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We apply the model of a partially ionized gas to calculate the electronic magnetic susceptibility of Cs
and Rb vapor along the coexistence curve. The deviations from the Curie law as obtained in the experi-
ments of Freyland [Phys. Rev. B 20, 5104 (1979) and J. Phys. (Paris) Colloq. 41, C8-74 (1980)] are due to
the formation of spin paired dimers. The enhancement of the electronic magnetic susceptibility at about
2-3 times the critical density in the domain of the expanded liquid can be explained by the formation of
higher clusters such as Cs,* and Rb,". The implications on the mechanism of the metal-nonmetal tran-

sition in expanded liquid metals are discussed.

I. INTRODUCTION

A metal-nonmetal transition occurs in fluid metals
when they are thermally expanded from the melting point
up to supercritical conditions. Measurements of the elec-
trical conductivity 0,173 the equation of state p (p, T),%3
the thermopower a,%7 the static® and dynamic® structure
factor S(g) and S(g,w), respectively, the optical
reflectivity, and the dielectric function!® have been per-
formed for Hg and/or alkali metals. The pronounced
changes of these quantities near the critical point of the
liquid-gas phase transition imply that there the electronic
and structural properties also undergo significant changes
and that a metal-nonmetal transition takes place when
the critical point is approached.

The coincidence of two instability mechanisms, the or-
dinary liquid-gas phase instability and the metal-
nonmetal transition, leads to some peculiarities in the
behavior of expanded fluid metals compared with that of
nonconducting fluids. First, and most evident, the elec-
trical conductivity shows a sharp decrease in a narrow
density range near the critical point from values of
o>10° Q" 'cm ™!, characteristic of the degenerate elec-
tron gas in metals, to values less than 0 <102 Q@ 'cm ™.
This value, the minimum metallic conductivity as es-
timated by Mott, is conventionally used to locate the
metal-nonmetal transition at finite temperatures. In the
vapor, the conductivity decreases further when leaving
the coexistence line and behaves like that of a weakly ion-
ized gas as found recently for Cs.>

The thermopower can change its sign near the critical
point as found for Hg.” The interesting question arises,
whether or not such a behavior is typical for expanded
fluid metals near the metal-nonmetal transition.

Second, the coexistence curve of Hg and the alkali met-
als in reduced units (p/p, versus T/T,) shows a strong
asymmetry relative to that of nonconducting fluids such
as the inert gases.®> There is clearly no common law of
corresponding states for both the liquid metals and the
inert gases, and even not for the liquid metals as one
group. However, the alkali metals behave very similarly
to each other and there is a systematic trend to the
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behavior of that of nonconducting fluids with increasing
ionization energy from Cs to Li.

Third, the dielectric properties of Hg as derived from
the reflectivity data!® indicate a strong influence of criti-
cal fluctuations near the critical point. As a result, a huge
dielectric anomaly is obtained compared to that of non-
conducting fluids.

All these experimental data give no complete insight
into the nature of this metal-nonmetal transition. The
magnetic properties such as the susceptibility x(q,») of
Cs and Rb, '712 of Na, ! and Li (Ref. 14, see also Ref. 15),
or the Knight shift K (Refs. 16 and 17) as function of
density p and temperature T are more sensitive with
respect to the interactions in these systems. Generally,
many-particle theories are needed to explain the behavior
of these quantities. '8

The volume electronic susceptibility extracted from
Freyland’s measurements!">!? of the mass susceptibility
along the coexistence curve of Cs and Rb exhibits an in-
teresting behavior. We have displayed the Cs data in Fig.
1 (see also Ref. 17). At the melting point, the electronic
susceptibility is enhanced by a factor of 1.6-2.2 com-
pared to the Pauli spin susceptibility of a free-electron
gas which is typical for metals.

In the past decade satisfactory calculations have been
performed of the ground-state energy, the spin suscepti-
bility, and of the static pair correlation function for the
strong-coupling regime, 2 <r, =5.65, which matches the
conditions of the degenerate electron gas near the melting
point of simple metals.!® The enhancement of the spin
susceptibility derives from the local-field corrections to
the dynamic dielectric function &(q,®) and from the
effective electron mass m * which is described by the con-
ventional Stoner model. These quantities are not directly
measurable and there is still a great variation in the
theoretical results for the susceptibility.

