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Self-consistent theory of the biexciton optical nonlinearity

A. L. Ivanov and H. Haug
Institut fii r Theoretische Physik, L W. Goethe Universitat Frankfurt, Robert Ma-yer Str-asse 8, D 60-00 Frankfurt am -Ma-in, Germany

(Received 14 October 1992; revised manuscript received 9 April 1993)

For the low-excitation regime a self-consistent set of equations for excitons (x), exciton molecules (m),
and photons (y ) is derived from the electron-hole-photon Hamiltonian, taking the spin explicitly into ac-
count. In this approach the creation of m occurs via the Coulombic scattering of two x's of opposite
internal spin structure. This process is resonant due to the polariton effect. Thus, the Coulombic matrix
element for the process x +x —+m governs the I formation, rather than the optical matrix element for
the process x +y~m, as is usually assumed. At the same time, the scattering process x +x —+m gives
rise to a "true two-photon absorption" in the sense of Hopfleld's concept of absorption in the polariton
theory. Both for the 2y absorption and for the x-m optical Stark effect, our theory gives measurable
differences compared to the usual phenomenological approach. A Schrodinger equation for the m-wave
function is derived which includes polariton effects.

I. INTRODUCTION

0, =2'«to, = (4~P/eo )to, . (2)

Here, co, is the transverse x frequency and eo is the back-
ground optical dielectric constant. The I-t splitting coI,
determines the spectral width of the linear x-absorption
line at low temperatures. The parameter Q, » co&,

characterizes the spectral range near the x line in which
the corresponding nonlinear optica1 processes can be res-
onantly enhanced by the intermediate x state. This mod-
el of the 2y-m absorption can be linked quite naturally
with the polariton character of the propagation of the
electromagnetic waves inside the crystal.

Biexcitons have been observed first in the semiconduc-
tor CuC1 which has a large direct energy gap. Due to the
correspondingly small dielectric constant, the x and m

The concept of the giant two-photon (2y) absorption
of the excitonic molecule (m) has been introduced by
Hanamura. ' In this model the first step is the creation of
an exciton (x) with momentum p by one-photon (y) ab-
sorption and the second step is the optical conversion of
this x to the m state p+ k, where k is the wave number of
the absorbed y. The second transition has been attribut-
ed to the "giant" oscillator strength of the x-m optical
transition. The strong enhancement of the 2y absorption
arises both from the nearly resonant first step and the
large probability of the second one due to the spatial ex-
tension of m.

In this scheme, the 2y absorption is determined by the
momentum-dependent optical matrix element M

& (p, k) of
the process x +y~m, which is

M, (p, k) = i(Q, /2)%—[(p —k)/2],
where 'Il(1) is the m wave function which describes the
relative motion of two bound x's. The polariton parame-
ter 0, is defined in terms of the longitudinal-transverse
(l t) splitting -co«or by the dimensionless parameter p

binding energies of CuC1 are very large. The concept of
the giant 2y-m absorption has been qualitatively support-
ed by further experiments (see, e.g. , Ref. 3). At present
the interest in the optical properties of m's is renewed in
connection with new high-precision techniques. In
particular, experimental investigations of the Bose-
Einstein condensation of m s are again under considera-
tion. Recently, the x-m optical Stark effect has been
discovered in CuC1. Therefore, we reinvestigate and
refine the theory of the optical nonlinearities linked with
the 2y resonance of m.

In Sec. II, we derive for the low-excitation regime from
the e-h -y Hamiltonian a self-consistent x approximation
for the description of the y-x-m system. We show that
the usual phenomenological approach, which treats y, x,
and m as independent unstructured bosons and intro-
duces the optical matrix element M, (p, k) for the descrip-
tion of the 2y-m absorption, is inconsistent with the basic
e-h-y picture. An important part of our theory is the
consideration of the spin structure of the optically excited
x's. We find an attractive, resonant Coulombic coupling
of two x's with momenta p and k and appropriate spin
structure to be responsible for the 2y (two-polariton)
creation of m with momentum p+k. The basic equa-
tions for the x-m optical Stark effect and the 2y-m ab-
sorption of the new self-consistent approach and the phe-
nomenologica1 one based on M& are derived.

In Sec. III, we consider the low-intensity x-m optical
Stark effect on the basis of the self-consistent x approach.
The crucial feature of this treatment is the correct intro-
duction of quantum-independent x's and m's in the pres-
ence of the polariton pump wave. The self-consistent
description and the phenomenological one are compared.

In Sec. IV, the 2y-m absorption coefficient is derived in
the framework of the self-consistent model. It is shown
that this approach and the phenomenologica1 one yield
different line shapes for the 2y absorption spectra.
High-resolution experiments should allow us to discrim-
inate between the different line shapes predicted by both
theories. The dependence of the 2y-m absorption on the
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geometry of the exciting beams is calculated for both
theories. Finally, we show that only the self-consistent
description of the 2y-m creation gives rise to a "true ab-
sorption" in the sense of Hopfield's polariton theory.

In Sec. V, we derive and analyze an alternative
Schrodinger equation for the m-wave function which in-
cludes polariton effects. This equation yields the inverse
radiative lifetime of an m. In order to make the descrip-
tion self-consistent this lifetime has to be put into the
2y-m absorption coefficient. It is shown that for the m
luminescence both approaches —the self-consistent and
the phenomenological —yield the same results.

II. PHOTON-EXCITON-BIEXCITON SYSTEM
IN DIRECT-GAP SEMICONDUCTORS

Heh =Hzh +H& +Heh-y (3)

The e-h Hamiltonian H, h is given by

The optical properties of the electronic excitations of
direct-gap semiconductors can be obtained from the fol-
lowing e-h -y Hamiltonian:

e h 1
Heh $ ~[+p s;p s;p p s;p s;p] 2 $ q[ psa sla st+qa ps—q+bs;pbs;lbs';I+qbs;p —q s;p s', l s', i+q s;p —ql

PS p, l, q&0
$, $

(4)

(6)
i.e., spin s =+1 for circular polarization o.=1 and spin
s = —1 for cr=2. The y frequency and the matrix ele-
ment of the e-h optical transition are given by

1/2
27TAe'=cp/Qe; g (p)=-

P Vcl
v,„(p),

v,„(p)= i & u, +—, , ~ V~ u, „) .

Here,
Ace'=E +p /2m„kcop=p /2m~ (5)

are the e, h energies with the corresponding operators a, .
and b, . , s is the spin projection, m, and m& are the
effective e, h masses Eg is the band gap,
Vq =4me /( VZoq ) is the Fourier transform of the
Coulomb potential, Z0 is the static dielectric constant,
and V is the crystal volume. We use s =+1 for the e, h

spin measured in units of A/2.
The Hamiltonian H, h describes free e-h pairs, and

bound e-h complexes such as x's and m's. With this
Hamiltonian, one can investigate the Coulombic interac-
tions between various electronic excitations. These in-
teractions give rise to nonlinear optical properties of the
crystal.

The interaction Hamiltonian H, h z describes the inter-
band optical transitions. The conduction and valence
bands are assumed to be formed by s states and by p
states with MJ=+ —,', respectively. Then only e-h pairs
with the total spin S =0 are dipole active in optical inter-
band transitions. Photons y with a given circular polar-
ization excite e-h pairs with fixed spin directions, e.g. ,
with e spin up and h spin down. Photons with opposite
circular polarization excite e's with spin down and h's
with spin up. The y operators for the two circular polar-
izations o.=1,2 are called a . , respectively. The second
part of the Hamiltonian (3) is

Hr +Heh-y Q &~p~~ p~~;p
0.;p

+ g [g,(p)~ ,a, ,+,b, ,. +H. c. ]
o', p, I

where s = —( —1 )

I

u p+ I and u, are the e and h Bloch functions, m and
e are the mass and charge of a free electron, respectively.

