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EfFective dielectric constant of periodic composite structures
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Using a plane-wave-expansion method, we obtained expressions for the effective dielectric con-
stants of composite periodic dielectric materials as the long-wavelength limit of the photonic-band-
structure problem. The effective dielectric constants of several classes of photonic-band-gap struc-
tures are computed and we found that in the long-wavelength limit, they can be isotropic, uniaxial,
or biaxial, depending on the symmetry of the structure under consideration. We also found that
the scalar wave approximation gives poor results for effective dielectric constants while the Maxwell-
Garnett theory offers very good approximations in the low-filling-ratio regimes.

I. INTRODUCTION

The propagation of electromagnetic waves in the
long-wavelength limit of heterogeneous media is an
old but still very active subject. Initially, various ef-
fective medium approaches like the Maxwell-Garnet t
approximation were used to determine the dielectric
constant and other properties in the long-wavelength
limit. It was later realized that these were inadequate
and that the microgeometry of the medium needs to be
taken into account even though it is on a much smaller
scale than the probing wavelength. Several such stud-
ies were made by McPhedran and McKenzie and others
for periodic systems using the boundary-matching ap-
proach. The eKcacy of this approach is limited to spe-
cial shapes like spheres and cubes which do not over-
lap. In recent years several groups have used Fourier
expansion techniques which can be used to study any
periodic microgeometry and are therefore much wider
in scope than the previous efforts. Very recently, there
has been a great deal of interest in the photonic-band-
gap problem. It has been proposed that a hetero-
geneous medium composed of periodic arrangements of
low loss dielectric material can have a frequency gap
in which no electromagnetic wave can propagate in
any direction, analogous to the electronic band gap for
Bloch electron waves in a period. ic lattice of ion cores.
Such a &equency gap is frequently called a "photonic
band gap" (PBG), while those periodic dielectric mate-
rials that may have a photonic band gap are now fre-
quently called photonic-band-gap materials in the liter-
ature. In this paper, we will use the term "PBG mate-
rial" in its broader sense to refer to heterogenous me-
dia with periodic arrangements of one type of mate-
rial embedded in another. Exciting physical phenomena
and possible industrial applications have been proposed
if such a photonic band gap does exist. It was later
discovered. that the realization of a bona-Me pho-
tonic band gap in three dimensions is much more dificult
than originally purported. Nevertheless, it has now been
demonstrated both theoretically and experimen-
tally that full three-dimensional photonic band gaps
can be realized in certain classes of periodic dielec-

tric materials. The recent thrust in this area is partly
fueled by advances in theoretical techniques, which al-
low us to solve the vector electromagnetic wave equa-
tions in a periodic medium and thus making the de-
sign of photonic-band-gap materials possible within cur-
rent computation capabilities. The plane wave expan-
sion method is by far the most popular theoretical tool
for studying the photonic-band-gap problem and this
Fourier space technique is similar in spirit to the meth-
ods of Tao, Chen, and Sheng and Shen et al. , al-
though the latter focused their attention solely on the
k —+ 0 limit. It is interesting to note that a few au-
thors ' who worked on the photonic-band-gap problem
have also studied the effective dielectric constant, but
the effective dielectric constant is obtained by Gnite dif-
ferences as slope of the photonic-band dispersion at a
small k in a certain propagation direction. We will show
that the photonic-band-structure problem (arbitrary but
nonzero Ic) and the effective dielectric constant (k ~ 0
limit) can be solved in the same problem, and we ob-
tained formally closed-form expressions for the dielectric
constant as the k ~ 0 limit of the photonic band struc-
ture. Using this method, we calculated the effective di-
electric constant of several classes of photonic-band-gap
materials. It is interesting to note that besides the possi-
bility of possessing photonic gaps, some of these materials
are also optically anisotropic and. thus will exhibit sizable
hire &ingence.