This situation becomes much more complex for ex-
panded liquid metals, since we have to deal with coupling
strengths of 5 =<r; =15, a gradual transition to nondegen-
erate conditions, and thermal excitations near the critical
point. When the density of fluid Cs is lowered by thermal
expansion, the electronic susceptibility first decreases and
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FIG. 1. Spin susceptibility (per unit volume) vs density along
liquid-gas coexistence curve of Cs extracted from Freyland’s
measurements (Ref. 11) by Warren, Brennert, and El-Hanany
(Ref. 17). Dashed line indicates Curie law for one electron per
atom.

reaches a minimum value at three times the critical densi-
ty where the enhancement factor is about unity. The
electronic susceptibility is enhanced again for lower den-
sities and reaches its maximum value at about twice the
critical density, where the enhancement factor is nearly
two. For densities below this point, a strong decrease is
obtained. However, the data provide a systematic devia-
tion from the Curie law even at vapor densities.

This behavior together with that of the nuclear spin-
lattice relaxation rate 1/7, and of the charge density at
the nucleus, {|¥(0)|?), which are derived from both the
susceptibility and Knight-shift measurements,!” are not
explainable by an extension of the conventional Stoner
model to these conditions.

Various aspects of this metal-nonmetal transition have
been studied on the basis of existing theories.?® The Hub-
bard model treats electron correlation effects in crystal-
line materials. Assuming that a band structure concept is
applicable up to the critical region of fluid metals, the
metal-nonmetal transition can be explained by a splitting
of the conduction band into two Hubbard bands caused
by the intra-atomic electron-electron interaction at re-
duced densities. Thus, the transport should be thermally
activated as in semiconductors.

A correlation enhancement of both the spin suscepti-
bility and the electronic specific heat is expected from the
calculation of Brinkman and Rice.?! The possibility of a
ferromagnetic ground-state for expanded liquid metals as
inherent in the Stoner model is avoided due to the deriva-
tion of a reduced degeneracy temperature so that the sus-
ceptibility saturates at the Curie value for elevated tem-
peratures.

The liquid state is disordered and has only locally an
ordered structure. We know from neutron scattering ex-
periments®® that the thermal expansion of Cs and Rb
leads to an almost linear decrease of the coordination
number rather than to an increased near-neighbor dis-
tance. This feature has been used as a basis for electronic
structure calculations for expanded liquid metals within
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the one-electron (band) theory. One-electron theory has
been highly successful in explaining the electronic prop-
erties of simple metals at solid-state densities. The liquid
metal at lower densities is modeled by assuming various
crystal structures with different coordination numbers
but fixed near-neighbor distance.?>?3 In addition, the
effects of changing the interatomic separation for a given
structure can be studied.?® In these calculations, antifer-
romagnetic ordering seems to be the favored ground state
for the alkali metals rather than a ferromagnetic one,
similar to the behavior of H.?* These one-electron band-
structure calculations fail completely in explaining the
behavior of the Korringa relation and of the charge den-
sity at the nucleus.

Focusing on the effects of disorder, one has to deal
with the phenomenon of Anderson localization®® and a
subsequent disorder-induced metal-nonmetal transition.
In fluid metals, a pseudogap of the density of states might
develop at the Fermi level during the expansion and the
states around Ej become localized.?’ We have seen that
the one-electron picture is not sufficient for the descrip-
tion of the electron structure during the metal-nonmetal
transition and that electron correlation effects play an im-
portant role. Logan?® studied the effects of both electron
correlation (on Hartree-Fock level) and of disorder (given
by a random distribution of all sites which is character-
ized by a classical pair potential) in a disordered Hubbard
model. The introduction of localized magnetic moments
as a first effect of electron correlation and a simple
scheme for averaging over all distributions of the sites
leads to the distinction of three density domains: a non-
magnetic metallic state at high densities, a metallic state
with local magnetic moments at intermediate densities,
and a nonmetallic state with magnetic moments at low
densities. Here, at least a qualitative agreement with the
experimentally observed behavior of the magnetic suscep-
tibility and of the electrical conductivity is achieved for
expanded liquid alkali metals.

