
PHYSICAL REVIEW B VOLUME 48, NUMBER 20 15 NOVEMBER 1993-II

Hole bound states in the deformation field of screw dislocations in cubic semiconductors
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For the spherically averaged Hamiltonian approximation an accurate nonvariational calculation is re-
ported of the energies of the one-dimensional bands split off from the edge of the valence band by the
shear strain fields of screw dislocations in various cubic semiconductors. The calculation gives
significantly greater binding energies for holes than previous variational calculations and also a different
order of the first two levels when the ratio of light- and heavy-hole masses is less than 0.19. The calcula-
tion was performed on the basis of the effective-mass and deformation-potential approximations. This
approach is justified because the resulting binding energies are much smaller than the energy gaps. The
results may be used for the interpretation of various dislocation-related phenomena such as lumines-
cence, absorption, microwave conductivity, and combined resonance (a kind of electric-dipole spin reso-
nance).

I. INTRODUCTION

Bound states for electrons and holes at dislocations in
semiconductors can originate from three main factors:
long-range strain and electric fields of the dislocation;
dangling bonds and defects in the dislocation core; im-
purities and intrinsic defects in the vicinity of the disloca-
tion. In principle, different experimental techniques exist
to distinguish between the three types of dislocation
states, ' but the results are not always conclusive.

In the present paper we will be interested in dislocation
bound states arising from the long-range strain field.
These states form a set of one-dimensional (1D) disloca-
tion bands split off from the valence- and conduction-
band edges.

This set of 1D-dislocation bands is responsible for a
wide range of the dislocation-related phenomena such as
dislocation photoluminescence and cathodolumines-
cence dislocation light absorption below the intrinsic
absorption edge; ' dislocation conductivity and mi-
crowave conductivity.

Theoretical calculations of the energy positions of the
1D-dislocation bands can be divided in two groups. The
first group consist of the quantum chemical calculations,
which take into account the discrete atomic structure of
the crystal. At present the result of these calculations are
contradictory and strongly depend on the approximations
made and parameters chosen. '

The second group consists of the variational calcula-
tions made in the continuous media approach, '

which is based on empirical effective-mass and
deformation-potential approximations. Both these ap-
proximations fail in the vicinity of the dislocation core,
but the approach seems to be justified for shallow 1D-
dislocation bands arising from the dislocation strain field
because the characteristic size of the resulting wave func-
tions is larger then dislocation core and therefore core
should not affect these states strongly.

Previous theoretical calculations of the structure and

the energy positions of the 1D-dislocation bands in the
continuous medium approximation were mainly restrict-
ed to the case of electron bound states with few excep-
tions' ' where hole bound states were also con-
sidered. This is because of the fact that valence band in
cubic semiconductors has a complex structure and con-
sists of subbands of light and heavy holes and thus the
variational calculations of hole binding energies becomes
very complicated and their accuracy is rather low.

However, the hole 1D-dislocation bands can play an
important role in the various dislocation-related optical
phenomena and may also be responsible for the disloca-
tion conductivity in p-doped crystals.

In this connection, of special interest is the case of
screw dislocations in direct gap semiconductors where
the strain field has only shear components and no disloca-
tion bound states exist for electrons in the continuous
medium approximation. In this case the 1D-hole disloca-
tion bands should provide the main contribution to the
shifts of the dislocation-related optical lines with respect
to the band gap and also to the capture cross section of
volume excitons into dislocation bound states. It may be
noted, for example, that the low-temperature Yo catho-
doluminescence line in ZnSe has been found in associa-
tion with screw dislocations.

In the present paper a highly precise nonvariational
method is suggested for calculation of hole binding ener-
gies and wave functions at screw dislocations in cubic
semiconductors. This method is based on a direct finding
with an iteration procedure the four solutions of corre-
sponding Schrodinger equation, which are finite at dislo-
cation line and then making a linear combination of this
solution which possesses the correct asymptotic behavior
at large distances. Actually this method is a generaliza-
tion of the method, which has been successfully used for
highly accurate nonvariational calculations of hole bind-
ing energies and wave functions at shallow acceptors.

Using this approach we have found that hole binding
energies at screw dislocation are much greater than previ-
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ous variational calculation ' ' gave and the order of the
first two levels is also different when ratio of light- and
heavy-hole masses is lower than 0.19.

The calculation was made in the continuous medium
approximation assuming that the hole states are rather
shallow in comparison with the band gap and possess,
typically, binding energies of a few tens of meV.