For optical excitation with circularly polarized light,
one has to introduce according to Eq. (6) two types of x's,
both with total spin zero. In one x type the e spin is up,
the h spin is down; in the other type, the e and h spin
orientations are exchanged. The x operators B . are
connected with the e, h Fermion pair operators by

1B .ip= ~—QQJ. (i)as I+ pb , (+pp——
I

and

1
as. i+ pb . ~+pp

=
&
—g B .&ppj~(l )

J

again with s = —( —l) . The second relation follows
from the completeness of the pair wave function P (I ) of
state j in momentum space. The effective-mass ratios are
given by a=m, /M and P=mz/M, where M is the total
e-h mass M =m, +mI, . The x operator fulfills boson
commutators in the low-density regime. Corrections to
the boson commutation relations are of the order
O(Na„), where N is the pair concentration and a„ is the
x Bohr radius. The m operator AJK is given by

1JK= 3~2 g z(P, I, q)a, .i+~(p+~n)2V piq,
~ —s; —I +P(p+ K/2) —s;q+ a( —p+ K/2)

X bs; —q+P( —p+K/2) '

Here, I z(p, l, q) is m-wave function normalized to unity.
J is the complete quantum number of the internal m state
with total spin zero. The bound m state with total spin
zero can exist only if the two e's and the two h's have op-
posite spins, respectively. Thus the m-wave function has
to be symmetric with respect to the permutation of two
e's or h's:
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I J(p, I,q) = I z( —p, q, I ) = I J(q —I +/3p a—p, /3q+al 2—a/3p, aq+/31 +2a/3p)

=I z( —q+I /3—p+ap, PI+aq+2aPp, al+/3q —2aPp) . (10)

In order to investigate the dynamical properties of the y-x-m system, one can derive from the e-h-y Hamiltonian (3)
a closed nonlinear set of Heisenberg equations for y, x, and m. The resulting y equation is

1
QQ

i a . =co~~a .p+ g —g (1)b,. Ia, I+ . =co~a +. gi B

The polariton parameter Q, is

2E 1 eu„
0, = ——g —P (l)g (I —/3p)=2&2m. P (R=O) .i

I

(12)

Here, P,(R) is the internal x-wave function in real space.
The Heisenberg equation for the dipole-active x s is given by

. a
i B p= .—. g —gp(1 —Pp) —a .

I

+ X ~~'I+ap+~ I+Ppj4—'I(I) X I I I I/'I(I—') —&'I +abp—', —I+Ppap p J J y ss ap s p

p, (i') —
p, (i)

I.+s';I'+aquas;!'+ap~s'; I+aqb —s; —I+Pp +bs', —I'+Pqb —s; —I'+Pp~s; I+apbs', —I+Pq j+
s', q, I, I'W I

1 P, (I)+ g — ' —a. [g (I /3p)~, ', I—-pp+q~, , I+.p+g (I+ap q» —, ; I -.p+-qb-, -I+-p, j .
, , fi

(13)

On the right-hand side, we recognize erst the driving term due to the light Geld, next the free x motion, followed by
Coulomb scattering terms and finally phase-space filling corrections to the driving term. The fixed spin s in Eqs. (11)
and (13), is, as in Eq. (8), connected with the circular polarization IT = 1,2 by s = —( —1) .

In order to introduce the nonlinearities due to the x-x or x-m interactions on the right-hand side of Eq. (13), we limit
ourselves in lowest order to the one-e and one-h subspaces. ' The unit operator l in Fock space is

A.

N, q, , s,.

=~0;e)(0;e~+ g a, .
q ~0;e)(0;e~a, .

q

=~0;h)(0;h + g b, . ~0;h)(0;h~b,
s, , q,

(14)

Here q„si', . . . ', qIv;e(h)) „ is the antisymmetric state of the crystal with N e or h. The latter approximations hold in
the x regime where Na„& 1. One has to insert this unit operator in the Coulomb scattering terms and the phase-space
filling terms of Eq. (13) to generate the x (ab) and m (ahab) coupling of the e and h operators. The parts connected
with the first term ~0; e (h) ) (0;e (h ) ~

of the approximation (14) are zero for any x and m states, i.e., in the absence of un-

paired e and h. Thus these parts do not contribute to the x and m nonlinearities. The first nonvanishing contributions
to these nonlinearities come from the second terms in Eq. (14). With this procedure, the Coulomb scattering and the
phase-space filling terms of Eq. (13) are expressed uniquely in terms of e-h pair operators:

I. s'; I'+ aquas; I'+ ap+s', I+ aqb —s; —I +Pp +bs', —I'+ Pqb —s; —I'+Pp +s; I +ap s'; —I +Pq j

t+s';I'+aqbs&, q& s~, q&as;I'+ap+s';I+aq —s; —I+Pp+bs', —I'+Pq+s&, q&~s&, q&
—s; —I'+Pp+s;I+ap s', —I+Pq j

q), s

' I —Pp+qa I+ p ~ + I —Pp+q 'q b q
a $+ p

ql, s I

a~ ap+qbr+Pp~6 I p+qaqaqb — —$+Pp
qi, s l

(15)
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This procedure is valid up to order (Xa, ) . The x and m coupling does not depend on the position where the unit
operator I is inserted. For definiteness, we use the normal order of the operators in Eq. (15).

Now the x and I operators can be introduced. Equation (13) takes the form

0, .
l 8g Jp COj p8 z jp l Qo p

+Jtl tT +JzQ (16)

where %co" =E —e.+R p /2M is the x frequency of state j, and e" is the corresponding binding energy.
The term J ' describes the time development due to the repulsive scattering between two x's of the same spin

configurations o., while J '".
& is due to the attractive interaction between two x's with opposite spin configuration

crWcr which gives rise to m formation. The repulsive x-x interaction is given by

~~-1J ' = — g I P~(l )P,' (l l[P,'(I' Pp+—Pq)P; (I' Pp+—Pq)+P,*(I'+.ap —aq)P; (I'+ap —aq)]
q, 1,1'%1

—
P, (l )P; (I')[P; (I Pp+P—q)P; (I Pp+P—q)

+P,*. (I+ap —aq)P, (I+ap —aq)]IB , 8 ;qB..

g~(I —Pp)$, (I )+ y ' „,'
M; (I Pp+Pq—)4,*(l Pp+Pq—)

1,q

+P; (I+ap —aq)P,*(1+ap—aq)]Bt. ; qB .; qa .~ . (17)

If a coherent electromagnetic pump wave with circular polarization excites only a coherent x amplitude of the ground
state j= 1 with momentum p, and if scattering into higher states j ) 1 is neglected, Eqs. (16) and (17) can be reduced to

1,+ Zo Ip 1p ~2 1 I I

—g —g~(I —Pp) —[1—IP, (I)I2I &8.. . , & I2]&a...& .
1

This equation together with Eq. (11) are the basis of the x optical Stark effect in the so-called weak-field limit. "' Both
dynamical x level shift due to the x-x interaction and the saturation of the x-y optical transition are contained in Eq.
(1g).