A completely different approach to these systems does
not utilize methods of solid-state physics which are clear-
ly applicable for the high-density metal, but starts with
the low-density vapor. For supercritical temperatures,
T>>T,, a dense plasma state is reached which can be
treated by consistent quantum statistical methods (for re-
views, see Refs. 27-30). The effects of dynamic screening
and self-energy, of arbitrary degeneracy, of the Pauli ex-
clusion principle, of structure factor and two-particle
nonequilibrium correlations have been studied for the
thermodynamic, transport, and optical properties of
those strongly coupled plasmas.

A special effect in low-temperature plasmas, i.e., for
temperatures around 7, as considered here, is the forma-
tion of neutral and charged clusters such as atoms A4, di-
mers A,, and molecular ions 4, " or 4~ out of the ele-
mentary particles electrons e and ions A4 " so that the
plasma becomes partially ionized. The correlations be-
tween the particles lead to an opposite effect, the decrease
of the bound-state energies with increasing density,
which is known as the lowering of the ionization energy
for the case of atoms. At densities high enough to let even
the deepest energy level merge into the continuum of
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scattering states, the plasma becomes fully ionized, and a
corresponding nonmetal-to-metal-like transition takes
place in a relatively narrow density region. The question
whether or not this so-called plasma-phase transition has
a real phase instability with a second critical point has
been the focus of intense work done for hydrogen and in-
ert gas plasma (see Refs. 31-33).

Contrary to hydrogen and the inert gases, where this
metal-nonmetal transition takes place at plasma condi-
tions well separated from the ordinary liquid-gas phase
transition, in the expanded liquid alkali metals and in Hg
both transitions are superposed due to the relatively low
ionization potentials in these materials. The model of a
partially ionized plasma has been successfully applied to
calculate the equation of state®*3> and the transport prop-
erties’®37 for the density-temperature region near the
critical point of Cs. A relatively good agreement with the
experimental values was found for the critical tempera-
ture of all alkali metals. The sharp decrease of the electri-
cal conductivity near the critical point cannot be ex-
plained by any extension of the nearly free electron model
but by the formation of neutral atoms and dimers. This
mechanism also leads to the change in sign for the ther-
mopower. 38

We will utilize this approach to calculate the magnetic
susceptibility of Cs and Rb along the liquid-vapor coex-
istence line and compare with the experimental results of
Freyland.!"!? These experiments indicated not only sus-
ceptibility enhancement at expanded liquid densities, but
also strong deviations from the Curie law at vapor densi-
ties. First, we will focus our attention on the possible
mechanism which causes this special behavior, the forma-
tion of spin-paired dimers. The concept of particle clus-
tering is then generalized to allow for higher-order clus-
ters such as molecular ions Cs,* and Rb," so that even
higher densities can be treated, especially the region up to
two or three times the critical density. For higher densi-
ties, the fully ionized state is approached and the conven-
tional Stoner model for the magnetic susceptibility yields
the limiting behavior for this metallic state.

The thermodynamic and transport properties of
alkali-metal plasmas were also calculated by Alekseev
and Iakubov® within the model of a weakly ionized gas.
Hernandez* later adopted this point of view and found
consistent results for the thermodynamic and electric
properties up to the critical region. Both approaches con-
sidered the chemical equilibria between various polya-
tomic species and found evidence for the occurrence of
higher clusters in that domain. We compare with these
earlier works after describing our approach in detail.

Our paper is organized as follows. In Sec. II we outline
the basic theoretical approach to the composition and the
thermodynamic functions of a strongly coupled plasma,
and give the respective results for Cs and Rb. The results
available so far for the contributions of various species to
the total magnetic susceptibility are critically reviewed in
Sec. III. In Sec. IV we present our findings for the mag-
netic susceptibility of Cs and Rb and compare with the
experimental values and previous calculations. In Sec. V
we give a brief summary of principal results and con-
clusions.
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II. EQUATION OF STATE
FOR PARTIALLY IONIZED PLASMAS

In this section we give a short review of the quantum
statistical approach to the equation of state (EOS) and
the composition of dense and partially ionized plasmas.
Besides the derivation of the basic expressions for the
thermodynamic functions which are capable of taking
into account interaction effects systematically, we explain
the approximate evaluation of these formulae for alkali-
metal plasmas.