The spherical approximation was used for description
of the deformation field of screw dislocation and hole
dispersion law. If necessary the nonspherical terms in the

Hamiltonian can be also taken into account by using per-
turbation theory.

II. GENERAL HAMILTONIAN

We start by writing down the Hamiltonian for holes in
the strain field of the screw dislocation according to the
continuous medium approximation.

The hole kinetic energy Ho can be described by the
Luttinger e6'ective-mass Hamiltonian

Ho= I(r, +—y2)P I 2r (p„s +p s +p, s, ) 4Y (p p Is„s j+p,p, Is s, j+p p, ts s, j)],1

2m

where p = ifiV; S—; are 4 X 4 matrices of the hole spin projections, corresponding to hole spin S=—', ;

tS,S j =(S,.S +S S;)/2 and I is unit matrix; y„yz, y3 are parameters introduced by Luttinger, and m is the free-
electron mass.

According to Ref. 31 the potential V(r) for hole interaction with an external strain field has the form

V(r)= —(a+ ', b) g u;;I—+bg u;;S; +2d/&3 g u," tS;S, j, (2)

H=HO+ V(r),

I:(r + ', r.)P I 2'Y(p-s) ]
1

(3)

where u," is a strain tensor which depends on the hole po-
sition coordinate r, a, b, and d are deformation-potential
constants. The signs of Ho and V(r) in (1) and (2) corre-
spond to positive hole energies.

In the following we will use spherical approximations
for the description of the valence band and for the hole-
strain field coupling. Performing the spherical averaging
of (1) and (2) by the method suggested in Ref. 32 it is easy
to obtain a spherically symmetrical effective Hamiltonian

Br
u„,(r)=u, (r)=

4~r
Br„

u, (r)=u, (r)=-
4~r

(4)

where r =Qr +r is the distance from dislocation axis
and B is the modulus of Burgers vector (we use the capi-
ta1 letter in order to distinguish it from deformation po-
tential b)

Using the explicit forms of matrices IS;S j given in
Ref. 3 1 we obtain the expression for potential-energy
operator,

V(r)= —(a+ —,'b')g u, ,I+b'g u,j IS;S,j, V( )
+3Bb

2 0

0

—r 0 0
0 0 0

0 r

0 r+ 0

(5)

where y=(2yz+3y3)/5 and b'=(2b+/3d)/5.
For a screw dislocation which lies along the z axis, the

strain tensor for an isotropic continuous medium is well
known (e.g., Ref. 33),

where r+ =r„+ir
The explicit matrix form of the kinetic-energy operator

1s

(y 2r )p.'+—(r +r )p p; —-i2 3rp, p

i2&3rp.p+, (y|+2y )p.'+ (r i
—r )p -p+

2m V3rp+, 0; (y&+2y)p, +(yi —y)p p+, i2 3yp, p

~'2+3rp, p (r 2y)p, +(r +'Y)p P+—
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' '(r, z, P)=

exp[i(M ——', )p]y3/2 (r)

exp[i(M —
—,
' )P]y, /2'(r)

exp[i(M+ —,
' )P]y ', /2(r)

exp[i(M+ —,
' )p]g 3/2(r)

ip z/A
e

The Schrodinger equation for the four-spinor radial
M, ppart y

' '(r) of the hole wave function can be found by
the unitary transformation, U, of the Hamiltonian (3)

where p+ =p~+ip~.
The full Hamiltonian, which is the sum of (5) and (6),

possesses an axial symmetry and therefore the projection
of the total angular momentum J on the z axis generates
J,=M as a conserving quantum number which can take
only half-integer values +—,', +—,', +—'„.. . .

The Hamiltonian possesses also a translation symmetry
along the z axis and therefore p, is a conserving quantum
number as well.

Thus, the general form of the wave function is

H'= U HU,

where U and y(r) have the forms

exp[i(M —3)(—P]; 0; 0; 0

0; exp[i(M —
—,')P]; 0; 0

0; 0; exp[i(M+ —,')P]; 0

0; 0; 0; exp[i(M+ —,')P]

M, p (r)
M, p

X "(r)=
x—1/2(r)

M,p
&—'3/'2(")

M,pand y
' '(r) satisfies the equation

H'y ' *(r)=Eg ' '(r) .