II. THE LONC-WAVELENCTH LIMIT

For the class of PBG materials we are interested in,
the most straightforward approach to stud. ying the elec-
tromagnetic (EM) spectrum is to operate in the Fourier
space, where the periodic boun'dary condition can be put
in trivially by imposing Bloch's theorem and there is no
restriction on the shape of the structural units as long as
they are in a periodic formation. We thus solve the wave
equation by expanding the dielectric constant of the pe-
riodic structure in plane waves of the form e' ' where
the G's are the reciprocal lattice vectors as determined
by the periodicity of the system. This transforms the
Maxwell equations into a matrix equation which, upon
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diagonalization, gives the frequency and the eigenvectors
of the EM wave eigenmodes. This has recently been,
with slight variations, the favorite approach of many au-
thors. The same approach can also be used to find
the long-wavelength limit of the EM dispersion curves
and thus determine the effective dielectric constant of
periodic composite materials. One obvious way is sim-
ply to use Gnite differences, where the effective dielectric
constant can be deduced from the slope of the EM wave
dispersion curves as lkl ~ 0. What we are presenting
here is an alternate approach in which we deduce the ef-
fective dielectric constant via perturbation theory. For
EM waves with &equency u, the Maxwell equations can
be written as

V' D=O,

~ &
V xH= —i —D,

C

V xE=i —H,
C

«EK= —HK)
C

K HK ——0. (4)

We can now eliminate the H field in terms of the E field,
and get

2(dKxKxEK= ——) eKKEK
C2 K'

We decompose the Fourier components EK into longitu-
dinal and transverse components

and wavelength of the EM wave, and G is a reciprocal
lattice vector. Equation (2) and the corresponding ex-
pansions for E and D transform the Maxwell equations
(1) into

K DK ——0,

V. H =0, EK ——eKK + e~~xK + ey~+K (6)

D(r) = e(r)E(r), (2)

where e(r) is a real and periodic function of r and fre-
quency independent in the range of frequency under con-
sideraton. We also take the magnetic permeability p = 1.
Since e(r) is periodic, we can use Bloch's theorem to ex-
pand the H, E, and D Gelds, for example,

where (xK, yK, K) form an orthogonal triad and
eK, e„~,ey~ are the E field components along these di-
rections.

Putting Eq. (6) into Eq. (5) and forming dot products
with K and (xK, yK), respectively, we obtain

r-0=) «K,
)

E(r) = ) EKe'
K +I K yK le (7)

where K = k + C, with k being a wave vector (in the
Brillouin zone) that determines the propagation direction and

K2 x~
ey

2QJ ) 0 eKK'
K'

XK ~ XKI gK ' gK' ex~i
ey

+ &KK'

xK . K' eK~

3'K ' K eK'
(8)

If we define

ih

(eLI )KK = «K K . K

(
CX

EL@ )KKI = CKK' M O'K'

(the subscripts L and T stand for longitudinal and transverse, respectively, and n = z or y), then eliminating the
longitudinal components eK~ in Eqs. (7) and (8) leads to

K2
ey

r
x —1 x~aL~LL~LT

l y
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where

2
2 T(~ + +) Ek+G 2 ) (k+G,k+O'Ek+G'

G'
(10)

where the transverse E Geld is defined as

Xk+ A
k+G

pa+a

ez,~ —eKK'o'K ~ pKi (o', p = x, 'll) .~
~

cxP

KK'

Equation (9) can be solved to obtain the photon band
structure, although the corresponding equations for the
H Geld is more straightforward to solve numerically.
However, Eq. (9) has the advantage that we can obtain
the long-wavelength limit !k! -+ 0 in a straightforward
way. We can write Eq. (9) as (K=k+G),

At the long-wavelength limit, the effective dielectric
constant ei,~p is defined by e,i'm = c k . So Eq. (10)
becomes

) (k+C,k+C'Ek~~c2k2 ( [Ir+ +]

k+G,k+G' Ek+GI4+G )

Now taking the k -+ 0 limit, all G g 0 components of
Ek+~ die off as 1/G .