A. Short review of the theoretical approach

In order to construct systematic approximations for
the EOS, a diagram representation for the Green’s func-
tions can be applied. The starting point is the relation be-
tween the number density as a function of the tempera-
ture and chemical potential, n, =n_.(3,u. ), and the imagi-
nary&)art of the Green’s function—the spectral func-
tion,

~lsrde —io+
n,(Bu,) Qogf /(@) ImG,(k,0—i0") , (1)

where B=1/(kpT) is the inverse temperature, (), the
normalization volume, and p, denotes the chemical
potential of species c=e, A%1. f.(E)={exp[BE
—p)]1+ 1} 71 is the Fermi function. The chemical poten-
tial u(B,n) is obtained from Eq. (1) by inversion, whereas
the pressure p (B,u)= f“_ LAnn(B,pi) follows after a sim-
ple integration.
The Green’s function is given by the Dyson equation,

1

m:ﬁz—Ec“‘)“zc(k,Z) , @)

which  also  defines the self-energy X.(k,z).
E_(k)=#k?/(2m,) is the kinetic energy of free particles.
Quasiparticle energies are usually defined by the solution
of

e.(k)=E_ (k)+ReZ_[k,e.(k)/#A+i0] . (3)

The simplest case corresponds to £,=0, and from Egs.
(1) and (2) we get the EOS for an ideal gas,
nlB,u)=(1/9)3f.[E.(k)]. First-order perturba-
tion theory leads to a Hartree-Fock shift =HF(k)
=A"F(k) and we have nFF(B,u)=1/Q,3.f.[E.(k)
+AHF(K)].

In order to describe the formation of atoms A4 out of
the elementary species electrons e and ions 4 T, as well as
of higher-order clusters such as dimers 4, or molecular
ions 4,", A7, the self-energy and also the polarization
function Il(q,w) have to be decomposed into a sum over
the contributions for N-particle ladder 7 matrices (for de-
tails, see Refs. 34 and 35). These quantities are deter-
mined by respective Bethe-Salpeter equations with an
effective two-particle interaction kernel ¥ 3°® that con-
tains the dynamically screened potential and further in-
medium corrections to their energy spectrum via the
cluster contributions to the polarization function. We
consider here the dominant bound state part of the N-
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particle T matrices with N = 3. For atoms (N =2), the
scattering state part may become of importance.

Then inserting this cluster expansion into the EOS (1),
the total density of, e.g., electrons ¢ =e is given by

n (/3,,113 O+n(2 Corr)+n(3)++2n;42)+ cee 4)

where the partial density of a N-particle cluster, n M) with

N = 3, is given by its partition function

=

1
a_ {CXP["B(S(VI,VB—#l—#z— C )]

+(—DN¥N (5)

v is the set of internal quantum numbers and P is the to-

tal momentum of the N-particle cluster. The energy ei-
) N)

genvalues €,p and wave functions W, p are solutions of

the N-partlcle Bethe-Salpeter equatlons and are related to

those for the isolated N-particle cluster E\"J, and ¥{/3”

by

‘LEfc[sc(kH , e k)=E (k)+A, ,
Q,<

A= lizf;wk)]Rezc[kmk)“o]
Qo %
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— +AE ) ,

m
QA
"Uu

(6)
2 (WM IV‘Z eff) _ N,(NO)

i<j

The simplest case, the formation of atoms A4 out of
electrons e and ions 4 was explained by Stolz and Zim-
mermann®? within a quasiparticle approach to the spec-
tral function of single particles and by applying a 7-
matrix approximation for the self-energy. A consistent
expansion of the spectral function with respect to the
imaginary part of the self-energy was carried out by
Kremp et al.*® and an EOS for quasiparticles was de-
rived which takes into account correlation effects in a
genuine way. This EOS has been solved for nuclear
matter** and ionic plasmas. 3354

Zimmerman and Stolz*® improved this approach by
deriving an EOS (1) which is the sum of the density of
free quasiparticles, nf, and of a density of correlated
two-particle states, n>°°™. Replacing the slightly k-
dependent self-energy shift in Eq. (3) by a constant quan-
tity A, which is fixed by the free quasiparticle density,

1 ’
/[Q—ngcwk)] } ,

and utilizing the optical theorem, a generalized Beth-Uhlenbeck formula*’ was derived for the correlated density

—1)
nizeom=1 s (31 4+1) [1-4 21) scd]
0 q,d,!
ﬁZJZ
zgcd £n1+ +A0+Ad
" M,

M_; and p ., denote the total and reduced mass of a pair
of particles (c,d), respectively and g.,(E)={exp[B(E
—p.—pg)]1—1} ! is the Bose function for two-particle
states.

