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We present experimental results that demonstrate the nonergodic nature of charge transport in the in-
sulating regime of indium oxide samples. These results include an anomalous field effect described in de-
tail by Ben-Chorin et al. and persistent photoconductivity created by exposure to light. The similarity
of the temporal dependence of the conductance after excitation due to a burst of light and that due to
charging the sample by a nearby gate suggests that in both processes the electronic system is excited and
the time it takes the system to reach thermal equilibrium is much longer than the Maxwell time. We
offer a simple theoretical model that ascribes all of these effects to nonequilibrium transport phenomena
peculiar to the hopping regime. It is argued that exciting a hopping system out of thermal equilibrium
leads to a conductivity that is higher than in equilibrium. The excited state is long lived and similar in
nature to that observed in the phenomenon of persistent photoconductivity of various semiconductors
measured at low temperatures. The sluggish equilibration process of the electronic system is ascribed to
the inhomogeneous nature of charge transport and to the slow energy relaxation which are inherent
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features of disordered solids.

I. INTRODUCTION

The transport properties of Anderson insulators have
been a field of active research for many years. Some of
the interesting features exhibited by this class of materi-
als show themselves in their field effect. In the context of
this paper, the field effect is referred to as the dependence
of sample conductance G on the voltage applied between
it and a nearby metallic gate in a parallel-plate capacitor
configuration. The field effect is one of the techniques
routinely employed to measure density of states (DOS) in
metals and semiconductors.! For systems where the con-
duction proceeds via extended states, the physics under-
lying the field effect is well established. By contrast, in
Anderson insulators electronic states are localized and
the two main issues involved in the field effect, namely,
conduction and screening, are much less understood. In
this respect, studies of this effect in such systems could be
a useful way to elucidate their basic transport properties.

An anomalous field effect peculiar to Anderson insula-
tors has been reported by Pepper.? Studying GaAs field-
effect transistors (FET’s) at low temperatures, Pepper
noted a distinct component in G oscillating periodically
with the applied gate voltage V,. Similar conductance
oscillations were reported for various other systems.?
More recently, very prominent periodic conductance os-
cillations were observed in mesoscopic samples of Si,*
GaAs,” and In,O;_, films® where the peak to valley
values in G(V,) spanned several orders of magnitude in
some cases. It is noteworthy that this oscillatory
behavior is usually observable only when the sample con-
ductance is lower® than e2/h suggesting the relevance of
localized states to the phenomenon. This observation
calls attention to the process of charging an Anderson in-
sulator (by, e.g., gating it).

Some of the peculiar features of gating an Anderson in-
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sulator were recently discussed by Ben-Chorin, Kowal,
and Ovadyahu.” In the latter work, results of field effect
in insulating films of polycrystalline and amorphous indi-
um oxide were reported. The main results were as fol-
lows.

(a) For films with R smaller than =1 MQ, G(V,) was
“normal” in the sense that AG scaled linearly with V, as
expected for a degenerate Fermi gas [cf. Fig. 1(a)]. In
this regime our results agree with the field-effect measure-
ments previously made by Fiory and Hebard® on amor-
phous indium oxide films.

(b) Deeper into the insulating regime (R4 = 10 MQ), an
anomalous feature appeared: The conductance increased
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FIG. 1. The relative change of conductance vs gate voltage
for (a) a 50-kQ /0 crystalline sample measured at 4.11 K, (b) a
15-MQ /0 amorphous sample (at 1.3 K).
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upon an application of a voltage on the gate for both po-
larities. This gives rise to a symmetrical component (SC)
in G(V,). In the case of a sample cooled down while
holding ¥, =0 the SC was centered around this gate volt-
age [cf. Fig. 1(b)]. A similar effect in granular Au has
been reported by Adkins et al.’

(c) The latter anomalous SC became more prominent
with further increase in R but for ¥, =100 V (and gate-
sample separation of a 100 um) the SC was observable
only at sufficiently low temperatures (typically lower than
a few tens of degrees K).

Ben-Chorin, Kowal, and Ovadyahu suggested the pos-
sibility that the anomalous field effect as exhibited by the
appearance of a SC reflects a nonequilibrium behavior of
the electronic system and placed a lower bound of > 103
seconds on the characteristic time for relaxation involved
in this phenomenon.

The purpose of the present work is to check the validi-
ty of the above conjecture by studying the temporal as-
pects of the anomalous field effect. The basic hypothesis
that we plan to test in this paper is that the anomalies re-
ported by Ben-Chorin, Kowal, Ovadyahu can indeed be
related to nonequilibrium transport. To that end, three
premises should hold true.

(1) The conductance of the sample in the excited state
is always higher than in equilibrium.