The attractive x-x interaction J '
& can be written in the form

JX,X ~Pl
CT) C7%o' 8

k, q, q
(p+k=q+q')

v'& v
[W .~ (jp, i,k, i2q, i3q')+ W .& (i,k, jp, i2q, i3q')]

C

X g P; (I )P; (I')1*,I, I' 8 ~ . , 1,A J +1,
1 1'

7

Here W & (j,p„j2p2, j3p3, j4p4) is the Fourier transform of the x-x interaction potential

Wcr, o'Acr(J lpl&J2P2&J3P3&J4P4) Wd(JIP1&J2P2&J3P3~ J4P4) Wex(J 1 pl&J2P2&J3P3&J4P4)

The direct interaction potential is

Wd( j,p„j,p„j,p„j4p, ) =fd'R, d'R„d'R, 'd'R/, 4 J* (R„R„)4,*,(R,', Rh )

(19)

(20)

2x' 1 1 1

[R, —R~)

1

)R„—R,')

X4 (R„Rh )4 (R'„Rh ) . (21)

The exchange interaction potential is
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IV,„(j,p„j,p„j,p„j4p, ) = fd'R, d'R„d'R, 'd'Rh4, *,(R„R,)0;. , (R,', R'„)

e 1

IR„—R„l

&&@I p (R,', Rl, )NJ (R„RI,),

1

IR, —R,'I
1

IR, —R; I

(22)

which is obtained from 8'd by interchanging the posi-
tions of the two e's in the last two wave functions. The
complete x-wave function @Jp(R„Rh) of state j with
translation momentum p is given by

H = QAcoJB B.
~ip~ J

+
2 X IVa, a'(J ipi~J2P2~J3P3~J4P4)

4 ~o. , o;p, ,j,

XB .j B ..j B ..j B.j (24)

4. (R„Rh )= —exp[ip (aR, +PRh)]P (R, —Rl, ) .
1

V

(23)

In the derivation of Eq. (19), the symmetry properties
(10) of the m-wave function I J(p, l, q) plays an important
role. If the complete m-wave function is symmetric in
the spin variables, i.e., when spins of the both e's (and h's)
have the same directions, the function (20)
W & =8'd —W,„has to be replaced in Eq. (19) by
8' = 8'd+ 8,„.This change leads to the absence of the
bound m state with this spin structure.

According to Eq. (16), one can divide the x nonlineari-
ty with the terms J '" and J '"& in a natural manner.
In a "pump-probe" experiment the first term which is re-
sponsible for the x optical Stark effect plays a role only if
the pump and probe beams have the same circular polar-
ization. For opposite circular polarizations of both
beams, the transitions to the m state as well as the x-m
optical Stark effect can be realized. The description of
these phenomena is directly connected with the term
J"' & . This result is very similar to the conclusions ob-
tained in a recent experimental study. '

In the weak-excitation regime Na « 1, one can derive
directly from the e, h Hamiltonian a Hamiltonian for in-
teracting x's, ' ' ' either with the boson formalism of
Usui' or with the much simpler unit operator technique:

For the description of the x system, this Hamiltonian ap-
proximates the original e-h Hamiltonian (4) up to order(¹) . The polariton effects can be incorporated in the x
representation (24) by rewriting H~+H, h z in terms of x
operators,

H +H,„—g %co a . a .r '.
cT', p

CJ

~~JP O~P

(25)

Equation (16) for the x's also follows directly from the
boson Hamiltonian (24) and (25).

The Heisenberg equation for the m operator defined in
Eq. (9) is given by

~ a g —+K/2(q)$ (I )
i

&
A~K=Q~KAJK+ g — I (p, l, q)

Br l Q V
l, a

p+ K ~2B +;p+ K

(26)

Here OJK is the m energy. The internal m-wave function
I z(p, l, q) is determined by the following Schrodinger
equation:

+JK J(P&l&'q) I. ~q —ap+aK/2+~l+ap+aK/2+~ —q —pp+pK/2+~ —!+lip+l3K/2] J(P~m e e h h ,'I r I

—g V [I z(p, l, q+q')+I'J(p, l+q', q)]
q'

+ g V [I J(p —q', I+aq', q+Pq')+ I z(p —q', I —Pq', q —aq')

—I J(p —q', I+aq', q —aq') —I"J(p—q', I —Pq', q+Pq')] . (27)

The first terms on the right-hand side of Eq. (27) describe the energies of the two x s in the m, whereas the last terms are
due to their Coulombic interaction. The m Schrodinger equation (27) can again be obtained on the basis of the x ap-
proach (24). ' '

Equations (11), (16) (in which the term J""
& is kept but the term J '" is omitted), and (26) form a closed nonlinear

set for the y-x-m system. Unfortunately, this set is rather complicated for analytical considerations. For the following
analysis we introduce therefore further simplifications.

For the investigations of two resonantly interacting polariton waves due to the 2y-m creation, one can use the x ap-
proximation which holds for (X, +N2)a„(1. Here, X;=, 2~ I, , 2 are the concentrations of the x components of two
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interacting polaritons waves (p, co) and (k, cok) with intensities I i and I2, respectively. This assumption may be used be-
cause the m nonlinearities (e.g., the x-m optical Stark effect and the 2y-m absorption) arise already at a lower excitation
level (N, +N2)a ~ 1. Here, a is the m radius in the ground state.

The x theory can be simplified further if one considers only x's in the ground state. This assumption is valid in the
immediate spectral vicinity of the corresponding x absorption peak and holds, e.g., in the experimental investiga-
tions of the m nonlinearity in the CuCl and to a lesser degree in CdS crystals, provided the light pulses are not too
short and therefore spectrally not too broad. Furthermore, if the m binding energy is considerably smaller than the x
binding energy, as for CuCl and CdS, one can use the following adiabatic approximation' ' for the m-wave function:

I J(p, 1,q) = PJ(p)gi(1)fi(q)+ q'J( —p)gi(q)(bi(I )

—+J(q —1+Pp ap)—P, (Pq+ al —2aPp)P, (aq+Pl +2aPp)
—O'J( —q+1 —Pp+ ap)P, (Pl +aq+ 2aPp)P, (al +Pq —2aPp ) . (28)

1+ —, g 8'oo. (q)Bo;pBo, IBo. I+qBo. pq. .

p, l, q

(29)

This approximation satisfies the condition (10) and allows
us to describe the m state by means of the wave function
VJ(p) for the relative motion of the two bound x's. Such
approximations have been used in the many theoretical
investigations' of the m nonlinearity.

Thus if only the x ground state is considered, the x
Hamiltonian (24) and (25) simplifies to

p)o

iQ,+ e. B. +Hc.

1
AJK g +J(1)Bo",I+K/2Bo'Wo; —I+K/2

2 V . I

1 g +J( )B1;I+K/2 2; —I+K/2
1

(30)

0JK 2COt
AK e,(l)= —e, q J(1) . (31)

The x Hamiltonian (29) does not explicitly contain the
m's, i.e., the operators AJ&. The complete set of m
eigenfunctions q/J(l ) for all bound and ionized states can
be found together with the corresponding m energies AJK
from the following Schrodinger equation in the momen-
tum representation:

Ah +J(1)+g W', 2(l —1')qlJ(1')
M l'

where B j & p B
p

and co"=co, +Ap /2M. The po-
lariton parameter 0, is given by Eq. (12), with j =1.
Now the potential W (q) of the x-x interaction de-
pends only on the transferred momentum q (Ref. 15) and
is assumed to be real. Although the x's are treated here
as elementary particles, the potential W (q) (for expli-
cit expressions, see Ref. 15) still has the important prop-
erty that it is repulsive for two x's with o. =o' and attrac-
tive for two x's with o&cr' (8', 2

= W2, (0), which leads
to m formation.