Using the relations

(10)

iaA
p+exp[iaP] f(r) =exp[i(a+ 1)P] p„+ f(r),

p exp[iaP]f(r) =exp[i(a —1)P] p„f—(r),ia fi

r

where p„= ifidyar, we c—an easily find, from (6) to (10), the unitary transformed form of H as

H'= p„A — p„B+ C+p, D+ip, p„F+p, G+ —g,1 2 iA A q . A q
I'

where q =(&3Bb'/4m. )' is an "effective charge" and the explicit forms of the 4X4 matrix A, B, C, D, F, G, Q are

(12)

0
A=

3/3y

F1+7
0

—23/3y(M —1)
—2&3yM

0 2/3y(M+ 1)

(y i+ y )(M —
—,
' )2

—3/3y(M+ —,
' )(M —

—,
'

)

(y, —y)(M —
—,
' )'

—3/3y(M+ —,
' )(M —

—,
'

)

—&3y(M+ —,
' )(M ——', )

(yi —y)(M+ —,')'
—3/3y(M+ —,

' )(M —
—,
'

)

(y, +y)(M+ —', )

(13)

('Y i 2'Y )

(yi+2r)
(yi+2r)

2'Y )

0
2&3y

0
0

—23/3y

0
0

—23/3y

0
2&sr

0

—23/3y(M —
—,
'

)

—23/3y(M —
—,
'

)

23/3y(M+ —,
'

)

2&3y(M+ —,
'

)

—1 0 0
0 0 0
0 0 1

0 1 0
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Because of time-reversal symmetry of the Hamiltonian
(12) the solutions of (10) with M (0 can be found from
those with M &0 by application of the time-reversal
operator

~II 1

71

8 8 c pz+D
X BX X Pp

The corresponding Hamiltonian H" is
2

0 0 0 1

Mp 0 0 1 0
0 1 0 0 (14)

Pz t) GPz 2Q

pp ax x x
(17)

—1 0 0 0

Thus, in the following, we will restrict ourselves to
considering only states with M & 0.

Because the heavy-hole subband provides the main
contribution in the hole binding energies at screw disloca-
tion, it is convenient to use the corresponding effective
atomic units of distance rp, momentum pp, and energy
Ry* (the eff'ective Rydberg), which are given by the for-
mulas

g2 g mhq
R )jc

mh q &p 2A

where mh =m j(y, —2y) is the mass of the heavy hole.
In these units the Schrodinger equation (10) for four-

M, p,
spinor radial part of wave function y

' '(r) takes the
form

III. WAVE FUNCTIONS
AND BINDING ENERGIES

In the present paper we will be interested in the hole
binding energies at the centers of 1D-dislocation bands
and thus will put p, =0 in (17), but the method to be con-
sidered for solving (16) at p, =O is also applicable for
p, AO.

First we would like to note that the four solutions of
(16) which are finite at x =0 can be found in the form

' '(x)=()(),(x)+(bz(x)ln(x)+$3(x)ln (x)+(t)4(x)ln (x),

where the four-spinor functions P;(x) are analytical at
x =0 and can be expanded in series of powers of x

(H" +E)y ' '(x)=0, (16)
(t);(x)= g f„"x".

n=p
(19)

where x =r/ro is the distance in effective Bohr radii and
s= —E/Ry is hole binding energy measured in eff'ective

Rydbergs.

The substitution of (18), (19) in (16), (17) at p, =0 leads
to the following recurrence relations between four-spinor
coefficients f„":

T(M, n)f„'"=(y,—2y)(Ef„"'2 —2Qf„"', )
—[(2n —1)A+B]f„' ' 2Af„' ', —

T(M, n)f„' '=(y, —2y)(Ef„' 'z —2Qf„' ', )
—2[(2n —1)A+B]f„' ' 6Af„'"', —

T(M, n)f„' '=(y, —2y)(Ef„' 'z —2Qf„' ', )
—3[(2n —1)A+B]f„' ',

T(M, n)f„' '=(y, —2y)(Ef( '~ —2Qf„' ', ),

(20)

where T(M, n) = n (n —1)A +nB+ C.
In order for the spinor coefficients f„"to become zero

when n (N, it is necessary that detI T(M, N)I =0. The
direct calculation with the use of (13) gives

T( —,', 0)e() =0, T( —,', 1)e, =0,
T( —,', 1)e, =0, T( —,', 2)e~ =0,

and also four four-spinors gp, g „g&, g2 such as that

(23)

det[T(M, n)] =D)D~,

where

D, =(y, —4y )[n —(M ——', ) ][n —(M+ —,') ],
D~=(y, 4y )[n ——(M —

—,') ][n —(M+ —,') ] .