(2) Adding (depleting) charge to (from) an insulating
system by changing the voltage applied to the gate does
indeed take it out of thermal equilibrium.

(3) The relaxation time of the excited system is very
sluggish and in particular, much longer than the charac-
teristic times of the measurements.’

The first premise is shown to hold true from general
theoretical considerations presented in Sec. III below.
The validity of the other two premises is supported by the
following main findings of the present study:

(A) Exposing the sample to visible light affects the sam-
ple conductance in a similar way as charging it by apply-
ing a voltage to the gate: G rises and relaxes very slowly
to its dark value when the light is switched off with a long
decay rate and in a nonexponential fashion.

(B) The equilibrium state achieved at low temperatures
(where the sample is measured) is determined, among
other things, by the specific value of the ¥V, applied to the
gate at high temperatures (and maintained throughout
the cooling process). The SC is generally centered
around V., the gate voltage held on the sample (which
can be of either sign) in the process of cooling it to low
temperatures.

(C) Both the minimum in G(V,) and AG (the extra
conductance due to an application of a gate voltage on
the cold sample) relax to an equilibrium value with ex-
tremely long time periods that are many orders of magni-
tude larger than both the characteristic experimental
time, and the Maxwell time (which is equal to ep/4w
where € is the dielectric constant and p is the sample bulk
resistivity).

We give arguments that suggest that the glassy
behavior, gate anomalies, and persistent photoconductivi-
ty all follow from the nonequilibrium properties of An-
derson insulators, and discuss the generality of these phe-
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nomena. The next section describes sample preparation
and characterization and the experimental techniques
employed in measuring them. Section III includes some
general theoretical considerations pertinent to the
behavior of electronic systems in the hopping regime
when driven away from thermal equilibrium. Section IV
depicts our main experimental results discussed in light
of our theoretical considerations.

II. EXPERIMENT

Details of sample fabrication, characterization, and the
measurement techniques employed in this study were de-
scribed elsewhere.”!° For completeness, we give here a
brief description of those issues with emphasis on some
auxiliary measuring techniques that were not described in
the previous reports. The indium oxide films were
prepared by e-gun evaporation of 99.999% pure indium
oxide onto a 100-um-thick glass substrate, using an oil
diffusion vacuum system capable of maintaining a base
pressure better than 6X 10~ ¢ mbar. During deposition,
99.99% pure oxygen was bled into the vacuum chamber,
maintaining an O, partial pressure of 2X10~° mbar.
During the process the pressure inside the chamber rose
to 4X 10:5 mbar. Typical evaporation rates were
0.7F0.1 A/s. Evaporation rate and film thickness were
measured in situ using a quartz oscillator thickness moni-
tor, which was calibrated agamst a Tolanski interferome-
ter. All films were 200 A thick with typical lateral di-
mensions of 5X5 mm. A thick (=10% A) copper film was
evaporated from a Knudsen source onto the opposite side
of the glass. This copper electrode was used as a gate in
our experiments. Indium contacts were pressed onto two
opposing sides of the sample (“source” and “drain”) for
conductance measurements and another one was con-
nected to the gate. A schematic description of the sam-
ple geometry is given in the inset to Fig. 2.

The as-deposited films were amorphous and typically
had sheet resistances of R;=10-100 k) at room tem-
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FIG. 2. A schematic description of the electronic circuit used
for measuring the field effect. The inset shows the sample
geometrical configuration.
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perature. The R of a given sample could be fine-tuned
by thermal annealing as described elsewhere.!® Most of
the measurements reported here were made on these
amorphous films. However, the main findings were also
reproduced using polycrystalline indium oxide samples.
The latter were obtained from amorphous films that were
crystallized by placing them on a 250°C hot plate for
10-60 min. Also, we have made and measured several
samples using a 1-mm-thick glass substrate instead of the
nominal 100 um and verified that the effects of the gate
voltage scale with the gate-to-sample separation as they
should for a field effect.

The field-effect measurements were done using the set-
up illustrated in Fig. 2. The source-drain voltages used
were of the order of 100 mV rms at 2—10 Hz. The
current was amplified and filtered (using an Ithaco 1211
current preamplifier), then measured by a lock-in
amplifier (PAR 124 or 5204). The output of the phase-
senstive detector was measured by a digital voltmeter.
The various measuring devices were connected to a
personal-computer-controlled data acquisition system.
This technique for conductance measurement was dictat-
ed by the requirements of the experiments. Many of the
samples measured in this study had sheet resistances of
the order of 10° Q and the relative changes in them due
to the application of a gate voltage were small (of the or-
der of a few percent). The use of an ac technique helped
to increase the signal-to-noise value. More importantly,
it alleviated the problem of possible (dc) spurious
currents leaking from the gate to the sample. Several
measurements were repeated using a standard dc four-
terminal technique to ascertain that the main results are
not due to contact problems.

