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In this paper, we use the coherent potential approximation to study the role quantum hopping
plays on the Coulomb gap of insulating strongly correlated d = 2 and d = 3 dimensional systems.
We find that substantial increase in the density of states at the Coulomb gap occurs only when the
ratio between the hopping integral ¢t and the gap width B exceeds a critical value. We estimate that
the hopping integral corresponding to the experimental condition n < n./3 satisfies t/B < 0.05.
For such values of ¢/B, quantum hopping brings about little change in the single particle density
of states. The classical Coulomb gap therefore remains intact in both three and two dimensional
systems, in contrast to a previous claim that the gap disappears for d = 2 systems. The implication
of these results on experiments on doped semiconductors is discussed.

I. INTRODUCTION

The presence of the long-range Coulomb interactions
in disordered materials is believed! to diminish the sin-
gle particle density of states close to the Fermi level,
Ep. Efros and Shklovskii? have shown that at T = 0,
a soft gap of the form (E — Er)?~! results. A gap of
this form has a profound effect on the transport prop-
erties of strongly localized systems. For example, the
Mott variable-range-hopping law is transformed to a
universal form independent of dimensionality?. Exper-
imental observation of hopping conductivity of the form
Ino(T) ~ T~= with « close to 1/2 in doped semiconduc-
tors has been widely interpreted as a confirmation of the
presence of a soft Coulomb gap. There are still, however,
several outstanding problems with the soft Coulomb gap
account.® The major questions appear to be the follow-
ing. (1) Is the single particle distribution sufficient to
describe the low-energy excitations? (2) Does quantum
tunneling wash-out the soft Coulomb gap? (3) How does
the filling-in of the Coulomb gap at finite temperatures
affect the temperature dependence of the conductivity?

In a previous paper,® we showed that finite-
temperature effects profoundly influence the form of the
conductivity. Specifically, we showed that if the finite-
temperature configuration of particles and holes is used
to compute the conductance, activated rather than T—1/2
temperature dependence is observed. In the present
study, we address the question of the role of quantum
tunneling on the soft Coulomb gap. Recent theoretical
studies have found that tunneling can counteract the ten-
dency of long-range interactions to create a gap in the
density of states. Vignale and co-workers concluded that
a finite density of states is created at the Fermi level
in d = 2 for any nonzero hopping matrix element®. A
less drastic effect was found for d = 3, namely, only a
narrowing of the gap depending on the magnitude of
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the hopping integral. The apparent disappearance of
the Coulomb gap in 2d when quantum hopping is taken
into account has been cited®® as a possible explanation
of experiments? on d = 2 Si metal-oxide semiconductor
field-effect transistors (MOSFET’s) that fail to observe
the Efros-Shklovskii (ES) form of the conductivity under
conditions that favor the formation of a Coulomb gap.
Other indications of the importance of quantum hop-
ping include the observation of large conductance fluc-
tuations in materials exhibiting hopping conduction,® a
phenomenon usually associated with quantum coherence.

In view of the relevance of quantum tunneling to ex-
perimental observations, we reexamine its role on the
emergence of a soft Coulomb gap in disordered systems.
The specific question we address is, how large should the
hopping integral be before any discernible enhancement
in the number of states at the Fermi level is obtained?
Following Vignale and co-workers® the starting point for
our analysis is the standard tight-binding model of an
impurity band in a doped semiconductor. We then com-
pute the density of states using the coherent potential
approximation (CPA). We find that for realistic values of
the hopping integral, t, the Coulomb gap remains intact
for both d equal to two and three dimensional systems.
For example, we find that the increase in the density
of states is less than 5% when t/B = 0.05, where B is
the gap width. This value corresponds to the maximum
hopping integral allowed at an impurity density of 1/3
the critical concentration at which the system becomes a
metal. Because most experiments are performed at im-
purity concentrations less than this value, we argue that
quantum hopping should not play a significant role in
enhancing the density of states at the Fermi level. This
paper is organized as follows. The theoretical formalism
is introduced in Sec. II. Section III contains an analyti-
cal solution to the CPA equations in the vicinity of the
Fermi energy. Numerical solutions as well as a discussion
are presented in Secs. IV and V, respectively.
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II. FORMALISM

We start our analysis with the effective tight-binding
Hamiltonian

H = Z €;n; + Z ti_,,-cICj , (1)
B i

where c:-f and ¢; are creation and annihilation operators of
spinless electrons on site i, respectively. The first part of
the Hamiltonian is the Hartree site energy in the ground
state of the interacting classical Hamiltonian. The sec-
ond part describes quantum hopping. t;; is the hopping
integral between site ¢ and j and has the translational
symmetry of a periodic lattice. The exact form of ¢;; will
not be specified in the following calculation. Site ener-
gies €; in the Coulomb gap problem are highly correlated
among neighboring sites. However, for the questions we
are interested in, we can assume that ¢; is independently
distributed with probability P(e). We assume then that
P(e) is given by the ES distribution®

P(e) = ce?1 (2)

for |e| < B and P(e) = 0 otherwise, where ¢ = ;£7.