In the considered approximations, the m operator 3JK
is given by

—V*(l ) AK,
1

v'V (32)

where the last approximation is valid only under resonant
condition for the m ground state.

In the considered case (Ni+N2)a ~1, the Heisen-
berg equations for the y, x, and m operators are

Multiplying Eq. (30) by +J(1), we obtain, with the com-
pleteness of t0'J(l ) J,

1
Bo",I+K/2 o'Ao; —I+K/2 ~ X +J(1) JK

V

(33)

B .
p =~„B p

—I' a .p.+ g —M2 (P, l)B ~ , Ap+, , .
I

(34)

x x 1
AK g . t~l+K/2+~ —I+K/2j+( + 2 ~12(1 1 + 1 . B 1 I+K/2 2; —I+K/2

l' V

1+ g —Mi (1+K/2q 1 K/2)ao. I+K/2Bo ~o.
.I VV

(35)
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where the matrix element Mz(p, /) is given by

Mz(p, l ) =b, [(p—1)/2] = g W, z(q)%'[(p —I )/2 —q] .
q

(36)

The Heisenberg equations (11), (16), and (26), which have
been derived from the e-h-y Hamiltonian (3), transform
to Eqs. (33)—(35) under the considered simplifications.

To understand the physical origin of the matrix ele-
ment Mz, we rewrite the part of the Hamiltonian (29)
which is responsible for the x-x attraction with Eq. (32):

H&&D&Q&~(q)B~pB&&& IB&&&(+qB&pq—1

0 jp, l, q

1—[Mz (p, l )B~ ~B~«.~ IA~+&. +H. c. ] .4 V
~ IT;P (7 tt; P

(37)

Thus the matrix element Mz(p, k) characterizes the
direct resonant coupling of the x's p and k of the initial
polariton waves to form an m with p+k. This coupling
is due to Coulomb interactions and can be resonant due

to the polariton effect. In other words, the external elec-
tromagnetic waves with frequencies co, =co and co2=cok
excite the polariton waves with fInite x components, even
if co~co, and cok&co, in order to allow a resonant m
creation co+cok Qp+j, Due to the polariton dispersion
the energy can be conserved in the pairing of two x's of
the polariton waves. Without the polariton effect the
direct Coulombic x-x coupling to the m state is forbid-
den, because the total energy of two bare x's exceeds the
m energy Op+I, by the corresponding m binding energy

Thus the term (1/+ V)Mz(p, k) A +zB Bz rather than
(1/&V)MI(p, k) A &+~B&a~ describes the fundamental
process of the optical creation of the m p+k. Equation
(35) for the m operator reduces to the common Eq. (31)
for the m-wave function %(l), if the last sum on the
right-hand side of Eq. (35) is neglected.

In the phenomenological approach which uses the ma-
trix element MI, ' ' y, x, and m are treated as in-
dependent elementary bosons. The corresponding phe-
nomenological Hamiltonian HM has been derived intui-
tively, as stated in Ref. 27. In our model with the two
different types of x's and y's, this Hamiltonian would
have the following form:

0,
G', p

+ g —M, (p, l)[A~+&a ~B .« &+H. c. ] . .
1

r,~. (38)

Note, however, that the last term does not follow from
the basic e -h -y Hamiltonian as shown above. This
three-particle interaction is instead constructed' with

1 0,—M, (p, l)= g 0 Ay~I i B—.qa-.q
oI, q

0,
l

&
B& p copB& p

l Q+ p

+ g —M, (p, l )a ~ .I Ap~(,
V

i AK =BEAK+ g —M, (1+K/2, 1 —K/2)

(41)

XB .~ . (z.I 0 (39) X Ao; I+K./2B o'Wo', —I +K./2 (42)

l Q~.p
—copQ .p+ / B .p

+ g —MI (p, l)Bt ~ (A.(40)

where ~0) denotes the crystal ground state. The proper
convolution of pairs of operators on the right-hand side
of Eq. (39) results in Eq. (1). The giant oscillator strength
of the x-m optical conversion is now constructed in terms
of the polariton transition between the m state A t+z ~0)
and the state with an x and a y B .zu « .k~0 . The
closed set of the Heisenberg equations which follows
from this phenomenological approach Eq. (38) with M, is
given by

Both Eqs. (40) and (41), which describe the nonlinear
propagation of the polariton wave p, differ from the cor-
responding Eqs. (33) and (34) and are in contradiction to
the e-h picture (3). The corresponding Eqs. (11) and (16)
do not transform to Eqs. (40) and (41) under the con-
sidered assumptions. As will be shown below, Hamiltoni-
ans (29) and (38) lead to observable differences for, e.g.,
the x-m optical Stark effect and the 2y m absorption.
Only the m equations (35) and (42) have the identical
form. In Sec. V, we will show that the description of the
m luminescence is the same in both approaches.

The main problem with the phenomenological ap-
proach is due to the fact that x's and m's are not truly in-
dependent boson fields. According to representation (30),
the degree of independence of these quasiparticles is
given by the following commutation relations:
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[A ~k, B p.]= —4 81 p —k

[A~, At@]=5' p+ —g %*(l)%[(K—P)/2 —l]
l, o

+~ a' —1+P/2+O' —I+K—P/2

(43)

The first relation shows clearly the dependence between
the m with momentum p+k and the x's with p and k.
This lack of independence leads to the main objection
against the use of the matrix element M, (p, k) for the
description of the optical m creation.

III. LOW-INTENSITY EXCITON-BIEXCITON
OPTICAL STARK EFFECT

The importance of the quantum dependence between
the x's and the m's can be seen from the analysis of the
low-intensity x-m optical Stark effect. ' Here, one has
to consider the dynamical properties of the y-x-m system
in the presence of a coherent polariton wave with k and
cok in the transparency region near the x absorption line.
This intense wave will produce virtual electron-hole tran-
sitions, and therefore will drive the semiconductor to a
nonequilibriurn state. The pump wave with the circular
polarization o.=2 is treated classically by replacing the x

~j,~B, Pq+[(p —k)/2]e " + Ap~q, (45)

where the operator A p+k describes truly independent bo-
son excitation. The Hamiltonian of Eq. (29) contains the
following quadratic part of the operators of the o.=1 x's
and y's and m's:

and y operators of the given mode k by c numbers:

Bzk~&VP& exp( i—cozt), azz~+VEz exp( —isn't) .

(44)

Here, (Pz~ ~Iz and ~Ez~ ~Iz are the x and y com-
ponents of the polariton pump wave of the intensity I2.
The resulting nonequilibrium state makes it impossible to
treat the x's and m's as being independent. Even in the
thermodynamic limit V—+ 00 and J2 =const, finite correc-
tions arise in the commutation relations (43). In our ap-
proach this difhculty is overcome by distinguishing mode
k from other modes peak in the definition (30) of the m
operator as well as in the initial Hamiltonian (29). This
procedure corresponds to a Glauber transformation
which removes the pump source from mode k by intro-
ducing a new vacuum state of the semiconductor in the
presence of the polariton pump. Thus, for the m opera-
tor A +z of Eq. (30), one has to use

H& = g R co~ra, ~a&@+[cop+ ~Pz ~
VW'&z(0))8 &pB&@+ed p+j, Ap+k

p

+ i a&&8,&+6,[(p —k)/2]P&e " 2+&8&z+H. c.
2

(46)

where

1
e—&K ——g (~ t~~~z+~t~~gz)l'P(l)l (47)

The resulting frequency eigenvalues are

where

(50)

is the average potential energy of the x-x interaction in
the m. We neglect all concentration-dependent correc-
tions of the new vacuum state and consider only the reso-
nant approximation of the m ground state. After a first
canonical transformation with

2 2

v — co, v —co +5 co,
0

v —Qp~k+ 5p~k co cok .
(51)

S = exp ico&t g (a .&a~.~+8 .&B .&)
&sp

(48)
The nonresonant dynamical shifts 5" and 5 +& of the x
and m levels are determined by

which removes the explicit time dependence of H, in Eq.
(46), the Hamiltonian can be diagonalized with a second
canonical transformation introducing new elementary ex-
citations aj.p B J p and 3 p+&.

