realized.

without consideration of the coupling is redshifted in
comparison to the correct one, which indicates that the
neglect of the coupling of the two motions acts like a de-
crease of the confinement in the disk.

III. DISCUSSIQN

A. Interplay of center-of-mass and relative motions

Figure 1 shows the imaginary part of the optical sus-
ceptibility (9) near the energy gap Es between the first
electron and first heavy-hole subband in the underlying
quantum-well structure. Strong confinement potentials
(11) with v0=16 are chosen. Their shape is nearly step-
like where the barrier at about ~r;~=ro (i=e, h) ap-
proaches very large values. That means we study more
or less a very Oat disk with strong confinement. Usually
GaAs parameters are used. In principal studies we ap-
ply symmetry between electron and hole. All quantities
are given in excitonic units, i.e., in terms of the exciton
binding energy Ez and the Bohr radius a~ of bulk GaAs.
For numerical reasons a small line broadening
AI =0.05E& is assumed, independent of the certain two-
particle state.

The spectra in Fig. 1 are plotted for different disk radii
ro. For the largest dots ro=100a~ the excitonic spec-
trum of the underlying GaAs quantum well is observed.
However, already for dots with radii ro = 10 or 5a~,
which are large compared to the excitonic Bohr radius,
strong quantization effects in the center-of-mass motion
are observed. A series of blueshifted satellites with small-
er oscillator strengths, belonging to higher quantum
numbers N, appear.

When the disk radius ro decreases, a fine structure
occurs, related to the inhuence of the dot confinement on
the internal motion of the electron-hole pairs, as can be
already seen for r0=5a~. The Coulomb degeneracy is
lifted. For dot radii close to the Bohr radius, ro =a~, the
spectra changes qualitatively. The disk confinement leads
to well-separated peaks. For ro &a~ the physical nature
of these peaks can be interpreted in terms of uncorrelated
electrons and holes. However, their energetical position
and, in particular, their strengths are again remarkably
infIuenced by the Coulomb attraction of electrons and
holes.

Figure 1 also indicates the effect of the coupling of the
center-of-mass and relative motions. Full calculations
are indicated by solid lines, whereas spectra without this
couphng are plotted as dashed lines. %'e see that the cou-
pling of the two motions is less important insofar as the
disk radius is larger than the Bohr radius. However, if
the space for the exciton in the disk is too small for an
unperturbed internal motion, i.e., for ro ~a&, the cou-
pling becomes more and more important for the descrip-
tion of the optical spectra. That holds in particular for
the energetical positions for the peaks. The spectrum
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FIG. 1. Imaginary part of the optical susceptibility for
diferent disk radii: ro = 100 {a), 10 (b), 5 {c),1 {d),and 0.5az {e).
Solid lines represent full calculations, dashed lines the same
without the coupling of center-of-mass and relative motions.
The inverse lifetime of the excitons is fixed at AI =0.05E&.
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B. Correlated versus uncorrelated electron-hole pairs

While the single-particle level spacings due to the disk
confinement scale as 1/ro, the Coulomb term in Hat dots
scales as I/ro, where ro is the characteristic radius of the
system. Thus, when the disk size decreases until ro ~ a~,
the Coulomb attraction seems to be treated as a small
perturbation. To check this assumption, optical spectra
with and without the Coulomb interaction of electrons
and holes are plotted in Fig. 2. Indeed, the line spectra in
Fig. 2 for ro az indicate more or less that the peaks
arise mainly in the picture of uncorrelated electron-hole
pairs, and are only shifted by the Coulomb attraction of
electron and hole. The peaks can nearly be characterized
by pairs of single-particle quantum. numbers of electrons
and holes. On the other hand, the most important effect
of the Coulomb attraction concerns the oscillator
strengths. The Coulomb correlation strongly increases
the oscillator strengths, which do not change parallel to
the energy. Moreover, the Coulomb shift of the peaks
does not follow clear rules.