Therefore only the first term in the right hand side
of Eq. (11) survives and E+& p ~ p

—— e&( ppK&

Thus

&ea' = (pp = ( Fr
v

r
—1 x

TLCLLCLT

TL6LL6

—1 g
TL LL LT

TL LL LT G —P, G~ —O

(&7 Z )kk' — &kk' ~k Pk'I (el, I, )kk' — &kk' (k~p

k ), (&$g)kk' — (&kk')(xk . k'), and (o'k, pk, &) f»m
an orthogonal triad, and ekk =

& f e'lk "l'e(r)
& f e'l l'e(r) is the Fourier transform of the dielec-
tric function.

Noting that (e&&)~—p ~i —p is by definition zero, the
first term at C = 0 and C' = 0 becomes

results depends on the dielectric contrast (higher con-
trast requiring more plane waves) as well as the geomet-
ric arrangement of "objects." Usually spheres that are
nearly touching require a large number of plane waves to
converge. Convergence tests for some particular cases
are given in the Appendix, where we also discuss an-
other way of obtaining the effective dielectric constant
that may be more efFicient in some situations.

III. NUMERICAL RESULTS

where

(e) = (1 —f)ei+ fe2 ——ei[1+ (&e/ei) fj,

( 0
o ) t'n

(&)) «
0&

(15)

~TL LL, LT In this case, there is only one
wave velocity in all directions.

The most computationally intensive part in the evalua-
tion of Eqs. (12) and (15) lies in the computation of e&&.
If we use N plane waves in the expansion Eq. (3) e&&
is the inverse of a K x N matrix. Although Eq. (12)
is formally "exact" there is always a truncation error
associated with truncating the Fourier series. The size
of the matrix required to obtain reasonably converged

which is the scalar wave result for a periodic array of
material of dielectric constant e2 embedded in material
of dielectric constant ei with a filling ratio f The diag-.
onalization of the 2 x 2 matrix in the second term gives
the correction to the scalar wave result. Since it is a
2 x 2 matrix, there are in general two effective dielectric
constants (with two corresponding wave velocities) in a
general direction of propagation. For the special case of
a cubic crystal Eq. (12) reduces to

Using the above method, we have calculated the ef-
fective dielectric constant in the long-wavelength limit
for a few prototypical PBG materials, which consist of a
periodic array of a material of a specific dielectric con-
stant embedded in a uniform matrix of a different di-
electric contrast. The structures we considered include
spheres arrayed in face-centered cubic, simple cubic, and
diamond structures. We considered the case with mate-
rial spheres embedded in air as well as the conjugate con-
figuration of air spheres embedded in materials of high
refractive index. Different filling ratios are considered.
The dielectric contrast is set at 13.0, which is roughly
that of Si in air at optical wavelengths.

We note that the formulations developed in the pre-
ceding section are applicable to multicomponent systems
and also systems with continuously varying dielectric
constant, as long as e(r) is periodic, although we will
limit ourselves to two component systems in the follow-
ing numerical computations. The results for the material
spheres (Fig. 1) and air spheres (Fig. 2) are compared
with the scalar wave results (which ignore the vector na-
ture of light) and the Maxwell-Garnett theory (basically
a Clausius-Mosotti relation), which is given by

~26i + &2 + 2f (&2 —&i)e=e
q 2&i + &2 —f (&2 —&i) )
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FIG. 1. The effective dielectric constant e ~ for the fcc,
sc, and diamond structures composed of material spheres (di-
electric constant e = 13) in air background as a function of the
filling ratio f compared with the scalar and Maxwell-Garnett
results.