The above Hamiltonian is appropriate only when the
quantum hopping term is small relative to the width
of the site energy distribution such that all states are
strongly localized. By not including spins, we also neglect
possible exchange couplings between electrons. Such cou-
plings are essential to correctly describe the magnetic
properties and may even be responsible for a crossover
from variable range hopping form of conductance to an
activated form, upon reducing temperature.®

The density of states in this system can be calculated
through the CPA technique. The effective single particle
Green function is!® defined as

G(w) = (Gii(w)) = Golw — X(w)] , ®3)

where

Gotw) = (=5 Jii = [ 422 (@

g(w) and Hy are the density of states and the Hamil-
tonian in the absence of the site disorder, respectively.
¥(w) is the self-energy. (---) denotes the average over
disorder configurations. The single particle density of
states is the imaginary part of the Green function,

plw) = —%ImG(w +0) .

The equation for the self-energy at the CPA level is given
bym

P(e)de _
| st =" 5)

We will find it more convenient to define a new quantity

(€ = & +1i&2),

£(w) = S(w) + %w) (6)

and recast Eq. (5) as
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P(w)de
Glw)= | ———. 7)
=] tw)—e (
For the distribution given in Eq. (2), we can integrate

Eq. (7) exactly to obtain
£, (B+&u)?’+&

G(w) =c§[—2B+ iln__(B—ﬁl)2+£§

—i€ arctan —— & + i€ arctanB + 51] (8)
&2 &2
for d = 3, and
1 B —&)2+&2[(B+ &)+ &2
PO EENCELSEY I EL RS
—21 arctang—1 — iarctanB —&
&2 2
+i arctanB +é (9)
2

for d = 2. To find the density of states, we must solve
Egs. (3), (4), and (6) simultaneously with Eq. (8) for
d = 3 and Eq. (9) for d = 2. In general, numerical tech-
niques have to be employed to solve the self-consistent
equations. For the problem at hand, however, analytic
solutions can be constructed in the vicinity of w = 0
(EF). To facilitate this treatment, it is useful to consider
the large ¥ limit of the Green function:

G(w) =/' g(e)de

w—X—¢€

as — 2a1w + wz)’ (10)

1 w —ai
) (1 s 7 5
where a; = [ eg(€)de = 0 in our case and a; = [ eg(e)de.
It then follows that Eq. (6) can be approximated as
{(w) = w — aG(w). (11)

It should also be noticed that for a symmetric classical
density of states P(e) = P(—e), all quantities X, G, and
£ are purely imaginary at w = 0.

III. ANALYTICAL SOLUTIONS AROUND w =10

A. d = 3 systems

As remarked earlier, 3, G, and £ are purely imaginary
when w = 0. Consider now the w = 0 limit of Eq. (8) for
d = 3. In this limit, Eq. (8) becomes

3(&\(B B
Ga(w=0)= -5 (E) (5_2 - arctan—g—z) . (12)

Noting from Eq. (11) that £, = —a2G32, we obtain

2
&2 [1 ~ 3'%; — %arctang] =0. (13)

One immediately sees that for %‘% < 1, the only solution
is £2(w = 0) = 0. This implies that G = 0 and therefore
p(0) = 0. For 322 > 1, a finite solution exists for &z,
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B(3l12 - BZ)

3axm
3as arctan ——J———z(saz 5

ba=—

(14)

and the density of states is simply given by p(0) = — 52,

az™

An expansion around w =0 for < 1 yields

2
w w
_ ; B 15
¢ 1 — 2Bcas + zc7ra2<1 — 2Bca2) (15)
Hence,
w

=Pl —m——]. 16
) (1 — 2Bca2) (16)

We see then that quantum hopping renormalizes the gap
parameter when the hopping integral is small. This con-
clusion was obtained in Ref. 5 as well. Equation (16) is
plotted in Fig. 1. As is evident a significant increase in
the density of states occurs only if ¢/B > 0.167. In cal-
culating the values of a2, we have used a flat density of
states for g(e) with half-width 2dt.

