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Gradient corrections have been shown to improve the accuracy of density-functional theory
(DFT) when applied to homonuclear dimers, small molecules, and bulk properties of transition
metals (such as Fe). A more thorough evaluation is needed before adopting these corrections for
large-scale computations in solids. We investigate a broad range of diferent systems by using the
most recently proposed gradient correction to DFT by Perdew and Wang, which is expected to give
a marked improvement over earlier attempts. We And that when this correction is used to calculate
the energy of atoms it gives better agreement with experiment than the local-density approximation
(LDA). When applied to bulk properties, this correction gives results which are not consistently
better and tend to overcorrect LDA results.

I. INTROI3UCTION

Density-functional theory (DFT) has proved to be
a versatile and valuable tool in modern computational
physics. The local density approximation (LDA) is the
most widely used implementation of DFT, which renders
applications to a variety of problems computationally
feasible. However, even with its well recognized success,
LDA has several limitations (see, e.g. , Ref. 3). Accord. —

ingly, improvements to LDA have been sought for many
years. Ortiz and Ballone recently pointed out that gra-
dient corrections constitute a promising approach from
both a computational and a conceptual point of view.
In their calculation for homonuclear dimers, such cor-
rections gave an improvement over LDA results in ev-
ery respect. It was also reported by Bagno, Jepsen,
and Gunnarsson that by applying gradient corrections,
the solid properties of third row elements are predicted
more accurately. Despite these encouraging indications,
a more thorough test for finite systems (atoms, molecules,
clusters) as well as infinite systems (crystalline solids)
is necessary before adopting these corrections for large-
scale computations. Recently some tests of this type have
been reported by Perdew et al. , Ortiz, Garcia et al. ,
and Korling and Haglund.

In this work, we present a test of gradient correc-
tions to DFT for a broad range of atoms and solids. In
the present calculation we used the gradient-corrected
exchange-correlation functional that was recently intro-
duced by Perdewi ' i in its spin-unpolarized form (it will
be referred to as PW91). For the convenience of the
reader we reproduce the PW91 functional in Appendix
A. This newly proposed functional is expected to give
marked improvements over earlier attempts. The rea-
sons for this expectation are (1) The PW91 functional
was constructed by analyzing the behavior of exchange
and correlation under conditions for which exact results
can be obtained, rather than by fitting computational
results; specifically, it satisfies the proper sum rules and

scaling relations for exchange and correlation. (2) Unlike
other schemes, this functional treats exchange and corre-
lation eÃects on an equal footing, which is more consis-
tent from a first-principles theoretical point of view. (3)
An earlier version of this approach appeared to give
improved agreement with experiment for bulk properties
of transition metals, such as Fe. We find that PW91
improves the calculation of atomic energies over LDA re-
sults. However, when applied to bulk properties of solids
PW91 does not give a consistent improvement over LDA
results.

The remainder of this paper discusses the application
of PW91 to atoms (Sec. II), and to several types of solids,
including metals, semiconductors, and insulators (Sec.
III). We conclude in Sec. IV with comparison to other
calculations and some remarks on the usefulness of this
grad. ient correction.

II. APPLICATION TO ATOMS

We erst consider the application of the PW91 gradient
correction to scalar non-relativistic all-electron calcula-
tions for atoms. The elements we considered range from
alkali metals to inert gases. Specifically, they include
the second, third, and fourth rows of the Periodic Table,
except for the transition metals, for which some results
have already been reported in the literature. The results
of these calculations, which employed the standard loga-
rithmic grid for the radial variable, are given in Table I.
The total energy, exchange energy, and correlation energy
are compared to experimental measurements where avail-
able and to LDA results. By using the PW91 functional,
one obtains a lower total energy and exchange energy but
a higher correlation energy, all in better agreement with
experiment than LDA results. A noticeable point is that
for heavier elements, the agreement between calculation
and experiment seems to worsen (although still better
than LDA, where comparison to experiment is possible).
The reason is most likely due to the neglect of relativis-

0163-1829/93/48(20)/14944(9)/$06. 00 48 14 944 Qc1993 The American Physical Society