(21)

(22)

Thus the determinant is equal to zero when n =M —
—,',

M —
—,', M+ —,', M+ —', for M~ —,'.

A special case is that of M =
—,
' when det I T( ,', n) ] has-

two single roots when n=0, n=2 and one double root
when n =1.

Let us start with this specia1 case.
Because detI T( —,', n)] =0 when n =0, 2 and has a dou-

ble root when n = 1 we can find four four-spinors ep, e„
e), e2 such that

g()T( —,',0)=0, g, T( —,', l)=0,

g, T( —,', 1)=0, gzT( —,', 2) =0 .
(24)

Solution 1 Solution 2 Solution 3 Solution 4

f())
f(2)

f(3)

f(4)

an b„
0
0
0

Cn

k, a„
0
0

d.
k4a„+k3b„+k&c„

k, k, a„/2
0

TABLE I. Spinor coefficients f„" of four solutions of
Eg. {16) for radial part of hole wave function.

y '(x)=g„" Ox "[f„"'+f„''ln(x)+f„"'ln (x)+f„' )ln'{x)j, for
the case M= —', p, =O. [Coefficients a„, b„, c„, d„and factors

k, , kz, k„k4 should be found from recurrence relations (20).]
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eo=

0 1 0
1 0 0
0 ei 0 el 1 2

0 0 0

The explicit forms of these spinors are

0
2&3y

0

T-'(-,', 1)=r 0

0

0

T44( ,', 1)—

D2

0

T42( —,', 1)

D2

0
T24( ,', 1—)

D~

0

T~2( —,', 1)

D2

(26)

0 1

1 0 0
go= 0 g~= 0

0 0

0
0
0
1

(2S) T„(—,', 2)

Di

0 1

T22( —,', 2)

T,3( —,', 2)

DI
0

0

To solve (16) we also will need the matrices T '( —,', n)
in order to use (20) for recursion finding f„". These ma-
trices are well defined for n )2 when detI T( —,', n)]%0 but
for n =1, 2 we need to introduce an additional definition
of T '( —,', n) because the usual inverse matrices do not ex-
ist in these cases.

We like to define the T '( —,', n) in these cases in the fol-
lowing way:

T-'(-,', 2) =
T3i(2 2)

Di
0

T, ) ( —,', 2)

Di
0

(27)

The four solutions of (16) can be taken in the forms
(18), (19) with f„"shown in Table I, where four-spinor
coefFicients a„, b„, c„, d„, found from recurrence rela-
tions (20), are

ao=o a$ =0, a2=e~,

a„=T '( —,', n)[(y, —2y)(Ea„2+2Qa„, )] for n )2;

bp=0 b& =e&

b„=T '( —,', n)[(yi —2y)(Eb„2+2Qb„&)] for n )1;

cp =0, c) =e]

c„=T '( ,', )nt(y —
i 2y)—( cs„2+2Qc„&)—[2(n —1)A+B]k&a„] for n )1;

do=e2, d„=T '( —,', n)I(y, —2y)(Ec„z+2Qc„,)
—[2(n —1)A+B](k4a„+k3b„+k2c„)—Ak, k2a„j for n)0,

and the factors k „k2,k3, k4 should be found from conditions

(g2l(y, —2y)(ec„2+2Qc„,)
—[2(n —1)A+B]k&a„)=0 for n =2,

&g. l(yi 2y)(Ec„2+2Qc„,) —[2(n —1)A+B](k4a„+k3b„+k2c„)—Ak, k2a„) =0 for n =1,2, (29)

(g„l(y, —2y)(ec„2+2Qc„,)
—[2(n —1)A+B](k4a„+k3b„+k2c„)—Ak, k2a„) =0 for n =1 .

Thus, for case M= —', p, =0 we have built all four solutions y
' "(x), where i = 1,2, 3,4 is the solution number, of the

Schrodinger equation (16), which are finite at x =0.
Now let us consider the case of M ~

—,'.
In this case det[T(M, n)] has a single root when n =M —

—,', M —
—,', M+ —,', M+ —,', and corresponding eight four-

spinors e„' ', g™which met the conditions

T(M, n)e™-O,g„'~'T(M, n) =O

are
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1 0
0 1

(M) (M) (M)
M —3/2 0 M —1/2 0 M + 1/2

&3y(4M —1)
0

—2( y i+ y )(2M —1)

0

(M)
eM +3/2

V3y [4(M + 1) —1]
0

—2(y, —y)(2M + 1)