. 5p~„= ~P„~ VW, z(0)+ VWzz(0)

(52)

t
CK )p

=(CJ) Bi

~p+~

(49)

In this approximation, the transformation to the diagonal
form treats both the x-y and the x-x interactions exactly.

+ g ~%(l)~ 8'zz[ —1+(p—k)/2]
l

This dispersion Eq. (50) describes the splitting of the po-
lariton and m frequencies caused by the polariton pump
wave. The new dispersion is plotted in Fig. 1(b) and com-
pared with the unperturbed polariton and m dispersions
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v~""v'"v —2', iM, (p, k)Pi, !
v'"

—iMi(p, k)Ek i

v~""—
—,'co, Q, v =0,

where

CD
p

3
I

3

[Fig. 1(a)]. With the same procedure, one can derive the
dispersion Eq. (50) directly from the Heisenberg Eqs.
(33)—(35).

The weak polariton wave with p, cu, and o. =1 acts as
"probe wave" which tests the effective dynamical shift 6
of the x level, which is given by

~M, (p, k)P, ~'

P P m m x
Qp+ k+ 6p+ k COk COP

(53)

The dynamical shift of the x level has two contributions.
The first, 5~ [Eq. (52)], is the shift due to the renormaliza-
tion of the vacuum state by the pump wave. It stems
from nonresonant Coulombic attraction of the probe x
with p, o. =1 and the x with k, o. =2 of the pump wave.
The more important second term in Eq. (53) for the low-
intensity x-m .optical Stark effect is due to the resonant
x-x interaction resulting in virtual m formation with
momentum p+k from probe p, o. = 1 and pump k, o. =2
x's. The efficiency of this process is determined by the
matrix element Mz(p, k). As a result, the new length pa-
rameter a appears naturally. The second term in Eq.
(53) dominates because of the resonant denominator and
results in a redshift of the x level for the most interesting
fr qu y a ge &k+ Mp (+p+k

First, theoretical studies of the dynamical x-y-m spec-
tra renormalization within the phenomenological ap-
proach have been given in Refs. 23 and 24. Subsequent
similar results have been obtained in connection with the
dynamical x-m Stark effect. The corresponding disper-
sion equation can be obtained from Eqs. (40)—(42) or
from the treatment of the phenomenological Hamiltonian
(38):

! i ! i I t !

2 0 2

p {1() (:m!

FIG. 1. Dispersion curves of the x-y-m system of the semi-

conductor in the presence of the polariton pump wave (b) and
unperturbed polariton and m dispersions (a). Real part of the
wave number p (solid lines), imaginary part (dotted lines). The
unperturbed m frequency Q=Q~ is shifted by the pump fre-

quency co&. The following CdS parameters have been used:
co, =2.552 eV, 0&=0=5. 100 eV, A@1,

= 1.9 rneV, eo 8 ~ 87,
M=0. 9mo, !%(0)!=2X10 ' cm, and 6(0)= —5 meV. For
the pump beam, I2=1 MW/cm and Am&=2. 547 meV have
been used.

(55)

In this case, the x-m optical Stark effect is determined by
the matrix element M, (p, k). The same definition of the
strength of the x-m optical conversion in terms of M,
has been used in the analysis of the optical Stark effect in
Refs. 30 and 31.

The derivation of Eq. (54) from the phenomenological
Hamiltonian (38) is inconsistent, because the c-number
substitution (44) is used only for the x and y operators,
but not for the m operators which are considered to be
independent. The same objection against the use of the
matrix element M, (p, k) can be obtained directly from its
definition in Eq. (39). For a coherent polaritons pump
wave, the m state 3 +i, ~0) and the x-y state B i a&i, ~0)
are not independent, orthogonal states, as can be seen
from the definition of AK in Eq. (30). We conclude that
the matrix element M, (p, k) of Eq. (39) for transitions be-
tween two dependent quantum states does not describe a
real m creation process correctly.

For the derivation of both dispersions, Eqs. (50) and
(54), the nonresonant part of the x-y interaction has been
taken into account in the corresponding y equations. In
other words, instead of Eqs. (33) and (40) the correspond-
ing Maxwell equations have been used. This procedure
ensures the correct limit for all dispersion branches
co=co;(p) for p —+0.

In conclusion, we state that the described self-
consistent theory of the x-m optical Stark effect considers
x's without internal structure. However, the main results
will be preserved, even if one uses the exact e-h picture
instead of the x approximation. This theory has been
developed in Ref. 24. In this theory both x's and m's
have been treated as two- and four-particle e-h complexes
in accordance with Eqs. (8) and (9). The new vacuum
state and the m's are introduced self-consistently in the
presence of a coherent polariton pump wave. The result-
ing dispersion Eq. (50) describes the x-m optical Stark.
The crucial matrix element M2(p, k) has been expressed
explicitly in terms of the x- and m-wave functions P(1)
and l J(p, l, q), respectively. For a weakly bound m, M2
is given by the simple form of Eq. (36).

IV. TWO-PHOTON BIKXCITON ABSORPTION

The 2y absorption due to m excitation can be calculat-
ed directly from the derived dispersion, i.e., Eq. (50) for
the self-consistent theory, or Eq. (54) for the phenomeno-
logical one. In order to get a more realistic description
we introduce the inverse x and m lifetimes y and y by
substituting in these dispersion relations: co ~co' —iy"
and Op+k +Ap+k iy . Now a natural threshold for the
existence of the x-m optical Stark effect arises. For
!co—co,

~

~ co&„ this threshold is determined by the condi-
tion
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~«IMz(p, k}Pg l'
~y

(co —co, )'
(56)

—21mp(co, ~„,I, &I„,y",y" 0) . (57)

Already, within the framework of the initial Heisen-
berg Eqs. (33)—(35) or (40)—(42), one sees the different
mechanisms for the two-y absorption in the self-
consistent and phenomenological model, respectively.

I

Below this threshold for the pump x amplitude and the
corresponding pump intensity I2 „the dissipative rather
than dispersive part of the corresponding nonlinear pro-
cess dominates. Thus in this low-intensity limit one can
study the 2y m absorption.