48 APPLICATION OF GRADIENT CORRECTIONS TO DENSITY-. . . 14 945

c5

4P

6
~ psI

S4

o

bQ

Q

6o
tQ C5

g

c5
Cfl05

05

6
~ m lgj

o
g4 cn

g ~o

6

o
a5

O o
O
05

c
~
o ~o

4)

o
O

g o
tD c™
bQ

Q
hQ

~ ~
(Q

o
Oo

O
~ m g
6 &
o cp

o
05

V

I

0
LLJ

I

C)

o

CV

C)

C~

CO

C)
uQ

R
C)

C)

C4

CO

CO

CO
C4

C)

C)

O

C)

'O

C)

0

CO

O

CO

C)

CO

f4

O

CV
CQ

'O

CV

CQ
C4

CV
O

4)
'O

Cl



YU-MIN JUAN AND EFTHIMIOS KAXIRAS

0.0

-0.4

0.0 1.0 2.0
r (a.u. )

3.0 4.0

FIG. 1. The all-electron exchange-correlation potential for
the Si atom as given by the I DA and PW91 functionals. The
shoulder region at r 1.3 a.u. is due to sharp variations in
the density.

tic effects which become more important for the heavier
atoms. PW91 appears to overcorrect the LDA results in
some cases, even though the difFerence with experiment
is small. For example, the total energy of a Si atom is
—288.192 from LDA and —289.506 from PW91, while the
experimental result is —289.348 (all numbers are in units
of 1 hartree equals 27.2116 eV).

For a more detailed look at the effect of PW91 on the
atomic calculations, we present an example in Fig. l. In
this figure, we display the exchange-correlation potential
for Si as obtained by LDA and PW91. In general, LDA
gives a more negative exchange-correlation potential than
PW91. Except for the shoulder region, where the large
difference is due to the gradient correction term which
arises from a rapid change in the density, the difference
between LDA and PW91 is actually quite small. Never-
theless, this small difFerence in the exchange-correlation
potential gives significant differences in the energies (see
Table I).

III. APPLICATION TO SOLIDS

In order to perform consistent erst-principles pseu-
dopotential calculations for solids, it is necessary to con-
struct new pseudopotentials. The reasons are both con-
ceptual and practical. Pseudopotentials that are avail-
able in the literature, such as the ones by Bachelet,
Hamann, and Schliiter (BHS) were constructed from
LDA all-electron calculations. If these potentials were to
be used in the PW91 sohd calculations, then the screen-
ing effect for core electrons would be approximated by
LDA while the screening effect for valence electrons will
be approximated by the PW91 functional, which evi-
dently is not a self-consistent approach. Moreover, it was
found by Ortiz and Ballone that a self-consistent pseu-
dopotential that incorporates gradient corrections gives
different results &om a BHS pseudopotential. The de-

tails of the construction of the pseudopotentials used in
the present calculation are given in Appendix B.

We performed total energy pseudopotential calcula-
tions for two simple metals (Na and Mg), one sp-bonded
metal (Al), two elemental semiconductors (Si and Ge),
one compound semiconductor (GaAs), and one inert gas
crystal (Ar). The calculations were done by using a
plane-wave basis. For the LDA calculations, we used
the exchange-correlation potential of Ceperley and Alder
as parametrized by Perdew and Zunger. The use of a
plane-wave basis is advantageous in that the gradient and
the Laplacian of the density needed in PW91 can be ob-
tained easily by fast Fourier transforms (FFT's). In the
PW91 calculation only nine additional FFT's are needed,
which results in a very modest increase of computational
time (less than 3%).

The ground state properties of each solid were obtained
by minimizing the energy with respect to the lattice con-
stant. In our present calculation, we G.tted the results to
the Murnaghan equation of state, which then gives the
equilibrium lattice constant and bulk modulus. In order
to obtain a reliable cohesive energy one needs to calculate
the energy of the solid with the same degree of accuracy
as that of the isolated atom. The latter is obtained by
integration of the Schrodinger equation and is essentially
exact (within the limits of DFT). The energy of the solid
converges variationally with the size of the plane-wave
basis. For this reason, we first calculate the ground state
energy corresponding to the calculated equilibrium lat-
tice constant for several values of the cutofF energy E,
which is the highest plane-wave kinetic energy and deter-
mines the size of the basis. The cutoff energy ranges from
12 to 20 Ry, except for Ar, in which case E ranges from
16 to 32 Ry. Then, we Gtted the calculated total ener-
gies to E = Eo + A/E~ in order to obtain the asymptotic
value of the total energy Eo (A and p are fitting param-
eters; the optimal value of p is 2.5). We find that the
error introduced by using this formula is less than O. l%%uo