(M)
g M —3/2

(y, —y) [(M—
—,
' )' —(M —

—,
' )']

&3y[4(M+1) —1]
0

(31)

(M)
gM —1/2

0

(y, —y ) [(M —
—,
' )~—(M+ —', ) ]

0
—&3y(4M —1)

(M)
0

(M)
gM + 1/2 1 & gM+ 1/2

0
0
0
1

In order to find the solutions of (16) we will also need matrices T (M, n), which are well defined for n )M+ —, but
additional definitions should be made for n =M+ —'„M+—,', M —

—,'.
We like to define T (M, n) in these cases in the following way.
For n =M+ —,',

T '(M n)=

T33(M, n)

D,

T3, (M, n)

1

T22(M n)

Ti3(M, n)
0

Ti, (M, n)

D,
0

(32)

For n =M+ —,',

T '(M n)=

1

T, i(M, n)

0
T44(M, n)

D2

0 0
T4~(M, n)

0

T,4(M, n)

D2

0
T~2(M, n )

D2

(33)

For n =M —
—,',

T33(M, n)

D1

Ti3(M, n)
0

T '(M, n)=
T3, (M, n)

0
D1

0
T„(M,n)

D1

1

T44(M, n)

(34)

The four solutions of (16) for the case of M ~
—,
' can be taken in the forms (18), (19) with f„"shown in Table II, where

four-spinor coefficients a„, b„, c„,d„, found from recurrence relations (20), are
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TABLE II. Spinor coefficients f„"of four solutions of Eq. (16) for the radial part of the hole wave
M, p

function. g '(x)=g„" ox "[f„"+f„''ln(x)+f„' 'ln (x)+f„' 'ln (x)], for the case M& 3, p, =O.
[Coefficients a„,b„, c„,d„and factors k„k~, k„k~ should be found from recurrence relations (20).]

f(1)

f(2)

f(3)

f(4)

Solution 1 Solution 2

bM
kMgM

0
0

Solution 3

CM

kM M+kMgM
kMkM M/2

0

Solution 4

dM

k Mg M+ I Mb M+ k Mg M

( k Mk M +k MI M )a M/2+ I Mk Mb M/2

k Mk Mk M& M/6

a„=0 for n (M+ —, , aM+3/2 eM+3/2
(M) 3 M (M)

a„=T '(M, n)[(y, —2y )(Ea„z+2ga„, ) ] for n & M+ —,';
bn 0 r ~ M+

2 ~ M+1/2 eM+1/2
M M (M)

b„=T '(M, n)[(y, —2y)(Eb„z+2gb„) }—[2(n —1}A+B]k,a„] for n &M+ —,';
&M —$/2 eM —$/2

M M (M)
(35)

c„=T '(M, n)[(y, —2y)(Ec„2+2gc„,) —[2(n —1)A+B](k3 a„+k2 b„)—Ak, k2 a„] for n &M —
—,
'

d„=0 for n (M —
—, dM 3n eM 3n- —M M (M)

d„=T '(M, n)[(y, —2y)(Ed„2+2Qd„, )

+[2(n 1)A +B](kM M+kMbM+kMcM) A [(kMkM+klkM)aMy2+kMkMbM]] f &M

and the factors k &, k 2, k 3, k 4, k 5, k 6 should be found from the conditions

(g, l(y) 2y)(Eb„2+2gb„) ) —[2(n —1)A+B]k) a„)=0 for n =M+ —,';
(g™l(y,—2y)( c„e+22Q „c,) —[2(n —1)A+B](k3 a„+kz b„)—Ak) k2 a„)=0 for n =M+ —,', M+ —,'; (36)

(g( )l(y) —2y)(Ed„z+2gd„, ) —[2(n —1)A+B](k6 a„+k~ b„+kPc„)
X A [(kMk M+ kMkM )a My2+kMk Mb M] ) () for

Thus we have found a recursion procedure which al-
lows us to obtain for case p, =0 all four solutions

' "(x) of the Schrodinger equation (16) which are
finite at x =0 ( i = 1,2, 3,4 is the solution number).