The high resistance of the samples and the need to
minimize the effects due to parasitic capacitances forced
us to use very low frequencies for the phase-sensitive
measurements. This, in turn, dictated fairly long integra-
tion times (3—10 sec) which slowed the response time of
the conductance measurement. We have checked the in-
strumental response time of the system by studying the
step response of the measuring setup and found it to be of
the order of ~100 sec for a 0.1% resolution on a 10-GQ
load. This slow response time is still much smaller than
the relaxation rates relevant for this study as will become
clear below.

The field-effect measurements were done by time
sweeping a voltage applied between the sample and the
gate. The maximum voltage swing used was 100 V and
sweeping rates were in the range 0.02-2 V/sec (with 0.2
V/sec being the most commonly employed). Some mea-
surements were done while the system was excited with
electromagnetic radiation. The source of light was a red
light-emitting diode (LED) with a wavelength of about
6350 A. The excitation current was less than 1 mA and
the voltage drop on the diode was =~2 V. The diode was
immersed in the liquid helium about 0.5 cm above the
surface of the sample.

Most measurements were done in the temperature
range of 1.3-4.2 K. We used an immersion-type cryostat
in which the temperature could be varied by pumping on
the helium vapor. In addition to the field effect, the
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dependence of each sample resistance on temperature was
recorded using the same low-temperature rig and elec-
tronics described above. At the liquid-helium range, all
samples reported below exhibited hopping conductivity.
For amorphous films the specific form of R5(T) was
of the Arrhenius type, namely, R(T)~exp[Ty/T]
with T,=5-15 K. Insulating films of crystalline indium
oxide exhibited variable range hopping, R(T)
~exp[T, /T]'® consistent with Mott’s law in a two-
dimensional (2D) system. Further details on the R (T) of
such samples can be found elsewhere. !

In a previous paper,’ several possible artifacts were
ruled out as an explanation for the anomalous field effect
described in Sec. I above. The findings in this paper and
the physical interpretation of them make these earlier at-
tempts somewhat obsolete. Nevertheless, the interested
reader is referred to the work by Ben-Chorin, Kowal, and
Ovadyahu’ for a discussion of technical pitfalls in these
types of measurements.

III. THEORETICAL CONSIDERATIONS

We begin this section by presenting some general
theoretical considerations that are pertinent to nonequi-
librium charge transport in highly disordered systems.
These will be shown to be relevant to the experimental
findings discussed in Sec. I. Our basic approach to the
problem hinges on the following claims.

(1) Exciting an insulating system far from thermo-
dynamic equilibrium always increases its conductivity.
We show here that this holds true in the case of hopping
for noninteracting electrons. The presence of interac-
tions is expected to further enhance this effect.

(2) At low temperatures, the system of localized elec-
trons can become nonergodic,11 i.e., the time to relax to
equilibrium can be longer than any realizable experimen-
tal time. Such a situation is well documented for random
magnetic systems with interacting spins, e.g., spin
glasses.'? Several papers suggest that it may also be ex-
pected for localized electrons in disordered systems with
Coulomb interactions.!! In fact, even noninteracting lo-
calized electrons can exhibit nonergodic behavior.!!

(3) Injecting charge into the system (either electrons or
holes) may take the system out of equilibrium. These
premises will be shown to be sufficient for accounting for
all the experimental observations of Ben-Chorin, Kowal,
and Ovadyahu’ and the further results will be presented
in Sec. IV below.

We now show that the conductance is smaller in equi-
librium than in an excited thermodynamic state far from
equilibrium, namely, when some microscopic states of the
system are appreciably more probable than they are in
equilibrium (at the same temperature 7). We first show
this to be so without interactions, when the conductivity
can be evaluated from one-particle excitations. This is
commonly done by applying percolation theory to the
random resistance network. The resistances R;;, connect-
ing sites i and j, can be obtained by calculating the
current generated by a voltage V applied between i and j.
V causes a change in the transition rates w;; from i to j.
In the linear response regime
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the superscript 0 denotes equilibrium values, E; is the
site energy of site k, and

wg =vexp(—2r;/E)e‘—1)"" for e=¢; >0,

(2)
w,-j=vexp(—2rij/§)[(ef_1)*l+1] for €e<0 .

rij is the distance between sites, £ is the localization ra-
dius, and v is an attempt frequency of the order of the
phonon frequency. It is easily shown that the derivative
in Eq. (1) is vexp(—2r; /&) /sinh*(e/2). Notice that the
denominator restricts € to be not much greater than 1.
The current induced by V'is then
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where f; is the occupation number of the state i, and so
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Equation (3) expresses the resistances near equilibrium.
Exciting the system from equilibrium alters the f®s say
to f%s, such that

fE<fl for E, <Ep, ff>fP for E,>Ep.. (4

ij

(R,-j)-1= v exp

L
12

X

(3)