To study the Coulomb correlation of electron-hole
pairs in more detail, we show in Figs. 3 and 4 the pair en-
ergies (reduced by the 2D gap) and oscillator strengths
for the ground state and the first excited state versus the
inverse disk radius 1/ro. The principal behavior of the
curves in Figs. 3 and 4 versus the size is very similar to
that of spherical dots versus the radius. ' "' '"' We
find a strong shift of the pair energies to higher values
with the increase in size. The near dependence —1/ro
follows that of the single-particle energies in the disk, and
is therefore the same as for spherica1 dots. Most interest-
ing is the Coulomb correlation energy, i.e., the difference
of the pair energy and the energy of the uncorrelated
electrons and holes. It represents the negative exciton
binding energy. For ro~ ~ it approaches the value of
the underlying 2D exciton, —4E~. In the opposite limit
ro —+0 it exhibits a nearly linear behavior, —4E&—
CE~a~/ro (C=3.526). Hence in the OD case of small
quantum disks the exciton binding energy is divergent, in
contrast to the strict 2D case of narrow quantum wells.

The Coulomb enhancement of the oscillator strengths
of the first two dipole-allowed optical transitions shown
in Fig. 4 behaves like —1/ro. This scaling is different
from that found for spherical dots, where a size depen-
dence —I /ro is found. " This behavior is understandable
from the change of the normalization volume of the wave
functions.

In light of Fig. 3 there is a question whether the
Coulomb correlation of electrons and holes can really be
neglected in the small-size limit ro &a&, as found for
spherical dots, ' or at least may be treated in perturba-
tion theory. ' The perturbational treatment of the effect
of the Coulomb attraction on the electron-hole-pair
ground state is given by the ground-state matrix element
U»„of the potential U(r). In the calculation of this
Coulomb matrix element the lowest single-particle states
of electron and hole appear. In the case of a confinement
with infinite barriers, these functions are zero-order
Bessel functions Jo(z, r/ro) with z, =2.40482 as their
first zero. One finds

(e)

(c)

I

4.
I

8

hw —E (excitonic units)

FIG. 2. Imaginary part of the optical susceptibility for
di8'erent disk radii: ro = 100 (a), 10 (b), 5 (c), 1 (d), and 0.5a& (e).
Solid lines represent calculations under inclusion of the
Coulomb attraction, whereas dashed lines give the spectrum for
uncorrelated electron-hole pairs. The inverse lifetime of the ex-
citons is fixed at AI =0.05E&.
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FIG. 3. Energies of excitons in the ground state (a) and the first excited state (b) vs the reciprocal disk radius 1/ro considering
(solid line) or neglecting (dotted line) the Coulomb attraction of electron and hole. The difference between the two pair energies, i.e.,
the Coulomb correlation or negative binding energy of the electron-hole pair, is plotted as a dashed line.

U )()) CEgag /po

1 v'2 I dt tJo2(z, t)2' Jo(z ) o

X I dt't'J,'(z, t')

I 2m dip

+t' 2tt'cosy—

(17)

with c =2. This matrix element underestimates the
Coulomb correlation remarkably, even in the limit
a~ ) ro. The constant c =2 is much smaller than that of
C=3.526 found by the fit of the Coulomb correlation
plotted in Fig. 3(a). The perturbation-theory argument
cannot be used for the Coulomb effects itself. However,
it holds considering the total pair energy, since the
confinement energies overcome the Coulomb shifts in the
limit az ) ro.

the geometrical disk radius ro of the motions of electron
and hole, seems to be reasonable. Practically, the
effective disk radii may be considered as variational pa-
rameters. The determination of these radii ro, , ro„& can
result from a physical consideration. Having in mind the
total energy of the interaction-free electron-hole pair, we
choose ro, =rolv 2 and ro„&=1.03ro, i.e., effective ra-
dii that are reduced with respect to the geometrical one.
According to expression (15), we factorize the two-
particle wave function

lOQO =

C. Analytic representation of pair energy

Dependences of the different energy contributions on
the disk radii suggest certain approximations. Two
different approximations are plotted in Fig. 5, together
with exact results (solid line) for the ground-state pair en-

ergy and the corresponding oscillator strength versus the
reciprocal disk size. In both approximations we assume
that the coupling of center-of-mass and internal motions
can be neglected. In the first case the equations of
motion for both problems are separately solved. The
center-of-mass motion is described analytically, whereas
the internal motion is treated numerically.