(this was estimated by comparing the fitted result to the
calculated result for the highest cutofF energy). In order
to include spin-polarization efFects, we used the empirical
formula AE„= —0.18 x n„eV (n„= n~ —ng, nt being
the number of electrons with spin up and n~ the number
of electrons with spin down) to estimate the shift in the
total energy of the pseudoatoms in spin-polarized con-
6gurations. Spin-polarized calculations for nonmagnetic
solids are expected to have negligible effect on the total
energy Eo. The cohesive energy is then determined by
the difFerence between Eo and the total atomic energy
calculated for the pseudoatom.

The total energy vs lattice constant curves from LDA
and PW91 f'or Na, Mg, and Al are shown in Fig. 2(a) and
for Si, Ge, GaAs, and Ar in Fig. 2(b). The curves from
the PW91 calculations are Hatter and they are shifted to
the right compared to the LDA curves. Thus the PW91
functional gives a larger lattice constant and smaller bulk
modulus than LDA. The latter approximation overesti-
mates the cohesive energy in most cases, and gives too
small lattice constants compared to experiment. The re-
sults for the calculations of ground state properties of
solids are summarized in Table II. Except for the sim-
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pie metals Na and Mg, the results &om PW91 seem to
overcorrect the LDA results. Specifically, the PW91 re-
sults give a lattice constant which is bigger than exper-
iment by a significant amount. For example, the PW91
results give lattice constants which are higher than exper-
iment by 3%, 5%, and 5% for Si, Ge, and GaAs, respec-
tively, whereas LDA results give lattice constants which
are smaller than experiment by 1%, 2%, and 2% for the
same solids. For the bulk modulus, the results from the
PW91 calculations are better for Na, Mg, Al, and Ar,
since the LDA values are too high for these three ele-
ments. But for Si, Ge, and GaAs, the bulk moduli &om
the PW91 calculations are worse than the LDA results,
which were already underestimates of the experimental
values. For the cohesive energy, the PW91 calculations
give an improvement over the LDA results in most cases,
even though the PW91 cohesive energies are still larger
(in absolute value) than experiment. For Ar, we note that
the energy vs volume curve is much Hatter than other
solids, making the prediction of the equilibrium lattice
constant and bulk modulus more difficult. In summary,
we And that use of the PW91 functional gives a weaker
binding between atoms in a solid, resulting in larger lat-
tice constants and smaller bulk moduli. The deviation
from experiment depends somewhat on the character of
the solid, but in many cases it is larger than the deviation
of LDA results from experiment.

The calculated band gaps for the semiconductors and
0.040

0.030

0.020

0.010

(b)
Q/
/ PW 91---- LDA

1.00

0 75 Na

0.000

0 035

0.025

—0.005

0 070 GaAs

0.060

0.050

0.040

o.o85 '- A"

0.075

0.065

G
/

/

Q/
/

p. -o- ~
I I

Qi

'G

n

0.50

0.25

0.00

E 075 Mg

cd)
g) 0.50

0.25—
O

0.00

0 75 Al

0.50

0.055
-0.15

Q--c)- w-e--
I I I

-0.10 -0.05 0.00
(a-ao)ia0

0.05 0.10 0.15 0.25

FIG. 2. (a) Comparison of total energy vs lattice constant
curves for Na, Mg, and Al as given by the LDA and PW91
functionals. The dots are calculated values, the lines are fits to
Murnaghan's equation of state. ao is the experimental lattice
constant, E'0 is the asymptotic value of the solid's total energy
(see text). (b) Same as in (a), for Si, Ge, GaAs, and Ar.
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FIG. 3. Density of states (including spin degeneracy) for
Na, Mg, and Al calculated from LDA and PW91. The Fermi
energy is taken to be zero.
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TABLE II. Lattice constant, bulk modulus, and cohesive energy calculated from LDA and PW91. The experimental data
for lattice constants are taken from Ref. 18, except for GaAs, which is from Ref. 19. The experimental data for bulk modulus
and cohesive energy are from Ref. 20, except for GaAs, which are from Refs. 21 and 22. The unit for lattice constant is A; the
unit for bulk modulus is 10 dyn/cm; the unit for cohesive energy is eV.