The excitation does not alter the site energies or, by as-
sumption, the temperature, and therefore the w’s. Thus
the nonequilibrium resistances differ from Eq. (3) only in
the last factor (the term in square brackets), where the su-
perscripts e replace the superscripts 0. The changes in
R;; due to excitation are

—2r;;
—1_ ij . —2 s
8(Ry;) K, T v exp sinh 5 }
X[fFA=FO—fA—f9)
+ A= fO—FPa—=fD] . (5)

Consider now an excitation of electrons from some
group of states A below Ep to a group A4’ above Ep, as
indicated in Fig. 3. Then, for iin 4, ff=f>—8;~1—3§,,
8;>0. The approximate equality expresses the condition
far from equilibrium. For i in A’. ff=f2+8;~8;>0.
For i and j in either 4 or 4’, Eq. (5) gives

2
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FIG. 3. The energy distribution of the electrons for an excit-
ed state of the system (when AE > k7).

The main conclusion is that all changes in 8(R)™! are
positive, i.e., that the conductivity increases when excited
from equilibrium. Physically, the increase in conductivi-
ty arises from the addition of Miller-Abrahams (MA)
conductances that are virtually inaccessible to charge
transport in equilibrium. We refer to those resistors that
connect sites far from Ep to or from which excitations
occur. In equilibrium, such sites have extremely large
resistors associated with them because for them, either
f=0or 1—f=0. This situation is altered by the excita-
tion.

We now present a qualitative argument that this effect
is expected to be stronger in the presence of interactions.
Single-particle considerations are not adequate to de-
scribe the ensuing many-body effects, so we shall consider
the microscopic states of the system. Their density is
shown schematically in Fig. 4, in comparison with a simi-
lar density for the system without interactions. The in-
teractions cause the density at low energy to fall well
below that of the noninteracting case but at higher ener-
gies it gradually becomes steeper.!>!* The first feature is
an immediate consequence of the lowering of entropy by
the interactions. The second feature is then imposed by
the requirement that the total number of states be the
same with and without interactions. These two features
are also clearly borne out by recent computer simula-
tions.'>!* In equilibrium, the two systems differ in that
the number of accessible microscopic states (within kz T')
with interactions is much smaller than without them.
This is a manifestation of the Coulomb gap which reflects
the fact that relatively few low-energy excitations are
possible. Furthermore, many of these are collective exci-
tations which have transition rates that are smaller than
those for single-particle transitions. The result is a small-

FIG. 4. Schematic description of the system density of states
of an Anderson localized electron system: For noninteracting
electrons (solid line): with Coulomb interactions (dashed line).
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er conductivity of the interacting system relative to the
noninteracting one. When an excitation by some energy
E takes the system out of equilibrium, the numbers of ac-
cessible microscopic states increase much faster for the
interacting system as a result of the steeper rise of the
density of states with energy. This makes one expect that
the relative increase in conduction due to the excitation is
much larger for the interacting system. In addition, com-
puter simulations indicate that the collective nature of
the transitions decreases with increasing E thus enhanc-
ing the transition rates. Such an effect must also enhance
the conductivity.

It should be noted that Fig. 3, and consequently the
discussion pertaining to the increase of conductivity with
excitation, assumes an excitation energy larger than k7.
We have not considered what happens in the opposite
case and cannot predict any details about the behavior
under such conditions beyond that AG should be much
smaller.

IV. RESULTS AND DISCUSSION

We start this section by addressing another aspect of
the anomalous field effect, namely, its temporal behavior.
Figure 5 depicts the time dependence of G following the
application of a voltage step to the gate. Note that a
similar behavior is observed in G (¢) for both gate-voltage
polarities. The conductance rises sharply and then de-
cays in a peculiar way. The symmetry with respect to the
sign of ¥V, is just another way to observe the SC. The
new feature that calls attention in this figure is the
evanescent nature of the extra conductance that resulted
from the application of V,. As illustrated in Fig. 6 this
AG seems to vanish!® after a sufficiently long time. In-
terestingly, the qualitative features of G (¢) following an
application of |V,| bear a striking resemblance to the
G (1) reported for GaAs samples excited by visible light.!®
The present system behaves in a similar way in this re-
gard. Figure 7 describes the behavior of G (¢) following a
brief exposure to a light-emitting diode. Note that the re-
laxation of the conductance in this case, as well as in Ref.
16, is very much like that observed in the gating experi-
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FIG. 5. The relative change of conductance of a 16-MQ /O]
amorphous sample (at 1.3 K) as a function of time following the
application of voltage steps to the gate. Step voltages were 100
and —100 V.
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FIG. 6. The relative change of conductance of a 700-MQ /O
(at 4.11 K) amorphous sample as a function of time after an ap-
plication of a voltage step of +100 V to the gate. Note that the
asymptotic value of AG /G is higher than zero presumably due
to the “normal” field effect.

ments. Since the peculiar G (#) that results from exposure
to light is ascribable to hot-electron transport,'® we take
this similarity as an empirical indication that applying a
gate voltage induces a nonequilibrium situation in the
system.