The absorption coefficient of the probe beam with
cT=1 and p, co=Op+/ cop is given by twice the imagi-
nary part of the wave number p, i e.,
a(co) =2 Imp (co, co~, Iz, y", y ). Thus u(co) can be ob-
tained from Eqs. (50) or (54) (see also Fig. 1) for a
sufficiently small pump wave intensity I2~0, to be below
the threshold of the x-m optical Stark effect. More accu-
rately, one has to define the pure m absorption coefficient
K' '(co, co&) by subtracting the usual linear x absorption:

K' '(co, coq) =2 Imp(co, coq, I~ &I~ „y,y )

I = K' '(co—, cok)QI~+Iq,
dz

(58)

where I are the intensities of the two circularly polar-
ized light beams, with co 1=co and ~ 2=cok, which
penetrate the crystal through a surface and which are ab-
sorbed under the condition ~+cok —-0~+1,. From Eq.
(50), the self-consistent theory yields, for the 2y absorp-
tion coefficient,

According to Eqs. (33} and (34) the nonlinear polariton
absorption is governed by the third term on the right-
hand side of Eq. (34). This term is responsible for the x-x
interaction. In turn, Eqs. (40) and (41) describe the 2y
absorption in the phenomenological theory due to the
matrix element M&(p, l). The appearance of the non-
linear term in Eq. (40) for y is unphysical. The proper
nonlinear term responsible for the 2y absorption should
appear only in the x equation. This statement follows
from the fact that in the considered resonant m optical
nonlinearity only the interaction between polarizations is
important and formally can be proved easily from the
comparison of Eq. (40) with Eq. (11), which follows
directly from the basic e-h-y Hamiltonian of Eq. (3).

Instead of absorption coefficient a, we define the
coefficient K' '(co, co&) of the m 2y absorption as usual by

K' '(co, col, )=
l~[(p —k)/2] I'&',

c 8'(roz co, ) ( co co,—)—
1/2

y
(0&+z—

co&
—co) +(y )

(59)

m

X . (60)
(Qp+q —cok —co) +(y )

Both spectra K' ' [Eq. (59)] and K' ' [Eq. (60)] have
been derived for the conditions A„,~ leo —co, l

~co«and
Q„,~ leo&

—co, l ~co«, where the parameter 0„, deter-
mines the boundary of the frequency range for which a
single intermediate resonant x level (n = 1) for 2y m ab-
sorption can be considered. Small corrections which are
proportional to

=2y
Ii =1,2 mr

l+K=o
&& 1

CO& CO; —
1 2

(61)

have been neglected in both results, i.e., in Eqs. (59) and
(60).

In the derivation of the 2y absorption coefficients
K' ~(co, co&) and K (co, co&), the polariton character of the
propagation of the both electromagnetic waves has been

while the dispersion of the phenomenological theory Eq.
(54) yields

e l%[(p —k)/2]l 0,
K (co, coq)

c 8A(cok —co, ) (co —co, )

X [ ( co~ —co, ) + ( co —co, ) ]
1/2 - 1/2

I2
X

I

explicitly taken into account, in contrast to the phenome-
nological approach. ' The main corrections arising from
the polariton effect are connected with the composite x -y
structure of a polariton wave, as well as with large
difference between the polariton group velocity and the
"background velocity" c/Qeo. As already stated above,
both of these corrections are important in the frequency
intervals

l
co&

—co, l

& 0, and l co —co, l

& 0, .
In order to identify the origin of the main differences

between the two results E ' ' and E' ', we return to the
analysis of the basic elementary processes of the 2y ab-
sorption due to m formation. The schematic representa-
tions of two different models of this process are given in
Figs. 2 and 3. In these graphs, the solid and wavy lines
refer to an x and y propagation, respectively, the bold
dot symbolizes an x-y (polariton) transition, whereas the
box I represents the m state. According to the tradition-
al phenomenological concept (see Fig. 2}, a 2y m absorp-
tion K is determined by the matrix element M&(p, k) of
Eq. (39). As already discussed, one immediately finds Eq.
(1) for the matrix element M&(p, k) from the convolution
of the pairs of operators on the right-hand side of Eq.
(39). This procedure implies that the two x's in the creat-
ed m have the same wave vectors p and k as initial y's.
According to the well-known Hopfield concept, this
momentum conservation does not hold for true absorp-
tion. For true absorption (and not only virtual excita-
tion), a real scattering process has to occur. This scatter-
ing breaks the quantum coherence and makes the excita-
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Because the polariton wave numbers p and k refer to 2y
absorption to the optical range, the second term in the
square brackets of Eq. (62) can be neglected in the first
approximation. The main difference between the self-
consistent and the phenomenological 2y absorption spec-
tra of Eqs. (S9) and (60), respectively, is their frequency
dependence via the factors (col, —co, ) and (co —co, ) . The
ratio R (co, coi, ) of two spectra has the simple form

K' '(co, col, ) (cok —co, ) +(co—co, )
R (co, cok) =

K (co, cok) (e )' (63)

The phenomenological 2y absorption K (co, cok) is(2)

determined by the process

while the self-consistent 2y absorption K' '(co, col, ) follows
the scheme

y+y —+x+x —+m .

Of course, in a polariton representation, both approaches

p
beam 1 Q~wrv~=

adeem 2 Q~
k

P=P

k=k

FIG. 2. A schematic representation of the phenomenological
model of a 2y m absorption.

tion process irreversible. In our approach the Coulombic
scattering of the two x s which form the m is in combina-
tion with the polariton dispersion responsible for the real
2y absorption (see Fig. 3).

The conservation of the initial momenta p and k of the
two x's in the phenomenological picture is a manifesta-
tion of the nonorthogonality of the states A~+i, ~0) and

B, 2.~a&, .&~0). In the self-consistent approach the interi-
or structure of the m is treated explicitly. The scattering
process which is responsible for a 2y absorption K' ' is
introduced by taking into account the whole set of the
ladder diagrams (see Fig. 3). Here, the dashed lines refer
to the Coulombic potential W, z(q). According to Eq.
(59), one obtains the true m pole in the corresponding
scattering amplitude of the x's.

The 2y absorption coefficients K ' '( co, cok ) and
K' '(co, cok) both have the proper symmetry with respect
to the frequencies co and cok. The frequency band of the

2y absorption due to m formation represents the usual
Lorentz resonance denominator with the central frequen-
cy Q, =Op+/ ~+cok. The frequency width is deter-
mined by the m scattering parameter y . This scattering
parameter y in our model is given by the inverse m radi-
ative lifetime. In Sec. V, it is calculated from first princi-
ples with the Hamiltonian of Eq. (29).

From the definition of the matrix element 6 and the m
Schrodinger equation [Eq. (31)],one obtains

b. [(p—k)/2] = [ —e —iri (p —k) /4M]%[(p —k)/2] .

(62)

beam 1 Q~rv'-

beam 2 Q~r~=
k

PCP

k'gk

~ ~ ~

FIG. 3. A schematic representation of the self-consistent
model of a 2y m absorption.

are described as

y+ y ~polariton+ polariton~m .

However, the efficiencies of the 2y absorption, i.e, the
corresponding matrix elements of the conversion of the
two polaritons to an m, are different for the two ap-
proaches.

The role of real scattering processes in the Hopfield
concept of true absorption is a more delicate question for
the 2y absorption of the m than for the linear absorption
of the x. In the latter case the scattering system, i.e., im-
purities or phonons, represents an "external system" for
the scattered polariton k. If, after the first optical transi-
tion y p~x p, the created x p is scattered before the in-
verse optical transition x p~y p takes place, the usual
semiclassical approach to the x absorption is valid. In
such a case the integrated x absorption coefficient

f den a, (co) is proportional to Q„ i.e., is determined only

by the strength of the x-y optical transition. By chang-
ing the temperature or the impurity concentration, one
can move from this regime to the polariton regime in
which even the integrated x absorption coefficient de-
pends both on the x-y matrix element 0,, and on the x
scattering parameter y .