LDA calculation

lattice bulk cohesive
constant modulus energy

PW(91) calculation

Experiment

Na
3.74 10.65

Mg Al Si Ge GaAs Ar
1,51 3.08 41.77 2.93 3.93 87.65 4.14 5.38 96.57 5.38 5.57 74.72 4.53 5.51 77.09 8.58 ' 4.94 6.46 0.419

4, 29 5.68 1.18 3.25 37.70 2.06 4.25 61.07 3.22 5.59 85.22 4.64 5.92 58.12 3.71 5.92 54.59 6.43 5.83 2.75 0.066

4.23 6.80 1.11 3.21 35,40 1,51 4.05 72.20 3.39 5.43 98.80 4.63 5.66 77.20 3,85 5.65 75.57 6.52 5.26 1.60 0.080

TABLE III. Band gap calculated from LDA and P%'91.
ao" is the equilibrium lattice constant predicted by theory.
a~" is the equilibrium lattice constant measured from ex-
periment. The experimental data are taken from Ref. 23,
except for Ar, which is from Ref. 24. The unit is eV.

LDA calculation

af aexp
0

PW(91) calculation

Experiment

the insulator we have considered, at both the theoreti-
cally predicted equilibrium lattice constant and the ex-
perimentally measured one, are given in Table III. At the
experimentally measured lattice constant, PW91 gives
consistently a better band gap than LDA. At the theo-
retically predicted lattice constant, however, it cannot be
said conclusively whether PW91 is better or worse than
LDA in predicting band gaps. This is to be expected
since the band gap depends on the lattice constant, and
PW91 and LDA give significantly different equilibrium

lattice constants. In Fig. 3 we compare the density of
states for the three metals we have considered, calculated
from LDA and PW91. As can be seen from this figure,
the PW91 calculation gives a narrower bandwidth and a
larger density of states at the Fermi level. This is be-
cause PW91 gives a "softer" solid than LDA, and the
bandwidth scales with the strength of the interaction be-
tween atoms.

For a more detailed look at the effect of gradient cor-
rections, we show in Fig. 4(a) the difference between the
PW91 and LDA exchange correlation energy function-
als for Si. Figure 4(b) presents a comparison between
PW91 and I DA exchange-correlation potentials, which
are essentially the functional derivatives of the energy
with respect to density. In both cases the most impor-
tant difference between LDA and PW91 occurs near the
atomic nuclei. This is not surprising, since the density
varies significantly inside this region, giving large gradi-
ent corrections. In the present calculations the use of a
pseudopotential results in vanishingly small, but rapidly
changing density near the atomic nuclei. The only other
region where the PW91 exchange-correlation potential
shows large difference from the LDA potential is between
the chains of covalent bonds where the electronic density
is again very small.

Si Ge
0.49 0.54 0.30 0.02

GaAs Ar

1.03 0.58 8,41 8.33

1.17 0,79 1.52 14.30

0.81 0.69 0.05 0.61 0.62 1.43 8.25 8.45

IV. SUMMARY

From the results discussed above, we see that for fi-
nite systems (in our study atoms) the PW91 functional
improves the LDA results for all the cases we have con-
sidered, even though in some cases it overcorrects. When
applied to extended systems like solids, the lattice static
properties predicted by the PW91 calculation seem to
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be severely overcorrected, except in simple metals such
as Na and Mg. In those situations where PW91 gives
an overcorrection, the difFerence between experiment and
theory becomes even larger than in LDA. PW91 does im-
prove the calculated cohesive energies in general. Conse-
quently, it appears that the use of PW91 will be more ap-
propriate in calculations for finite systems or the solids
of simple metals.

It is worthwhile to address the question of why the
PW91 functional gives such difFerent results when ap-
plied to various systems and their physical properties.
Apparently, the systems we studied fall into two cate-

FIG. 4. (a) DifFerence between PW91 and LDA ex-
change-correlation energy functionals for Si on the L110] plane
of the diamond lattice. Dark symbols indicate the atomic
positions. (b) Same as in (a), for the exchange-correlation
potentials.