Not all electromagnetic excitations lead to a state
characterized by a slowly decaying extra conductance.
Figure 8 illustrates the effect of exciting a sample by ex-
posing it to a burst of an electromagnetic source at a fre-
quency v=35 GHz. In this case, the conductance rises
too, but the ensuing G (z) after the generator was turned
off exhibits an instantaneous decay (limited only by the
measurement time, cf. Sec. II) to its dark value. We sug-
gest that the difference between the response in G (t) to
the LED and the microwave excitation is due to the
effective energies involved. The LED creates a nonequi-
librium state since it can impart AE much bigger than
kgT (hv of the LED used is of the order of 2 V). An ex-
cited state with its associated slow decay of G (¢) could be
created by exposing the samples to LED illumination at
much higher temperatures. In fact, we have observed
slow relaxations even at room temperatures when the
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FIG. 7. The same as in Fig. 6 but following exposure to a
~ 10-sec pulse of light by the LED. Note the general similarity
to Fig. 6.
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FIG. 8. The relative change of conductance of a 250-MQ /O
amorphous sample, measured at 4.11 K, as a function of time
following an exposure to a microwave radiation with a frequen-
cy of 35 GHz. Note that the decay of G after turning the gen-
erator off is essentially as fast as its increase during the “on”
period in contrast with Fig. 7. The curve is shifted along the y
axis for clarity.

resistance was sufficiently high. On the other hand, the
microwave source, having an energy of the order of 1 K,
is ineffective in this regard for a sample held at 4 K. Ac-
tually the difference in the energy quantum is not the
only reason for this difference in the system response:
Attempts to measure an increase in G by exposure to mi-
crowaves at temperatures below the A point failed to
detect any change above the noise level even though the
samples were illuminated for a longer period of time than
at 4.11 K. This is consistent with Joule heating being the
main reason for the increase of G at 4.11 K following an
exposure to the microwave source as opposed to the
nonequilibrium situation presumably created by the
LED.

As mentioned in Sec. I, the anomalous field effect
(which is ascribed here to a nonequilibrium excitation) is
only observable in our system when the temperature is
lower than =10 K. No anomalous effect can be observed
at 77 K even in samples with R;>>1 G Q at that tem-
perature. One reason could be that 77 K is always above
the glass temperature. But that does not seem
plausible—in the hopping regime the glassy state is inti-
mately associated with small transition rates which are
tantamount to large Miller-Abrahams resistances which,
in turn, lead to high resistivities. Thus a very high hop-
ping resistivity should yield a glassy state. We thus
prefer to think that our failure to observe an anomalous
effect at 77 K is due to the fact that AE is not larger than
kpT. Indeed, for the sample geometry used here (and
based on Thomas-Fermi screening length’ of ~5 A) we
estimate that the application of ¥, =100 V is equivalent
to AEr~10 K which, for a sample held at liquid-helium
temperatures, should be enough to induce a far-from-
equilibrium situation.

Having established the fact that gating the sample may
take it out of equilibrium and that its G is then enhanced,
we can immediately account for the anomalous field effect
if the following statement is valid: The minimum in
G(V,) corresponds to an equilibrium configuration of the
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FIG. 9. The relative change of conductance of a 700-MQ /01
amorphous film as a function of gate voltage. The film was
cooled to 4.11 K while maintaining ¥,, =50 V on the gate.

electronic system.

The occurrence of a minimum in G(V,) at ¥, =0 re-
ported by Ben-Chorin, Kowal, and Ovadyahu7 immedi-
ately raises the question “What is unique about zero gate
voltage?”” We start by presenting an experimental answer
to this question. The position of the minimum in G(V,)
depends on the way the system is “prepared.”!’ A
minimum in G(V,) centered at zero gate voltage is an at-
tribute of samples cooled down with zero gate voltage be-
ing applied in the process. That is the only thing which
is unique about zero gate voltage, as we now proceed to
demonstrate.