In the second approximation the problem is solved
analytically. Because of the neglect of coupling after the
coordinate transformation (r„rh )~(R, r), the assump-
tion of effective disk radii ro, and ro„& of the center-of-
mass and relative motions, respectively, different from

0 2

1/rp (excitonic units)
FIG. 4. Coulomb enhancement of the oscillator strength for

the ground state (solid line) and the first excited state (dashed
line) vs the reciprocal disk radius 1/ro. The ratio of the oscilla-
tor strength with (f&) and without (f0&) Coulomb correlation is
plotted.
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4 „„„~(R,r) = &z
Jo(z, 8 /ro, )2~ "o . .Jo(zi) ' aa VN(r „,/a )

—2r /&B
e (1 r —/ro„) ),

(18)

N(x)= 1 3 15

64x 512x
1 3 15 15

e
16x 128x 512x

into a center-of-mass motion confined in an infinite-barrier disk, and an internal motion of the electron-hole pair, de-
scribed by a modified 1s wave function of the underlying 20 exciton. Both wave functions vanish at the disk boundary
and are normalized to the disk area. The resulting pair energy is

rorel

'2
mo ziag+
Mo ro

—4+ 1 3

N(x) 32x"
1 + 3 + 3 + 3

4x 8x 32x

mo+
Mo

z)ag

roc. m.
(19)

whereas the corresponding oscillator strength can be
written as

1 1
dt rJo(z, r)

2mN(ro„&/aii ) Jo(z, ) o

Figure 5 makes it evident that the coupling of center-of-
mass and internal motions does not play an important
role in the exciton ground state. This figure, however,
also shows that the ansatz (18) for the ground-state wave
function represents a reasonable approximation. The re-
sulting pair energy in Eq. (19) fits well the numerical data
in the full size interval, 3ro a~, under consideration in
the upper panel of Fig. 5(a). Most interesting is that the
leading size dependence of the pair energy is governed in
a wide range only by the size-quantization effects, i.e., by
a r 0 law. There is no r 0

' contribution indicating
Coulomb effects. They are mainly represented by the—4E& term resulting from the bonding of electron and
hole already in two dimensions. On the other hand, the
wave function in Eq. (18), together with the particular
choice of the effective disk radii, overestimates the oscil-
lator strength for the excitation of bounded electron-hole
pairs in the ground state [cf. Fig. 5(b)]. The reason seems
to be the insufhcient description of the wave function for
the relative motion for small disk radii ro &a~. In this
limit we expect a behavior which is better described by an
exponential wave function and, therefore, gives rise to a
different normalization constant.

ca QQ
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D. Luminescence

The imaginary part of the optical susceptibility Eq. (9)
multiplied with a certain occupation factor is plotted in
Fig. 6 for different effective dot radii ro, and homogene-
ous lifetime broadenings I of the electron-hole pairs.
The damping parameter depends on the disk radius be-
cause of the thickness fluctuations in the underlying
quantum-well structure. In the case of small disks the

I t I I I I I I I 1 I0
0 1 2

1/ro (excitonic units)

FIG. 5. Ground-state energy (a) and oscillator strength (b) of
the exciton vs the reciprocal disk radius 1/ro. Solid line: full
numerical analysis; dashed line: analytic description of center-
of-mass motion and numerical treatment of the internal motion
(coupling of both motions are neglected); dotted line: approxi-
mate expressions (19) and (20), respectively.
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(e)

(c)

(b)

exciton feels only a minor number of thickness Auctua-
tions, whereas this effect increases with the disk radius.
To plot the spectra we assume a size dependence in the—ro /a&
form I = 5E~—[1—e ' ]. The occupation factor is re-

placed by a step function, since we will compare with
low-temperature data. It omits higher frequencies which
do not appear in the luminescence due to the occupation.