We observe that the effective dielectric constant is
smaller than the scalar wave result in all the cases we
have considered and also that it is different for different
structures. For the scalar wave result, the effective dielec-
tric constant is independent of the microstructure of the
media, and is determined entirely by the volume averaged
dielectric constant of the media. What this means is that
the scalar wave provides no information whatever about
the structure in the long-wavelength limit. However, the
vector nature of the EM waves allows some sensitivity to
the microstructure of the media even as ~k~ ~ 0 so that,
for the same filling ratio, the effective dielectric constant
changes with the structure factor of the material under
consideration. We note that for the cubic systems under
consideration, the term n in Eq. (15) can be written in
the form of a formal series expansion in Ae/ei (we take
ei ) e2). Then

eA, ~p = ei 1 + (Ae/ei) f

—(b,e/ei) ) 8 (G)(x. G) (17)
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FIG. 2. The efI'ective dielectric constant e g for the fcc, sc,
and diamond structures composed of air spheres in dielectric
background (dielectric constant e = 13) as a function of the
filling ratio f compared with the scalar and Maxwell-Garnett
results.

where 8(G) =
& P exp (iG w)F(G) is the structure

factor of the composite material in Fourier space, and
F(G) is the Fourier transform of the function F(r) which
takes the value of 1 in the regions with dielectric constant
e2 and zero at regions with dielectric constant ei. This
expansion can be obtained by expanding e&& in a series
of matrices. For multicomponent systems, we can ob-
tain a similar expression if we expand about the volume-
averaged dielectric constant. Although this expression
is not practical for numerical computations except for
very small dielectric constant contrasts, it does give us
more insight than Eq. (15). We note that the term
up to Ae/ei is precisely the scalar wave result, which
shows no sensitivity to the microstructure of the compos-
ite system. The leading (Ae/ei) correction term to the
scalar result is negative definite, so that it is quite nat-
ural that all the effective dielectric constants are smaller
than the scalar wave result. The structure factor and
the vector nature of EM waves enter the expression at
this order. It is also interesting to compare the present
results with those obtained from the Maxwell-Garnett
(MG) expression. For both the material-in-air and air-
in-material configurations, the MG results are in general
better approximations than the scalar wave results. The
scalar wave approximation to the vector wave equations
has been used previously to study the photonic-band-
gap problem. We now know that it can give qualita-
tively different results regarding the existence of photonic
band gaps and also give rather poor approximations to
the long-wavelength effective dielectric constants. In the
regime of small filling ratios, the MG results agree well
with the vector-wave results. This is not surprising since
the MG theories are intended for small isolated spheres
embedded in a medium. As we consider the different
arrangement of spheres, we observe that the agreement
between vector-wave results and MG results begins to
deteriorate at a fairly small filling ratio for the diamond
structure while the agreement remains good for a much
higher 6lling ratio in the fcc structure. The simple cubic
structure lies in between. This is because the 6lling ratio
corresponding to the condition of touching spheres in-
creases in the order diamond, simple cubic, and fcc. We
also note &om Figs. 1 and 2 that the MG results consti-
tute a lower bound for the material-in-air and an upper
bound for the air-in-material con6gurations. Notice that
the MG results agree reasonably well with our numerical
results for air spheres (Fig. 2) for almost all the filling
ratios f

The optical properties of crystals in nature can be clas-
sified into three groups: isotropic, uniaxial, and biaxial,
depending on the symmetry of the crystal. Amorphous
materials and crystals of cubic symmetry have the same
values for all three principal refractive indices. The index
ellipsoid is a sphere and there is only one effective wave
velocity in all directions. For crystal systems with lower
symmetries, such as trigonal, tetragonal, or hexagonal,
two of the principal refractive indices are equal (usually
called ordinary) and the third refractive index (extraor-
dinary) is difFerent. The index ellipsoid is a spheroid in
this case. There are two different wave velocities in a gen-
eral direction of propagation. In those crystals with even
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lower symmetry, such as monoclinic, all three refractive
indices are different,

The PBG materials, as far as optical properties are
concerned, may be viewed as man-made "crystals. " PBG
structures that have the cubic symmetry, such as the di-
electric balls arranged in fcc, sc, and diamond structures
we have considered, are optically isotropic in the long-
wavelength limit. There is only one effective dielectric
constant and the effective wave velocities in all directions
are the same. In the photonic band structure, the fre-
quency vs wave vector dispersion curve should be doubly
degenerate near I', and has the same slope in all direc-
tions.