Figures 9 and 10 depict two cases involving the same
physical sample cooled from room temperature to 4.11 K
while maintaining a V,70 in the process. The low-
temperature scans of G(V,) exhibit two distinctly
different curves!® with the minima nearly coincident with
the two different values of the respective “‘cooling-down”
gate voltage V,.. Another aspect of this phenomenon is
illustrated in Fig. 11. This figure shows the evolution
with time of G(V,) for a sample that was cooled down
with ¥, =0 and then charged by applying a V,=55 V.
The change with time of the field-effect trace was checked
periodically sweeping the gate voltage (at a rate of 2
V/sec). The minimum of G(V,) was initially at ¥, =0.
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FIG. 10. The same as in Fig. 9, but with a different cooling
gate voltage (V,, = —75 V).
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FIG. 11. Scans of G(V,) for a 90-MQ /00 amorphous film ini-
tially cooled to 4.11 with zero applied gate voltage (lowest set of
data). A constant voltage of 55 V was then applied to the gate.
Consecutive “test scans” were taken at ~1 h intervals to check
for the ‘“instantaneous” position of the minimum. The curves
are displaced along the y axis for clarity by their chronological
order.

Later scans showed that it shifted from O towards 55 V.
Figure 12 depicts AG=G—G,;, as a function of
AV=V,—Vn Where G, is the minimum of G for a
given scan and V,;, is the gate voltage where this
minimum is observed. Note that all scans collapse onto
an almost common plot of AG(AV). This suggests that
the only essential difference between the state of the sys-
tem immediately after cooldown and in subsequent stages
is due to an effective rescaling of V,. Thus V;,(#) can be
used as a “marker” delineating the momentary equilibri-
um configuration of the system. The change of V;, with
time is shown in Fig. 13 (since each time sweep takes
5-10 min, which is not negligible, one should regard this
plot as merely descriptive). Note that the typical relaxa-
tion time of ¥V, (¢) is much longer than the experimental
response time, much like that of G (¢) following an excita-
tion.

There is some analogy between the phenomena de-
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FIG. 12. The normalized change of the conductance

(G— G, as a function of the deviation of the gate voltage
from its value at the minimum (V, — V,;,) for the data present-
ed in Fig. 11. Different labels are used to distinguish between
different traces (as in Fig. 11).

15031
1ovoo£

—~ -
~ a
=z

[l ]

‘E 1000 | - 4
>

|

< [ |
=

100 . . L
o 6 12 18 24

Time (107sec)

FIG. 13. The position of the minimum in G(V,) with respect
to the applied voltage, ¥, =55 V, as a function of time. The
data points are based on the traces in Fig. 11.

scribed above and that exhibited by spin glasses'>!

where the behavior of the low-temperature susceptibility
depends on the value of the magnetic field applied in the
process of cooling. In the present case, there is a remark-
able feature that makes the observation of the glassy state
easy to identify and keep track of, namely, the minimum
in G(¥,) and its position. The shift of the minimum is
related to a creation of a “bias field” analogous to the
remnant magnetization in spin glasses. When one applies
V, to the gate, the electronic system is disturbed and the
system is out of equilibrium. The electron density N(r)
adjusts itself to cancel the applied field. The surface of
the sample adjacent to the gate accumulates a charge of
CV,. (C is the effective sample-gate capacitance) which
screens the applied field. Drawing on the analogy with
other glasses, this adjustment is presumed to be faster
than the time scale of the measurement when the system
is at sufficiently high temperatures. However, when
cooled below the glass transition temperature T,, the
readjustment of the charges in the system becomes a slug-
gish process. N(r) remains for extended times in a
configuration compatible with the high-temperature equi-
librium state. This creates a persistent “bias field” pro-
portional to V.. The electric field to which electrons in
the sample respond is a superposition of the applied and
bias field and thus it is proportional to V,—V,.. This
picture accounts for the shift of the minimum with time,
seen in Fig. 13. At a given moment, the “frozen” charge
Oy is dictating a local (in time) quasiequilibrium in the
sense that imposing V, =Q,/C will result in a static situ-
ation. The energy distribution of the “frozen” electrons
is that conforming to the Fermi-Dirac distribution with
respect to the chemical potential established through the
imposed V.