The series of theoretical spectra in Fig. 6 is in qualita-
tive agreement with the luminescence measurements of
Brunner et al. This holds in principle with respect to
the position and number of peaks. However, to compare
theoretical curves with experimental results one has to
take into account the following facts: (i) Because of the
finite height of the fabricated disks, spectral lines cannot
be observed up to arbitrary high energies corresponding
to the eigenvalues in the denominator of Eq. (9). On the
other hand, the spectra are truncated by the occupation
of the electron-hole pair states which is in general
governed by the Bose function discussed above. There-
fore the choice of the magnitude of the band offsets is of
minor influence on the observed spectra. (ii) Due to the
thermodiffusion profile, the dot radii entering the
confinement potentials do not coincide with the geometri-
cal ones, i.e., the disk boundary fixed by the laser scan
lines. The difference is about 200 nm. (iii) For small dot
radii we are faced with a superposition of the diffusion
tails from the left and right sides and, therefore, the Al
content no longer remains at zero inside the dot. Thus
the confinement potentials are increased, leading to a
blueshift of the spectrum as observed experimentally.

IV. SUMMARY

t

8—8 —C 0 12
h~ —E (excitonic units)

FIG. 6. Imaginary part of the optical susceptibility for
diferent disk radii r0 =100 (a), 5 (b), 2 (c), 1 (d), and 0.5a&. To
compare with experimental luminescence results, a more realis-

tic description of the spectra is attempted. The extent of the un-

derlying quantum well is chosen to be z0=0. 12a&, and the

quasi-2D Coulomb potential of Eq. (5) is described by
v (r ) = —2E& /zoarcsinh(zo /r). The spectra are cut at the

high-energy side by 6.32E& above the lowest exciton peak to
model the occupation due to photoexcitation. A size depen-

dence of the damping is taken into account in the form

1 = ,'E~[1—e ]. —

In conclusion, we have demonstrated the transition
from the complete 2D exciton in an extremely narrow
quantum well to quasi-OD excitons in well-separated
quantum disks prepared on the basis of a narrow quan-
tum well by laser-induced cation interdiffusion. This
transition is characterized by the interplay of the center-
of-mass motion of the electron-hole pair, its internal
motion associated with exciton binding, and the
confinement of electron and hole due to the disk poten-
tial. Results obtained are applied to describe the optical
properties, in particular the photoluminescences of quan-
tum disks.

In the case of Aat disks with characteristic radii ro and
infinite barriers in the disk plane, the strengths of the
different effects can be discussed by comparing ro with
the exciton Bohr radius az. In a wide range of disk sizes,
ro ~ a~, the coupling of center-of-mass and internal
motions plays a minor role. Only in the limit of strong
confinement, ro & az, the consideration of this coupling is
necessary. For ro »az the 2D exciton peak splits due to
the quantization of the center-of-mass motion. The oscil-
lator strength is distributed over the different peaks be-
longing to the symmetric states of the center-of-mass
motion. Moreover, a blueshift of the main peak appears.
The relative motion of the electron and hole remains 2D-
like. In the region ro az the Coulomb degeneracy in
the relative exciton motion is lifted, and a fine structure
appears in the spectra. When the disk confinement
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effects overcome the Coulomb effects, i.e., when ro &a~,
the resulting spectra are similar to those obtained
without excitonic effects. However, the Coulomb attrac-
tion again makes an important enhancement of the oscil-
lator strengths and gives rise to a divergent Coulomb
shift —1/ro, even if it is weaker than the size quantiza-
tion effects —1 /r o.

Our results are applied to qualitatively explain recent
photoluminescence spectra of single disks of varying size.
The development of the photoluminescence near the
lowest heavy-hole exciton of the underlying quantum well
is interpreted in terms of the interplay of excitonic effects
and disk confinement. However, a more quantitative

analysis of the experimental spectra requires the inclusion
of matrix element effects, the fluctuations in the vertical
and lateral sizes, and, in particular, more realistic
confinement potentials which more strictly reAect the
interdiffusion profile.
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