B. d=2 systems

Consider now the case of d = 2. From Eq. (9), we
observe that
_ & . B%+¢3
Again, using the relation £ = —ayG3, we obtain
B _B?
£2(w=0) = ——53——— =~ —DBe daz (18)
(e=°z —1)1/2
and therefore
B _B2
0) = —e 2,
o(0) = e (19)
0.3 * ! + !
3D
""""" 2D
0.2}
p(0)
0.11
0.0
0.0
t
FIG. 1. The density of states (in units of zlz) at w =0

as a function of the hopping integral (in units of B). B is the
Coulomb gap width and a is the lattice constant. For d = 3,
p(0) =0 fort/B < }. A flatband is used for the unperturbed
density of states.
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Although the density of states is nonzero, it is exponen-
tially small for small values of t. If £ is small in the
vicinity of w = 0, we find that

G(€) = £ [_ In B2£2 + €2 — 24 arctané] (20)
B &2
or equivalently,
g = Bzw * (21)

2 _ B2 oz §l
B azln el i2aqarctan &

Two limiting cases of Eq. (21) are of interest here.
2
(a) fw< 2“—’;&, then

@) = p(O)|1+ (237“’)‘“] . (22)

This form is valid only for exponentially small w for small
t.
(b) The other case corresponds to %a; << 1and w >

Be™ 2"2 , in which case

ZP(T#M) . (23)

Again, the effect of quantum hopping is seen as a renor-
malization of the gap parameter. However, the renormal-
ization factor increases with decreasing w.

The density of states at w = 0 for d = 2 is indicated
with the dashed line in Fig. 1. It is evident that only
when t reaches a value t1, t;/B = 0.12, does the density
of states at w = 0 become significant.

Equation (19) was interpreted by Vignale and co-
workers as evidence for the absence of a Coulomb gap
in two dimensions. We see that on a closer look, that
conclusion does not hold. An exponentially small den-
sity of states in a small region around the Fermi energy
should not affect any conclusions made on the Coulomb
gap account for transport properties. Equation (23) defi-
nitely shows that when the hopping integral is small, the
Coulomb gap persists even in two dimensions.

p(w)

IV. NUMERICAL RESULTS

To obtain a solution for general w, we employed the
following numerical iteration scheme.

(a) Supply initial values for ¥ and G and solve for
E=¥+1/G.

(b) Obtain a new value of G, G’, from the CPA equa-
tion [Egs. (8) and (9) for d = 3 and d = 2, respectively];

G' = Gq(£) .

(c) Update the value of £ from the inverse of the un-
perturbed Green function,

1
§’=w+a - Zo(G")
where Zy(G) is the inverse function of Go(Z), i.e.,
G(20(G)) =G.
(d) Repeat steps (b) and (c) until the solution con-
verges. In our calculation, we used a flat density of states
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of half-width 2dt for the unperturbed Green function,'!

1 Z + 2dt
and the inverse function
Zo(G) = 2dt cotanh(2dtG). (25)

The density of states for various values of ¢ is plotted in
Fig. 2 for d = 3 and in Fig. 3 for d = 2. Asin the w =0
case, we find that a significant increase in the low energy
density of states occurs only for t/B > 0.1 for d = 2 and
t/B > 0.167 for d = 3.

V. DISCUSSIONS AND CONCLUSIONS

To determine how significant the increase in the den-
sity of states is in response to quantum tunneling, we
must estimate the magnitude of the hopping integral cor-
responding to t/B > 0.1. The ratio of & pertinent to
experiment can be estimated for d = 3 as follows. B is
1/3

ce?

given by ¢, where r = n is the interimpurity dis-
tance, x the dielectric constant, and c is a constant of
order unity. According to Mott,'2 the hopping integral
is given by

2
t= 2 <1+—’"—)e“m, (26)

Kag ag

where agy is the orbital radius of an isolated impurity.
The ratio ¢/B,

t_yl+y)

B c ’
can be expressed in terms of the scaled concentration
Yy = 4.0(1{‘—)1/3, where n. is the critical concentration at

the metal-insulator transition. In obtaining Eq. (27), we
used the Mott criterion'?