gories as far as the effect of PW91 is concerned: simple
metals, for which a definite improvement over LDA is ob-
tained, and other materials, for which the PW91 results
are actually in poorer agreement with experiment than
the LDA results. The improvement for the simple met-
als Na and Mg can be attributed to better description
of the exchange-correlation efFects between valence and
core electrons in a system with smooth electron density
and no energy gaps in the quasiparticle spectrum (the
reason why PW91 does not give a better description for
Al is probably related to the presence of both s and p
valence electrons leading to significant density variations
and more covalent bonding). This improvement does not
carry over to systems with energy gaps in the quasiparti-
cle spectrum and uneven electronic density distribution,
such as the three semiconductors and the insulator ex-
amined here. The difhculties of capturing the essential
features of the exchange-correlation functional are well
known, and are indeed expected to be more severe for
cases with gaps in the energy spectrum. Rasolt has
recently given a comprehensive discussion of this issue.
PW91 does give an improvement for the calculated co-
hesive energy for all materials we have examined. We
suspect that this is due to a better description for the
pseudoatom properties in analogy with the improvement
in all-electron atomic calculations (see Sec. II).

Finally, we compare our results to other recent calcula-
tions of similar nature. In Ref. 9 extensive computations
have been performed for 3d, 4d, and 5d transition met-
als using PW91. A general tendency toward increased
lattice constants was observed, even though the physical
properties of systems considered in Ref. 9 are quite dif-
ferent from the ones considered here. In Ref. 6 solid Na
was examined. The difference between the results in Ref.
6 and the present work is small, and can be attributed
to the different methodologies. In Ref. 6 the calculation
is done with the linear-augmented-plane-wave (LAPW)
method, while the pseudopotential approach is adopted
in the present work. As far as computational conver-
gence is concerned, consideration of all relevant parame-
ters (such as number of special k-points, etc.) leads us to
conclude that the results of the present work are as well
converged as those of Ref. 6. In Ref. 7 Si, Ge, and GaAs
were considered. In Ref. 8 these semiconductors plus
Al, Nb, and Pd were examined. There are significant
difFerences between those results and the present work.
For example, the lattice constant for Ge is predicted to
be 5.71 A in Ref. 7, 5.62 A. in Ref. 8, and 5.92 A in the
present work. However, different gradient-corrected func-
tionals were employed in the three calculations. In Ref.
7, the semiempirical exchange correction by Becke and
the correlation correction by Perdew27 (BP) were used.
In Ref. 8 both BP and an earlier version of the Perdew
and Wang functional '2 (PW86) were used. It should
also be noted. that in Ref. 8, the pseudocores from LDA
are used for Ge and GaAs, which is in principle incon-
sistent, although in practice a reasonable approximation.
The results of Ref. 8 indicate that PW86 overcorrects
LDA more seriously than BP. Moreover, for the calcula-
tions of Si, Al, Nb, and Pd in Ref. 8, pseudocores from
both LDA and gradient-corrected functionals are used.
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It can be seen from those results that the use of pseudo-
cores &om gradient-corrected functionals predicts larger
lattice constants in some cases. Therefore, all other re-
ported calculations are compatible with the present work
after differences in approaches and choices of functionals
have been taken into account. In conclusion, we would
like to emphasize that all the results presented in this
paper were obtained using the specific gradient correc-
tion PW91. By comparing to other reported results, it
appears that some earlier gradient-corrected functionals,
though more empirical, were more successful in predict-
ing the cohesive properties for certain condensed systems
than PW91. In view of the considerable di8'erences in
the results when diferent functionals are employed, we
conclude that the proper gradient-corrected functional,
if one exists, remains elusive.
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APPENDIX. A

The PW91 exchange energy functional used in the
present calculation is

E fnj = A f d r I" (s)n ~

1+busy(s) + (b2+ bse ' ' )s
1+busy(s) + bus~

y(s) = in[bss + gl + (bss)2] .

The numerical values of the constants are bi ——0.19645,
b2 ——0.274 30, b3 ———0.150 84, b4 ——0.004, b5 ——7.7956 ~

The correlation energy functional is

d r[e, (n) + II(n, s, t)]n, (A2)

where

where n = n(r) is the electron density, k~ is the Fermi
momentum which is related to the density by k~

ln 1+ 2 —
~

~

+ C,o[C,(n) —C, ]tjel1+ At2 + A't'y

1

P ~~ e 2~F..(n—)/(P') 1)

C2 + Csr, + C4r,
&2+ C &3

(p"."+p".+ p"."+p"."")
&

The density dependent variables t, k„and r, are defined
as t = "' k = ( "~)'~ r = ( )'~, and the

s
numerical values of the constants are n = 0.09, P
0.0667263212, C 0 ——15.75592, C~g ——0.003521, Cg ——