A more interesting example is the Yablonovitch-Leung
"three-cylinder" structure that has been fabricated in
both the microwave and micrometer length scales. The
structure is fabricated by drilling three cylinders through
each hole of a triangular array at an angle of 35.26
away from the normal and spread out 120 on the az-
imuth. This structure can be viewed as a fcc structure
with nonspherical elongated atoms, or alternatively, as a
"degraded" diamond structure (drilling three more sets
of cylinders can create a structure of diamond symme-
try). This structure is of great interest since it has been
demonstrated both experimentally and theoretically that
it possesses a full photonic band gap; and although the
largest photonic gap that is attainable for this struc-
ture is less than that of the diamond structure, this
is up to now the only geometrical structure that has
been fabricated both in the microwave and micrometer
length scales. Prototype of this design has also been
used to improve microwave antenna performance. This
structure has symmetry equivalent to a trigonal crystal
and possesses 12 symmetry operations. This is thus an
anisotropic structure and behaves like a uniaxial crystal
in the long-wavelength limit, with the preferred axis in
the [ill] direction.

In Fig. 3 we have plotted I/~ei and I/~&2, i.e. , the
effective velocities, as a function of propagation direction
in the [ill]—[101] plane for material cylinders (32%%uo ma-
terial) and air cylinders (21'%%uo material) in the "three-
cylinder" structure with a dielectric constant ratio of
13.0. For the material cylinders, the 2 x 2 matrix in Eq.
(12) was diagonalized to give two efFective dielectric con-
stants, and hence two effective velocities, one correspond-
ing to the "ordinary" and the other corresponding to the

"extraordinary" wave. The effective wave velocity that
is the same in all directions corresponds, by definition,
to the ordinary wave. We find that the two velocities
coincide in the [ill] direction and that the anisotropy is
maximum in a direction perpendicular to it. The struc-
ture behaves like a uniaxial crystal. In fact, this case
corresponds to a positive uniaxial crystal, with the or-
dinary wave having a higher velocity than the extraor-
dinary wave. The conjugate structure also behaves like
a positive uniaxial crystal but with less anisotropy. In
principle, we need only to calculate Eq. (12) for two di-
rections, and the extraordinary wave velocity v, can be
obtained by

v& ——v cos 0+ v sin 0,

14.0—
material cylinders

where v and v are the ordinary and extraordinary wave
velocity, respectively, and 0 is the angle between k and
the optic axis. For the material-in-air configuration, all
the points marked by dots and crosses are calculated.
For the air-in-material configuration, we have calculated
the efFective wave velocities at [111] and [101] and the
wave velocities at other angles are obtained with Eq.
(18). An interesting aspect of PBG materials is that
the anisotropy in the refractive index of natural crystals
is dictated by nature and is usually small, while that of
PBG materials can be engineered to a certain extent by
man as far as technological capabilities permit. The max-
imurn anisotropy in the refractive index +e of a "three-
cylinder" structure is plotted as a function of the filling
ratio (Fig. 4) for a dielectric constant ratio of 7.0 and
as a function of the dielectric constant ratio (Fig. 5) for
both material-in-air and air-in-material configurations of
the "three-cylinder" structure. In Fig. 5 the cylinder
filling ratio is 0.32 for material cylinders and 0.85 for air
cylinders. We see that quite a large anisotropy can arise
by optimizing the structure.

We have considered both "material" cylinders and
"air" cylinders in the "three-cylinder" structure. The
commonly practiced fabrication processes involve drilling
or etching and thus give air cylinder configurations. We
also note that the current theory for the long-wavelength
limit is applicable only to cases where the structural units
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FIG. 3. The effective velocities 1/~eq and 1/i/e2 for ma-
terial cylinders (32% material) and air cylinders (21% ma-
terial) in the "three-cylinder" structure as a function of the
propagation direction in the [111]—[101]plane. The dielectric
constant ratio is 13 in both cases.