(27)

nl/3ay =0.25 (28)
1.0 . : : :
0.81 TN
0.6 -
p(w)
0.41 e/
LR
0.21 7 72 . L
;":"" ¢ ",'/',
0.0 == : - -
0.0 02 04 06 038 1.0

FIG. 2. The CPA density of states (in units of zi3) of
a three dimensional system for different values™of hopping
integral (in units of B).
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1.0 ! ! ! :

t=0.0025

0.8 1

0.6
p(w)
0.41
0.21
0.07
W
FIG. 3. The CPA density of states (in units of z-5) of a

two dimensional system for different values of hopping integral
(in units of B).

which is known to hold for a wide range of materials.
The ratio t/B is graphed in Fig. 4 where ¢/B has been
normalized to 1 at n. to eliminate c. In almost all of the
experiments in which hopping conduction is observed,
the impurity concentration is less than n./3. We see
from Fig. 4 that at n = n./3, t/B drops to approximately
30%. If all states are Anderson localized in d = 3, then
t/B cannot exceed a critical value. This critical value
depends on the details of the system considered. For a
flat distribution with half-width W, the critical disorder
strength is known to be W, /t = 7.8.13 An estimate for the
critical value in our problem can be obtained by requiring

0.8 1 r

/B

0.41 r

0.0
.01

.1 1

n/nC

FIG. 4. The estimated ratio of the hopping integral to the
gap width as a function of the doping concentration. ¢/B has
been normalized to 1 at the critical concentration of the M-I
transition, n..
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that the second moment of the disorder equals that for a
flat distribution. This yields a critical ratio % = 0.16 at
ne. It follows then that the relevant experimental range
corresponds to t/B < 0.05.

An alternative way of estimating the ratio appropriate
to experiment is to calculate the localization length. The
localization length varies as L. = Lc(0)(1 — =)™ when
close to the metal-insulator transition. L.(0) =~ ay. The
exponent v ranges from 0.5 to 1.13 It then follows that

L./r = 0.25(%) e (1 - n%) - (29)

For n/n. = 0.3, Eq. (29) yields a value of L./r = 0.19 if
v = 0.5. Alternatively, L./r = 0.22 if v = 1. We require,
therefore, that the values of t/B be chosen such that a
calculation of the localization length with the Hamilto-
nian Eq. (1) yields the correct value of the localization
length at the Fermi level; that is, L./r = 0.2. We have
carried out such a calculation using the Green function
method.'® From this calculation, we find again that the
ratio t/B = 0.05 corresponds to L./r = 0.2. The argu-
ment outlined above cannot be directly extended to d = 2
systems because no Anderson transition is expected in
d = 2. However, the values of t and B for a given concen-
tration are not expected to depend on the dimensionality
because t describes the wave-function overlap and B the
strength of the long-range interaction. These quantities
should be determined primarily by the type of material,
the dopant, and the impurity concentration. We propose,
therefore, that the bound t/B < 0.05 should also apply
to d = 2 systems.

In our calculations, however, values of t/B > 0.1 were
needed to fill in the Coulomb gap at T' = 0. Conse-
quently, quantum hopping does not significantly alter the
soft Coulomb gap. For t/B = 0.05, the increase in the
density of states in d = 3 is only about 5%. The same
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is true for d = 2 and w > 0.03B. The larger relative
increase in the density of states at very low energy is ir-
relevant to hopping conduction in the experimental tem-
perature range. This is because in the theory of Efros
and Shklovskii, the hopping conductance of an interact-
ing system is evaluated from the single particle density
of states.? The hopping conductivity is determined by
a critical conductance G. such that the links with con-
ductance larger than G, form a percolating network that
connects the two leads. A simple estimate shows that the
contribution from w < 0.01B to the conduction process is
small in experiments as long as conduction is controlled
by the Coulomb gap. The Coulomb gap, therefore, re-
mains intact for both two and three dimensional systems
in the presence of quantum tunneling.

In conclusion, the effect of the quantum hopping on
the single particle density of states in the Coulomb gap
problem has been studied. Although there is an increase
of density of states at low energy, the effect is too small
to affect hopping conduction within the single electron
hopping picture in the parameter range pertinent to ex-
periment, for both d = 2 and d = 3 dimensional sys-
tems. Significant increase in the density of states and
the filling-in of the gap through quantum hopping can
only occur when the system is in the critical region of the
metal-insulator transition, where the localization length
becomes large and quantum effects begin to dominate.
It remains an open question then why the noninteracting
form of variable range hopping conductivity was observed
by Timp et al.”
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