In spin glasses the time scales of the dynamics have no
classical estimates. This is not the case for electronic sys-
tems, the dynamics of which was widely investigated. It
is interesting to compare the time it takes the system to
reach an equilibrium configuration with the classical re-
laxation time expected from electrostatic considerations
(based on Ohm’s law and Maxwell equations). The latter
suggests a relaxation time 7,, =e€p /47 which is typically
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~1 usec for our samples. The observed dependences in
the position of the minimum of G(V,) can be recorded
over time scales that are ten or so orders of magnitude
larger than 7,,. Clearly, classical “bulk-p” considera-
tions are inadequate to deal with screening in such sys-
tems.!"? The classical consideration leads to a gross un-
derestimation of 7 since it implicitly assumes spatial
homogeneity and thus a possibility to define p and € on
all length scales including the microscopic one. However,
in a hopping system this assumption is true only for
length scales larger than the correlation length of the per-
colation cluster.?! The inhomogeneous nature of such
systems brings in some complications. In the first place,
the classical estimate for p based on the macroscopic
geometry is irrelevant since charge transport over short
distances is quasi-one-dimensional in these systems.?!
The characteristic time for the charge transfer along such
a segment is given by RC, where R is the resistance of the
segment and C is a certain capacitance associated with
it.!! The fractal nature of the current-carrying network
defies the simple result that RC ~ep. Physically, this re-
sults from the fact that the effective capacitance is larger
than that estimated®® from the confined “cross section”
controlling R. The resulting enhancement in relaxation
times is further enhanced by Coulomb interactions.?? It
should also be pointed out the C’s involved in the deter-
mination of the characteristic times may be the C’s in-
herent in the Miller-Abrahams network rather than the
geometrical C’s alluded to above.?®

The intriguing question to be addressed is this: What
is the reason for the extended time of relaxation observed
after gating the sample? In the following we try to give
an intuitive picture of a charging process and its subse-
quent redistribution in the system which may account for
the experimental observations. This picture is presented
as a simple example of the response to the gate voltage by
the hopping processes. It conveys the main idea in a
clear way, but may not apply in the general case—the ac-
tual processes may be more complicated, e.g., due to in-
teractions.

Applying a voltage between the sample and the gate re-
sults, at first, in a field normal to the sample plane. This
field modifies N (r) such that the current due to the field
is balanced by the diffusion current proportional to
VN(r). During this process, the system is out of equilib-
rium. In a homogeneous system, one expects N(r) to ad-
just itself to the instantaneous value of V, with a time de-
lay given by €p /4w which is usually too small to be of any
practical concern. However, in the present case, there
are important relaxation phenomena that, on short length
scales, persist for extremely long times. Figure 14(a) il-
lustrates the equilibrium state of the system in such a
case. Equilibrium reflects itself in that E is spatially
uniform, and electrons occupy states in accordance with
the Fermi-Dirac distribution (at the temperature 7). Im-
mediately after adding charge to the two hatched regions
which could be either the metallic contacts or any regions
in the bulk of the system that happen to have much
higher conductance than the central region in Fig. 14, the
situation is as depicted in FIg. 14(b). The Fermi energy is
larger in the “contacts” than in the “bulk” of the sample
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FIG. 14. A schematic description of the space-energy distri-
bution of electrons at various stages of the charging process.
The horizontal lines depict localized states and full circles are
electrons occupying them. (a) At equilibrium prior to the appli-
cation of a gate voltage. (b) Immediately after the application of
V, and (c) after charge enters the system and transitions are
made on the way to establish new equilibrium. Dotted horizon-
tal lines depict the position of the Fermi energy at equilibrium
for the pertinent V,. See text for more details.

as electrons are just beginning to flow into the sample un-
der the influence of the concentration gradient. The en-
suing charging process is a hierarchical one.?* The sites
connected to the contacts with the smallest Miller-
Abrahams resistors will be filled first. Naturally, most of
them will be within a short distance from the contacts
leading to an inward pointing charge gradient (i.e., from
the “contacts” into the low-conductance region). To bal-
ance that, electrons admitted at high energies will make
transitions to sites further inside the sample. This will be
followed by more electrons flowing to the vacated sites
from the contacts and so on. There are two features
peculiar to this type of diffusion, the huge distribution in
transition times involved on the one hand and the fact
that as the electrons go down in energy the number of
available states is diminished on the other. The latter
causes the average distance of the transition to increase
with time with a concomitant increase of the time neces-
sary to make the transition. Note that as long as this
process is going on, the local distribution of electrons is
different from that of the thermodynamic equilibrium
(and thus the conductance is enhanced). This is illustrat-
ed in Fig. 14(c). In the bulk of the sample the quasi Fer-
mi energy will move towards the equilibrium value, leav-
ing below it empty sites as well as “frozen electrons.”
Thermal equilibrium will be reached sluggishly due to the
above considerations.!’?®> Note that the relatively
higher-conductance regions in this picture (which are re-
ferred to as “contacts”) could be the segments of the
current-carrying network threading the bulk of the sam-
ple. Thus the relaxation time should not depend on the
size of the sample once the latter is bigger than the per-
colation radius.