FIG. 4. The xnaximum anisotropy Dn/n in the effective
refractive index n = i/e of a "three-cylinder" structure plotted
as a function of the filling ratio f for both material and air
cylinders for material of dielectric constant e = 7.
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FIG. 5. The maximum anisotropy An/n in the efFective
refractive index n = ~e of a "three-cylinder" structure plotted
as a function of the dielectric constant ratio for both material
(32% material) and air cylinders (15% material).

are small compared with the wavelength. For photonic-
band-gap materials that are engineered to have gaps
in the range of optical &equencies, the long-wavelength
anisotropy described here is relevant for waves that have
much lower frequencies.

For the sake of completeness, we have also considered a
structure which is expected to be biaxial. The structure
consists of dielectric spheres of dielectric constant r = 13,
located at the lattice points of an orthorhombic lattice,
with the lattice vectors having difFerent lengths which are
in the ratio of 1:0.833:0.714. The volume Ailing ratio of
the spheres is 0.436. The efFective velocities in the z-y,
z-x, and x-y planes are plotted in Fig. 6. They do show
the characteristics of a biaxial crystal. The section of
the normal surface in each plane consists of a circle and
an ellipse, and the radii of the circles in the x = 0, y = 0,
z = 0 planes are v~, v» v, respectively. We found that
v ) vy & v because the density of scatterers is lowest
in the x direction and highest in the z direction. The two
optic axes are defined by the two directions in which the
circle and the ellipse intersect in the z-x plane.

present method is applicable to structures of arbitary ge-
ometrical shape as long as they form a periodic structure.
Although the mathematical details are different, our ap-
proach is similar to the Fourier-space formulations of Tao,
Chen, and Sheng and Shen et al.

The long-wavelength efFective dielectric constants of a
few composite materials were calculated and compared
with the scalar wave and the Maxwell-Garnett approx-
imation. We found that the scalar wave approximation
is poor for most situations, while the Maxwell-Garnett
result is good as long as the structure is composed of
isolated spheres. The Maxwell-Garnett theory is not ex-
pected to be applicable to structures that support com-
plete photonic band gaps which, as far as we know, al-
ways form percolating networks. We also found that the
three-cylinder photonic-band-gap structure that has al-
ready been successfully fabricated behaves like a uniaxial
system and exhibits substantial optical anisotropy. We
still have to see whether such pronounced birefringence
behaviors can be utilized in practice. Last, but not the
least, we note that although Eqs. (12) and (A6) are for-
mally "exact," obtaining fully converged results may be
difIicult for cases where the periodic structure has high
dielectric contrast as the inversion of the matrix eL, L, be-
comes prohibitive. This is the problem shared by all
Fourier-space based approaches. If the convergence is
in doubt, extrapolating to an infinite basis may help in
some cases. Under such situations, the scheme recently
suggested by Bergman and Dunn should be the method
of choice.
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IV. CONCLUSION

Using the plane-wave-expansion method, we have ob-
tained expressions for the effective dielectric constants
of periodic dielectric materials. The effective dielectric
constant is obtained as we consider the long-wavelength
limit of the solution to the Maxwell wave equations. The

APPENDIX

We can also obtain the effective dielectric constants us-
ing the H field equations Isuch as Eqs. (4)—(6) in Ref. 9]
that we employed to solve for the photonic band disper-
sion relations. To obtain the photonic bands, we need to
diagonalize a Hermitian matrix,

a
s a. T - -*

P G', A'

CO 2

Mk+G, k+GI ~k+G', A' = hk+G, A ) (A1)

where M is a 2N x 2N matrix, with N being the number
of plane waves used in the expansion, and has the form

M~+~,~+~ = I&+ G Ill + & 1@k+a,~+a

FIG. 6. The efFective velocities in the z-y, z-x, and x-y
planes for dielectric spheres (e = 13.0) in an orthorhombic
"biaxialsr lattice with filling ratio f = 0.436.

AA' —1 Xk+G ' Xk+G' Xk+G +k+G'
@k+G k+G' ~GG —Xk+C gk+. G ' Xk+G Xk+.G

(A2)
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