In order to get the eigenfunctions of (16) and corre
sponding energies of bound states we need to make a
linear combination of y

' " (x) which decreases at

M,p, i (as)
The four asymptotic solutions y

' " (x) which de-
creases at x -- oo can be obtained directly from (16) in
the form

V'(x) =
' "(x)

() Mp, , i
X

Vi+4(x)
M,p, i(as),

(xj
M,p, i{as)

x

1 y ~ ~ ~ y 4

become linear dependent at x
This condition can be written in the form

(39)

M,p, i
The linear combination of g

' "(x) decreasing at
x = ~ exists only for such energies c when eight eight-
spinors V"(x), k = 1, . . . , 8, which are determined as

M,p, i(as), ) /2(x=x e 's, , (37) detW'(x)=0 when x - oo, (40)

$( = 0
sp— 0

1

S3=

v'3

0
1

0

$4=

0
1

0
P3

(38)

where g, =g2=&e, rI3=g4=+e(y, —2y)/(y, +2y),
and four four-spinors s; are

where IV(x) is an 8 X 8 matrix W,i, (x)= V, (x), and s is a
spinor index of V"(x).

Actually (40) is the quantization condition which al-
lows to calculate the hole binding energies and wave
functions with high accuracy using the recursion pro-
cedure described above.

Applying this approach we have calculated the binding
energies of the six deepest hole levels at screw dislocation
whose quantum numbers are M= —,', n =0, 1,2; M= —,',
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n =0, 1; M= —,', n =0, where n is a radial quantum num-

ber.
In this calculation we have approximated the infinite

sum in (19) by the finite sum of 70 first terms and the
x = co in quantization condition (57) was approximated
by x =10/VE. These approximations provide the accu-
racy of the binding energies of about 1%.

The results of this calculation for various ratios m&/mh
of the light II and the heavy mh hole masses are show~
in Figs. 1 and 2. A comparison of the results with the
previous variational calculation' shows that for case
mI=mh our calculation gives for the main states corre-
sponding to M =

—,', n =0 and M= —,', n =0 binding ener-

gies only greater by a factor of 1.07. But for the case
II /mh =0. 1 the hole energy levels have been found to be
significantly deeper than those given in Ref. 19. For the
state with M= —,', n =0 the binding energy is 1.58 times
greater, and for the state with M= —,', n =0, 2.43 times
greater.

We also have found that for II /mh & 0. 19 the order of
the two deepest levels with M= —,', n =0 and M= —,', n =0
changes and the level with M= —,', n =0 becomes the
main bound state.

The results of the calculation of binding energies for
various cubic semiconductors are shown in Table III and
the parameters used in the calculation of the effective
Rydbergs value are shown in Table IV.

It can be seen from Table III that the hold bound
states in all cases are rather shallow and, therefore, the
continuous medium approximation, used in this paper,
was justified.

We have also used the spherical approximation to the
hole dispersion law and an isotropic dislocation strain
field. Further improvement of the precision of our calcu-
lation of the binding energies could be achieved by taking
into account the anisotropic terms in the Hamiltonian (1),
(2) by use of perturbation theory.

The anisotropic part of the Hamiltonian (1), (2) has
only nondiagonal matrix elements between eigenfunctions
of the spherically averaged Hamiltonian (3) being

0.25
i

0.2-

~ 0.15--

0.1—
Kl

0 05- - -':----. -'-—-----------

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ratio of light and heavy hole masses

FIG. 2. Hole
M= —', n=1 (

( ~ ~ )M= —'n
) 27

binding energies at the screw dislocation:
M=-,'

=2( ———)

nonzero and thus the perturbation should lead to an addi-
tional increase in the hole binding energy for the main
bound state.

A comparison of the hole binding energies for Si and
Ge given in Table III with the results of previous varia-
tional calculations ' ' (26 meV for Si and 8 and 12 meV
for Ge) shows a significant increase in the corresponding
energies due to a more precise solution of the
Schrodinger equation with the spherically averaged
continuous-medium-approximated Hamiltonianan (3) in
this paper.

Experimental binding energies for holes at screw dislo-
cations found from measurements of the dislocation-
related Hall effect for Ge (Refs. 34—36) and the
dislocation-related microwave conductivity for Si (Refs.
10 and 11) are 35 and 80 meV, respectively.

For ZnSe the hole binding energy 163 meV can be ob-
tained from the energy of the screw dislocation-related
photoluminescence line (2.60 eV) and the screw

0.9-

TABLE III. Hole binding energies for two deepest bound
states E(M= —', n =0) and E(M= ~, n =0) at the screw dislo-

cation in various semiconductors.

Compound E(M= ~, n =0) (meV) E(M= —', , n =0) (meV)
—0.8-
S4

Q 0.7-

~~ 0.6-

0.5-

/

0.3-
I

0 0. i 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Ratio of light and heavy hole masses

FIG. 1. Hole binding energies at the screw dislocation:
M= —', n=O( );M=-, n=O( ———).