The above scenario ascribes the relaxation process to a
purely electronic mechanism. In particular, it disregards
completely possible movements of other charges in the
system during the process (this is symbolized in Fig. 14 as
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a rigid distribution of available sites). Given the very
long times involved, the possibility that, say, ions can
move should be given serious consideration. We cannot
rule out this possibility. Yet, it is important to realize
that even if such movement exists it does not change the
qualitative conclusions of our model. The key point is
that the material does have a high density of electrons
per unit volume!® which ought to screen out any internal
fields thus eliminating the driving force for any charges
to move in the first place. The data presented above
strongly suggest that internal fields persist for extended
times. The focus should then be on the fact that the elec-
trons are manifestly responding extremely slowly rather
than ruling out movements of other charges in the sys-
tem.

It should be emphasized that as far as the electrostatic
of the macroscopic sample is concerned, spatial charge
homogenization may occur on a much shorter time scale
than that associated with the relaxations in G discussed
above. Chandrasekhar, Ovadyahu, and Webb® studied
field effects in insulating films where both the “active”
channel and the gate itself were made from high-
resistance indium oxide films. The single electron charg-
ing effects reported there had a voltage periodicity which
was independent of the sweep rates (up to 3 V/h). This
enables us to place an upper bound of 10-100 sec on the
time scale for the sample and gate material to become
essentially equipotential objects. This does not conflict
with our scenario for the following reason: Reaching a
macroscopic, spatial homogeneity does not imply equilib-
rium if, as in our scenario, charge diffusion is faster than
energy relaxation (which depends more strongly on mi-
croscopic disorder). In simple words, charge may spread
evenly in the system (on scales larger than the percolation
radius) rather quickly but that does not rule out non-
equilibrium in energy. Relaxation along the energy axis
involves hops on microscopic scales (e.g., the hopping
length) which, on the average, do not change the ‘“‘equi-
potentiality” of the sample on the macroscopic scale.

Finally, in the proposed picture, the increase of the
conductance (relative to the equilibrium state) is due to
downward hops made by electrons and holes. Clearly, a
similar situation will arise if electrons are removed from
the sample, as the entire picture is symmetrical with
respect to replacing electrons by holes. This, we believe,
is the reason for the appearance of the SC in the field
effect. The nonequilibrium effect is counteracted by the
underlying ‘“‘normal” (essentially linear) field effect.
Whether or not a minimum in G(V,) appears will de-
pend on the interplay between these two components. It
seems clear that a likely candidate for the observation of
the minimum is a system with a small linear field effect.
This will usually be the case in materials having a rela-
tively high density of states. Both amorphous and crys-
talline indium oxide films have quite high densities of
states'® which perhaps is why this effect is observable in
them. Granular systems made from metallic elements
should also possess high densities of states and we suggest
that they should be studied as they are likely to show the
minimum in G(¥,). It is interesting to note that such a
feature has indeed been observed® in granular Au films,
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consistent with our picture. Adkins et al.’ seem to em-
phasize glassy dynamics as arising from ion movement,
not from electrons. In their treatment, electronic excita-
tions from a Coulomb gap ground state are invoked (and
thus nonequilibrium is implied), but the dynamics of the
electronic system, essential in our model, is not con-
sidered in Ref. 9.

It is interesting to note that there is no qualitative
difference in the anomalous field effect of the two types of
systems: Both crystalline and amorphous indium oxide
films are structurally continuous structures'® while the Au
samples in Ref. 9 are granular. It should be clear from
the above considerations that sufficiently strong disorder
is the only essential ingredient necessary for observing the
anomalous effects reported here. Granular structures are
one possible way to achieve that but, as we establish here,
it is not the only way.

By contrast to the above high density-of-states systems,
the density of states in most semiconductors is much
smaller and strongly energy dependent. This usually
causes the conductivity to be pinched off for negative
gate voltages thus prohibiting the observation of the
minimum. The considerations outlined in this paper are
quite general though and we expect that time depen-
dences in field effects of any hopping system should be
observable. Experimentalists studying ‘‘dirty” metal-
oxide-semiconductor field-effect transistor (MOSFET)
structures are familiar with a host of problems that arise
when sweeping the gate voltage “too fast” and sometimes
tend to attribute these effects to “motion of ions.”
Though, as alluded to above, such a problem might exist,
we maintain that slow relaxation and out-of-equilibrium
situation must arise in a highly disordered system from a
purely electronic mechanism even when the ions are
effectively frozen out.

Before concluding, we wish to discuss the possible
relevance of Coulomb interactions to the issues at hand.
The qualitative arguments presented in Sec. III suggest
that interactions should significantly influence the nature
of the anomalous field effect due to their modification of
the system density of states. Coulomb interactions may
also strongly affect the relaxation process since the type
of transitions in the presence of interactions may be al-
tered, as is well known. At present, our model for the
anomalous field effect does not include such details. It is
hoped that further theoretical study of these questions
will culminate in more specific knowledge of the
modifications expected from interactions. In this regard
the anomalous field effect may prove to be a useful tool to
study Coulomb interactions.
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