0.001667, C2 ——0.002568, C3 ——0.023266, C4 ——7.389 x
10, C5 ——8.723, C6 ——0.472, C7 ——7.389 x 10, a =
0.0621814) ng ——0.21370, pg

——7.5957, p2 ——3.5876,
P3 —1.6382, P4 ——0.492 94, p = 1.00. All values are in
atomic units. d' l(l + 1),+, +&(r) «(r) =««(r) (B1)

dopotentials. This results in substantial savings of com-
putational eKort without any loss of flexibility. More-
over, the widely used BHS pseudopotentials can be sim-
ply modified to obtain the gradient-corrected potentials.
The basic idea is as follows: consider a valence state of
angular momentum L. The Schrodinger equation for the
radial part of the wave function is

APPENDIX B

It is convenient to use the BHS pseudopotentials as a
starting point to build the new gradient-corrected pseu-

(in atomic units, with 6 = 1). Both «(r) and the DFT
potential (including gradient corrections) V(r) can be ob-
tained from a self-consistent all-electron calculation. The
pseudopotential equation is
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1 d l(l + 1)
2 + 2 + Vps(r) ~&(r) et~t(r) ~ (B2)

3.0

2.0

where V~, (r) is the screened pseudopotential which in-
cludes the gradient corrections, and outside a cutofF ra-
dius r, Pt(r) = Pt(r) . The Schrodinger equation corre-
sponding to the BHS pseudopotential is

I(l + 1)
2m dr 2mr2 + Ps

1.0

0.0

-1.0

-2.0
O

CL

-3.0

BHSyBHS
( -5.0

BHSyBHS
( )AVp, r

yBHS(r) + ~y (r)
f(r)

4&'"'(r) + &At(r)

(B4)

where

+ + VBHs ~y ( ) (B5)
2m dr 2mr

Since AP&(r) is exactly known everywhere, we can use
Eq. (B4) to obtain the screened pseudopotential V~, (r).
By calculating the PW91 exchange-correlation potential
and the Hartree potential from the density corresponding
to the pseudo wave function rfrt(r), we unscreen the pseu-
dopotential and get the bare pseudopotential V', "(r) to
be used in the solid calculation. We then fit the numerical
result for the new pseudopotential to the same functional
form as in the BHS pseudopotential. For simplicity, we

We define APt(r) = Pt(r) —PP (r). Outside the cut-
off radius, Artrt(r) is known exactly, since both P~(r) and
PtBH (r) can be obtained from a self-consistent calcula-
tion. Notice that outside the core Pt(r) = P~(r). How-
ever, since these two wave functions belong to potentials
that include gradient corrections, they are difFerent from
PtBHS(r). For r ( r„we expand APt(r) = P oc r'+

By requiring that P~(r) and its first and second deriva-
tives are continuous at r, and imposing the normal-
ization condition, we can solve for the coefficients c
n = 0, ..., 3. In order to satisfy Eq. (B2), AV~, (r)
Vp, (r) —V, (r) must satisfy

1.0 2.0
r (a.u. )

3.0 4.0

FIG. 5. The new (gradient-corrected) and BHS pseudopo-
tential for Si.

only refit the coeKcients of the short range l-dependent
part. This procedure offers the important advantage of
avoiding highly nonlinear fits. In Fig. 5 we compare the
new pseudopotential and the BHS pseudopotential for
Si. As is seen from this figure, the new pseudopotential
is comparable to the BHS pseudopotential in terms of
well depth and curvature.

Here we should like to point out that the PW91
exchange-correlation potential corresponding to the
pseudo wave function exhibits pathological behavior near
the origin (oscillations of increasing amplitude), which
makes the creation of a smooth pseudopotential impos-
sible. For this reason, we introduce a cuto8' function
I/(I+ e("' ")~ ), where r,o and 8 are adjustable param-
eters and are both much smaller than the cutoB' radius
r, . By multiplying the PW91 exchange-correlation po-
tential with this cutoK function, we make the potential go
smoothly to zero near the origin, which makes the cre-
ation of a well behaved pseudopotential possible. This
procedure is justified on grounds that the properties of
the solid should not depend on features of the pseudopo-
tential inside the core. Similar problems with the behav-
ior of gradient corrections near the origin were noticed
by Ortiz and Ballone.
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