Si
Ge

AlSb
GaP

GaAs
GaSb
InP

InAs
InSb
ZnS
ZnSe
ZnTe
CdTe

37
20
62
33
36
24
46
18
27
32
53
63
72

39
19
53
34
34
21
42
13
17
30
50
58
62
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TABLE IV. Parameters used for calculating the effective Rydberg values Ry* for various semicon-
ductors. The experimental values for deformation-potential constants were taken from the review arti-
cle (Ref. 40) and the Luttinger constants were taken from Ref. 41.

Compound 8 (A) b (eV) d (eV) b' (eV) y~ r2 y mI /mI, Ry* (meV)

Si
Ge

AlSb
GaP

GaAs
GaSb

InP
InAs
InSb
ZnS

ZnSe
ZnTe
CdTe

3 ~ 84
4.00
4.34
3.85
4.00
4.31
4.14
4.28
4.57
3.82
4.00
4.31
4.58

—2.2
—2.3
—1.4
—1.8
—2.0
—1.8
—2.0
—1.8
—2.0
—0.7
—1.2
—1.8
—1.2

—5.1
—5.0
—4.3
—4.5
—5.4
—4.6
—5.0
—3.6
—5.0
—3.7
—4.9
—4.6
—5.4

—2.65
—2.65
—2.05
—2.28
—2.67
—2.31
—2.53
—1.97
—2.53
—1.56
—2.18
—2.31
—2.35

4.22
13.4
4.15
4,20
7.65

11.8
6.28

19.7
35.1

2.54
3.77
3.74
5.29

0.39
4.25
4.15
0.98
2.41
4.03
2.08
8.37

15.6
0.75
1.24
1.07
1 ~ 89

1.44
5.69
1.01
1.66
3.28
5.26
2.76
9.23

16.9
1.09
1.67
1.64
2.46

1.02
5.11
1.75
1.39
2.93
4.77
2.49
8.89

16.4
0.95
1.50
1.41
2.23

0.35
0.135
0.085
0.204
0.132
0.107
0.114
0.052
0.035
0.144
0.115
0.140
0.085

60
44

152
67
80
55

106
46
72
69

124
135
174

dislocation-related exciton activation energy (57 meV),
suggesting that the electron binding energy at screw
dislocation is negligible.

It can be seen from Table III that the present calcula-
tions significantly improve the agreement between theory
and experiment but a discrepancy still exists. The
disagreement may arise from neglecting the anisotropy
and dislocation-core-related effects in present calculations
as well as from the impurity and point defect contribu-
tions to experimental binding energies.

corresponding binding energies were found to be rather
small and comparable with the binding energies typical of
shallow acceptors.
low-temperature dislocation-luminescence phenomena in
pure semiconductors because of the very large capture
cross section for carriers in dislocation strain fields ' as
well as in various one-dimensional electronic-transport-
related phenomena such as dislocation conductivity and
microwave conductivity " and dislocation combined
resonance (a kind of electric-dipole spin resonance).

IV. CONCLUSIONS ACKNOWLEDGMENTS

In this paper, accurate non variational calculations
for the spherically averaged continuous-medium-
approximated Hamiltonian have been made of hole states
bound in the shear strain field of screw dislocations. The

Y.T.R. would like to acknowledge the support of the
United Kingdom Science and Engineering Research
Council and French Centre National de la Recherche
Scientifique (PICS).

Y. Lelikov, Y. Rebane, S. Ruvimov, D. Tarhin, A. Sitnikova,
and Y. Shreter, Fiz. Tverd. Tela (Leningrad) 34, 1523 (1992}
[Sov. Phys. Solid State 34, 804 (1992)].

Y. Lelikov, Y. Rebane, S. Ruvimov, D. Tarhin, A. Sitnikova,
and Y. Shreter, Mater. Sci. Forum 83—87, 1321 (1992).

Y. Lelikov, Y. Rebane, S. Ruvimov, D. Tarhin, A. Stinikova,
and Y. Shreter, Phys. Status Solidi B 172, 53 (1992).

~Y. Lelikov, Y. Rebane, and Y. Shreter, in Properties of Disloca
tions in Semiconductors, edited by S. G. Roberts, D. B. Holt,
and P. R. Wilshaw, IOP Conf. Ser. Proc. No. 104 (Institute of
Physics and Physical Society, London, 1989), p. 113.