For a 2y absorption of the m, the situation is different,
because the created m p+k itself represents an "internal
scattering system" for the initial polaritons p and k. So
the question about the balance between a polariton effect
and an interior scattering process arises naturally, as both
processes are resonant. According to the phenomenolog-
ica1 approach the two constituent x's p and k of the opti-
cally created m p+ k automatically scatter each other be-
fore the inverse optical transition x p(k)~y p(k) occurs.
The relation of Eq. (63) shows that this statement is
correct only if one of the frequencies co or ~k approaches
the x energy co, (e.g. , if co —co, ~O and co, —col,~e ). In
this case R (co,co&)~1, so that both results K' '(co, cok)
and K' '(co, cok) yield the same limit in spite of the fact
that they have been derived for the frequency range
~co

—co, ~

~ coi„~cok—co, ~

~
co&, . The polariton wave p with

the frequency co~~, represents a pure x wave with a
small "mechanical" group velocity. One can compare
the x's of this wave with impurities and the m state with
an impurity-bound x state. In this limit (co —co, ~O),
both approaches give the same result in agreement with
the Rashba theory (see, e.g., Ref. 32) of the giant oscilla-
tor strength of the shallow impurity-bound states. Using
methods of the scattering theory, Hopfield showed that
an x p resonantly bound to an impurity always has to be
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scattered before the reemission of a y with the same
momentum p occurs.

The different dependencies of the absorption
coefficients K' '(co, coi, ) and K' '(co, co&) on the frequencies
co and &uk can be distinguished experimentally. CuBr and
CuC1 semiconductors are best suited for such studies.
The calculated spectra of the integrated 2y absorption
coefficients K;„,(co)= J dco&K' '(co, col, ) and K;„,(co) are
shown in Fig. 4. The two curves [solid line, K;„,(co);
dashed line, K;„t(co)] deviate most strongly in the degen-
eracy region co=cok= —,'QK 0 and for the absorption in
the spectral wing co & co, —e (col, )co, ).

The degenerate absorption corresponds to a minimum
of the both curves (points 0 and 0', respectively) at the
range 0 & co, —co & E . According to Eq. (59), one can ob-
tain the following approximation in the spectral vicinity
of the degenerate absorption:

K;„,(co) =K,'„,'[1+8(b, /e ) ], (64)

whereas the phenomenological approach of Eq. (60)
yields

K;„,(co)=K „,'[1+12(b, c/oe) ] . (65)

1 0.0

3
5.0

I

0
0.5e

0.0 I
I I I I I ' f

10 20 30 40 50 60 70

~~-~ (mev)

FICx. 4. The frequency dependence of the integral 2y m ab-
sorption coefficient K;„,(co)= jdcoqK' '(co, co&). Self-consistent
model Eq. (59) (solid line), phenomenological model Eq. (60)
(dashed line) for the CuCl parameter co, =3.2022 eV, m~, =5.7
meV, and e =34 meV.

Here, K';„,' and K';„,' are the integrated absorption
coeKcients for the degenerate case, bco= —,'Q& o

—co. If
one knows the m binding energy sufticiently well, the
differences between Eqs. (64) and (65) can be tested exper-
imentally. In the low-frequency tail co & co, —e, Eq. (60)
strongly overestimates the m absorption. Interesting pre-
liminary experimental investigations of CuC1 by
Nagasawa and Hasuo do not yet allow for a final de-
cision between the self-consistent and the phenomenolog-
ical 2y absorption spectrum of m.

Another important difference between K' '(co, co&) and
K (co, co&) is connected with their dependencies on the(2)

2y absorption geometry, i.e., on the angle 0 between vec-
tors p and k. Although such a dependence appears only

as a small correction to K' '(co, co&) it is in principle
different in the two spectra. For example, one can con-
sider the potential W, z(l —l') of the x-x attraction as a
Coulomb potential and approximate the m ground-state
wave function by ql(l)=8+ma /(1+a l ) . With this
approximation one finds, for the degenerate case,

K (co co) =K ( 1 6g 2 k2sjn28/2) (66)

and

K' '(co&co)=KI~ '(1 —2a k sin 8/2) . (67)

Here, E
~~

' and E
~~

' are the m absorption coefficients for
two copropagating polaritons, i.e., when p=k. The angle
dependence of K' '(co, co) reaches about 1% for CuC1 and
about 10%%uo for CdS crystal.

For real experiments, corrections for the intensities I
of the electromagnetic waves inside the crystal are neces-
sary. For normal incidence of both waves on the surface
of the crystal, the external intensities Io are connected
with intensities I by the relation

4nI = Io
(n +1) (68)

where the corresponding polariton refractive index n is
given by

n =+eo[ 1 +cori/(co, —co~)] =+eo (69)

V. LUMINESCENCE OF BIEXCITONS

One of the main conclusions of the general scattering
theory is the close formal relation between the total reso-
nant cross section and the lifetime of the corresponding
bound metastable state. For our problems, the reso-
nant x-x scattering causes the 2y m absorption. Thus
the 2y m absorption and the inverse process, the m
luminescence, are different manifestations of the same
basic scattering process. In the framework of our dynam-

and CO —12 & Mk'

To summarize, the phenomenological theory is inaccu-
rate because it neglects an important quantum depen-
dence of x's and m's. This failure leads to the incorrect
introduction of the matrix element M, (p, k) and the cor-
responding picture of the optical creation of m. The phe-
nomenological approach yields the correct results for the
2y absorption of m and the x-m optical Stark effect only
if one of the frequencies co or cok of the polariton waves
tends to the x level position co, . Concerning the general
characteristic of the matrix element Mz(p, k) and the cor-
responding scenario for the optical excitation of an m,
another comment may be helpful. In the self-consistent
approach this matrix element also characterizes the giant
oscillator strength of the optical conversion of the two
polaritons to an m in the usual sense. ' ' Our results
deal with the e+ciency of the nonlinear optical processes.
All results concerning the spectral characteristics, i.e., the
spectral positions of the signals in hyper-Raman scatter-
ing via m s, the spectral position of the 2y absorption nz

peak, etc. , evidently are the same in both formulations.
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ical model, the parameter y in Eqs. (59) and (60) for the
2y m absorption corresponds to the inverse m radiative
lifetime. In order to make the description of the 2y ab-
sorption completely self-consistent, one has to find this
inverse radiative lifetime yp+Q of the m p+k through the
parameters of the initial Hamiltonian (29).

The radiative lifetime of an m state can be determined
directly within the dynamic Eqs. (33)—(35). Here, the
third nonlinear term on the right-hand side of Eq. (34)
can be neglected. Expressing the y operators a . in
terms of the x operators B by .means of Eqs. (33) and
(34), and substituting these expressions in the right-hand
side of Eq. (35), one obtains a Schrodinger equation for
the m-wave function ql(l ) which includes polariton
effects. Diagram techniques allow a still shorter deriva-
tion of this equation. Both sets of Eqs. (33)—(35) and
(40)—(42) lead to an identical description of the lumines-
cence process.

Following Ref. 36, one studies the poles of the vertex
function which describes the x-x four-particle interaction
for the description of an m bound state. The correspond-
ing homogeneous Bethe-Salpeter equation for the vertex
function I ( 1,1";r) can be written in the form

I (l, l";J )= g W, (1 1')G(l', I—C/2)1"(1', 1";If) . (70)

Here, 1 = I1,co) and 1"= t1",co"
I are the reduced relative

momenta and frequencies of two x's before and after the
interaction act. K =

I K, Q I describes the conserved total
momentum and energy. The 2x G reen's function
G(l', K/2) is given by the convolution

G(l', E/2) = — jdco'G ( —l'+E/2)G (l'+K/2),
2~

(P QK=O)+(P) g W12(P P )+(P ) =0 .
P

(73)

Equation (73) is the m-wave equation which describes the
relative motion in the bound state of two x's with mo-
menta p and k= —p.