5Y. G. Shreter, Y. T. Rebane, J. H. Evans, J. S. Rimmer, B.
Hamilton, A. R. Peaker, and E. C. Lightowlers (unpublished).

J. W. Steeds, J. L. Batstone, Y. T. Rebane, and Y. G. Shreter,
in Polycrystalline Semiconductors II, edited by J. H. Werner
and H. P. Strunk (Springer-Verlag, Berlin, 1991),p. 45.

7A. Bazhenov and L. Krasilnikova, Fiz. Tverd. Tela (Leningrad)
28, 235 (1986) [Sov. Phys. Solid State 28, 128 (1986)].

8A. Bazhenov, V. Kveder, L. Krasilnikova, and R. Rezchikov,
Phys. Status Solidi A 137, 321 (1993)~

9V. V. Kveder, R. Labusch, and Y. A. Osipyan, Phys. Status

Solidi A 92, 293 (1985).
toM. Brohl and H. Alexander, in Properties of Dislocations in

Semiconductors (Ref. 7), p. 163.
M. Brohl, M. D. Dressel, H. W. Helberg, and H. Alexander,
Philos. Mag. B 61, 97 (1990).
S. Marklund, Phys. Status Solidi B 92, 83 (1979).
R. Jones, J. Phys. (Paris) Colloq. 40, C6-33 (1979).
H. Teichler and H. Veth, J. Phys. (Paris) Colloq. 44, C4-93
(1983).
J. R. Chelikovsky and J. C. H. Spence, Phys. Rev. B 30, 694
(1984).
K. W. Loge, A. Lapiccirella, C. Battistoni, N. Tomassini, and
S. L. Altman, Philos. Mag. A 60, 643 (1989).

~7Y.-L. Wang and H. Teichler, Phys. Status Solidi B 154, 649
(1989).
S. Marklund and Y.-L. Wang, Solid State Commun. 82, 137
(1992).
P. R. Emtage, Phys. Rev. 163, 865 (1967).

~oH. Teichler, in Lattice Defects in Semiconductors, edited by F.
A. Huntley, IOP Conf. Proc. No. 23 (Institute of Physics and
Physical Society, London, 1975), p. 374.



14 972 Y. T. REBANE AND J. W. STEEDS 48

H. Teichler, J. Phys. (Paris) Colloq. 40, C6-43 (1979).
R. Landauer, Phys. Rev. 94, 1386 (1954).
V. Celli, A. Gold, and R. Thomson, Phys. Rev. Lett. 8„96
(1962).
S. Winter, Phys. Status Solidi B 79, 637 (1977).
S. Winter, Phys. Status Solidi B 90, 289 (1978).
J. L. Farvaque and B. Podor, Phys. Status Solidi B 167, 1

(1991).
A. Claesson, J. Phys. (Paris) Colloq. 40, C6-39 (1979).

~J. L. Batstone, Ph.D. thesis, University of Bristol, United
Kingdom, 1985.
Sh. M. Kogan and A, F. Polupanov, Zh. Eksp. Teor. Fiz. 80,
394 (1981) [Sov. Phys. JETP 53, 201 (1981)].
J. M. Luttinger, Phys. Rev. 102, 1030 (1956).

~~G. L. Bir and G. E. Pikus, Symmetry and Strain-Induced

sects in Semiconductors (Wiley, New York, 1974).

A. Baldereschi and N. O. Lipari, Phys. Rev. B 8, 2697 (1973).
~~J. Friedel, Dislocations (Pergamon, Oxford, 1964).

R. Wagner, Phys. Status Solidi A 24, 575 (1974).
R. Wagner and P. Haasen, Inst. Phys. Conf. Ser. 23, 56 (1975).
W. Schroter, J. Phys. (Paris) Colloq. 40, C6-51 (1979).
V. V. Kveder, V. Kravchenko, T. R. Mchedlidze, Y. A. Ossi-

pyan, D. E. Khmel'nitskii, and A. I. Shalynin, Pis'ma Zh.
Eksp. Teor. Fiz. 43, 202 (1986) [JETP Lett. 43, 255 (1986)].
A. E. Koshelev, V. Y. Kravchenko, and D. E. Khmel'nitskii,
Inst. Phys. Conf. Ser. 104, 193 (1989).
E. J. Pakulis and C. D. Je6'ries, Phys. Rev. Lett. 47, 1859
(1981).

~A. Blacha, H. Presting, and M. Cardona, Phys. Status Solidi B
126, 11 (1984).
P. Lawaetz, Phys. Rev. B 4, 3460 (1971).