In order to evaluate Eq. (71), we express the x Green's
function G (1) in terms of the x and y free-particle
Green's functions

Go(p, co)=, Do(p, co) =1

CO&+ l 5

by the relation

co N~+ i 5P

(74)

Do '(p, co)
G(p, co)=

Go '(p, co)Do '(p, co) ——,'Q,

P+(p oi) + P (p oi)

M —M++ I 5 N —~p +l 5

where

(75)

co (co 67~)
y+( —

)( )
P P

co(~+' ' —~ '+') '

P P

(76)

Here, co
—are the frequencies of the upper (+) and the

lower ( —) polariton branches, respectively, i.e., the roots
of the polariton dispersion

2 2 Q2

~
='+

2
Epco co +'Aco P /M co

(77)

In the final expression we include the nonresonant part of
the x-y interaction. The functions P+' '(p, co) satisfy to
the following conditions:

(71)

where G(+l'+K/2)is the x Green's function. With the
property of the vertex function

P+(p, co~ ))0, P (p, co~ ))0,
P+(p, o)+)+P (p, co )=1 .

(78)

G(l, IC/2)G(1", —K/2)I (1,1",K) 4(1)ql(l"),

one gets, for E = (K=0,Q =Q&=o),

(72)
These functions characterize the distribution of the x
component between the two polariton dispersion
branches. Thus Eq. (78) is the "sum rule" for the x.

With the x-polariton Green's function (75), one finds

G(p, —,'QK=o) = — de'G( —p, —co'+ —,'Q~ o)G(p, co'+ —,'QK o)2'
(P ~ )0 ( P QK=O ~p

(P~ )4 ( P QK=O+
Q~ p Q)p ct) + l 6

0+(p ~,')4 ( —p QpY=o
—~,+)

Q~ p Q) co p+l5

0 (p, ~, )0 ( —p»~=o —~, )+
K.=o ~ ~—p+

(79)

Thus Eq. (73) with function G(p, —,'Q~=o) given by Eq.
(79) is the final general form of an m Schrodinger equa-
tion which describes m with the translation momentum
K=O. The generalization of this result for an arbitrary
total momentum K is obtained by replacing in Eqs. (73)
and (79) all momenta p by p+ K/2 and —p by—p+ K/2 as well as QK p by QK.

In comparison with the usual m-wave equation (31),
the derived Eq. (73) contains all polariton effects explicit-
ly. This corresponds to the substitution of the x lines
modified by the polariton effect instead of the unper-
turbed x lines (see Fig. 3). In the limit p ))+coco, /c, Eq.
(73) reduces to Eq. (31). A natural correction of the ab-
sorption spectra of Eqs. (59) and (60) is thus the replace-
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FIG. 5. Illustration of the optical decay of an m (see text).

ment of the unperturbed wave function %(l) by 4(l),
which includes polariton effects. For the 2y m absorp-
tion such a correction cannot be treated by means of per-
turbation theory. Strong polariton modifications of the
m-wave function +(I) occur at small momenta fil which
belong to the optical range. En turn, for polaritons with
mornenta Ap and Ak of this range, an optical 2y m forma-
tion takes place.

The analysis of Eq. (73) is a complex problem. At
present we give only some comments. If only the lower
polariton branch is taken into account, the initial Eq. (73)
can be reduced to

(co& +co ~ 2', )—t(p)+P (p, ~z )P (
—p, ~—,)

X g W, 2(p —p')4(p')=(OK=0 —2~, )+(p) . (80)
P

The proper nonstationary solution 4 represents an outgo-
ing spherical wave and corresponds to the radiative decay
of an m state, i.e., Q& p=QK —p lyK —p. This value of
the inverse lifetime of the m K=O has to be used in Eqs.
(59) and (60) in order to get a self-consistent description
of the absorption of two y's with p and k = —p with the
initial Hamiltonian Eq. (29) or (38).

The radiative decay can be understood easily from Eq.
(80) and is illustrated in Fig. 5. When the constituent x
of the m acquires a small momentum within the optical
range (the sectors A, A2 and 8,82 in Fig. 5), the corre-
sponding m undergoes a radiative annihilation. In other
words, the linear part of the lower polariton branch cor-
responds to the case without a bound m state. An m can
exist as a well-defined excitation, if the optical range
p =co&+e0/c is much smaller than the inverse m radius
a ', i.e., if e )&yK p. The radiative decay of an m is
thus due to the polariton dispersion of its constituent x's.
The decay is not a tunneling processes out of a rnetastable
state. "

Both sets of Eqs. (33)—(35) and (40)—(42) formally give
the same final equations for m luminescence, but give
different results for m optical creation. We believe that
this asymmetry is due to inconsistencies with respect to
the internal x structure of the m in the phenomenological
approach.

VI. CONCLUSIONS

In this work we have developed a self-consistent theory
of the optical nonlinearities connected with the m state

and compared it with the often-used phenornenological
theory. The self-consistent approach is derived directly
from the basic e-h-y picture, taking as important in-
gredients the spin of the excitations as well as the proper
quantum dependence of m on x explicitly into account.
We have applied this concept to the description of the
x-m optical Stark effect, to the 2y m absorption, and to
the m luminescence. For all these effects, the results of
our self-consistent approach and the conventional one
have been compared. The main conclusions are as fol-
lows.

(i) Instead of the phenomenological scenario of the 2y
creation of m (y+y~x+y~m), the self-consistent
description of the m absorption follows the scheme
(y+y~x+x~m). In the phenomenological picture
the m formation is described by the optical matrix ele-
ment M, (p, k) related to the conversion of an x and a y
to an m. Here the two x's of the optically created m have
the same rnomenta as the absorbed y's. According to the
Hopfield concept of polariton absorption, this does not
describe true absorption. In the self-consistent approach
the m is created by the Coulombic x-x scattering
Mz(p, k) of two x's with opposite internal spin structure.
This process ensures a change of the initial y momenta
and breaks the quantum coherence between the y's and
the m. Even in the polariton representation these two ap-
proaches lead to the different results, both for the x-m
optical Stark effect and for the 2y m absorption.

(ii) The resonant 2y m absorption coef5cients
IC' '(co, co&) and E' '(co, co&) have been derived for the two
approaches by taking into account the polariton charac-
ter of the propagation of the two absorbed electromag-
netic waves with frequencies co&=co and co&=co& and op-
posite circular polarizations. The absorption spectra of
the self-consistent and the phenornenological theories
coincide only if one of the frequencies co, is in exact reso-
nance with the x line position co„ i.e., if co,~2~

—+co, and
co2~ & ~

co, —e . The differences between the self-
consistent and the phenomenological approaches are
large both around the degenerate 2y absorption, where
co& =co2= —,'QK p, and for strongly nondegenerate absorp-
tion, where ~&~2~ & co, —e and co2~ & ~

& ~, . The self-
consistent description of the m optical excitation in the
direct-gap semiconductors can be tested experimentally.

(iii) A Schrodinger equation for the m-wave function
4(l, t) has been derived within a self-consistent approach
which takes polariton effects into account explicitly. This
equation allows us to describe the luminescence of an m.
For a quantitative analysis of the 2y absorption, the true
m-wave function 'P(l ) which contains polariton effects
has to be used.
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