The correlated density consists of the sum over the
discrete bound state energies €,; and the integral over the
continuous scattering states, characterized by their
scattering phase shifts 8,(k). Zimmermann and Stolz*
pointed out that the difference to the standard Beth-
Uhlenbeck formula, the additional factor 2sin28,(k) in
the scattering state part, is a result of putting as much
correlation as possible into the definition of the quasipar-
ticle density n? via the full self-energy shift A,.

They demonstrated the well-known compensation of
discontinuities in the bound state part which occur when-
ever a bound state disappears due to self-energy and
screening effects. The respective contributions are taken
over by the scattering state part and the whole partition
function, Eq. (8), remains a smooth function.

For the nondegenerate case, Bose and Fermi functions
can be replaced by Boltzmann factors. Restricting to
that contribution d ¢ which is capable of forming bound
states, Eq. (8) can be used for the derivation of a mass ac-

+ fowdk 8ed

1 d8y(k)

2sin?8,(k) } . (8
2.u'cd 2Mcd - I( ) ®

tion law e + 4 T4 and a respective ionization degree «
according to, %6

a=n/In+n e
_—B(A —,u»c)] >
nc(2,corr) — n?n‘(}A ch ,

=3I +1)3 {exp(—Be, ) —1+PBe,} .
I n

=2A 3exp[

=(2mB#* /m_.)"/? is the thermal wavelength. The use
of higher-order Levinson theorems*® projects the first ex-
pansion terms of the bound-state part with respect to Be,;
into the scattering state part. In this way, the finite
Planck-Larkin partition function for the bound state
part, Z'%),, can be derived in a natural way* and has not

to be introduced ad hoc in order to avoid its divergence
for low densities. The bound-state part dominates the
partition function of alkali-metal atoms for low tempera-
tures considered here so that the scattering state part can
be neglected. This may change when considering the re-
lated nonmetal-to-metal transition in hydrogen or the in-
ert gas plasmas where the temperatures are much higher.
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Reactions between polyatomic species in a dense alkali
plasma were treated within the given approach in an ear-
lier paper>® up to the region near the critical point. Good
agreement with the measured values (deviations less than
10%) was found for the critical temperatures of Na—Cs.
The critical densities and pressures, however, differ from
the experimental results up to a factor of 5 which indi-
cates the necessity of including further effects in this re-
gion.

Similar approaches were already used by Alekseev and
Iakubov®® and Hernandez*® for dense alkali plasma and
fluids who also found a strong influence of higher clusters
on the thermodynamic as well as transport properties.
They used relatively simple models for the interaction
corrections to the thermodynamic functions such as the
Debye-Hiickel and the Thomas-Fermi theory, or the con-
cept of excluded volume, but still obtained reasonable re-
sults.

We will utilize here the more general expressions for
the partial densities and the quasiparticle shifts derived in
the previous section. We take into account the interac-
tions between all species, especially those between
charged and neutral particles (polarization) and between
neutrals (van der Waals attraction and hard-core repul-
sion). We restrict our calculations to the formation of di-
mers, 2 A<==A,, and of molecular ions, 4"+ A=4,",
which can be described by respective mass action laws,
”(,14) :[ne(’z,corr)]ZI<A2 , ";32)+ :ne(z,corr)nA +KA2+ . (10)

The quantities K are given by the partition functions of
the species involved in the reaction and reduce to the
well-known Saha equations only in the low-density limit.
For arbitrary densities, we have to consider the self-
energy corrections to the one-, two-, and N-particle states
as well as the change of the energy spectrum of the clus-
ters via the density corrections (dynamic screening, Pauli
exclusion principle, etc.) to the N-particle Bethe-Salpeter
equations, so that the K’s become dependent on density
and temperature. We will give explicit expressions for
that in the next subsection. Higher neutral and charged
clusters are of less importance along the liquid-vapor
coexistence curve of Cs and Rb as estimated from the
respective (ideal) Saha equations.

Due to the condition of charge neutrality, the different
mass action laws are not independent from each other
and we have finally a coupled, strongly nonlinear system
of equations,

[nO]ZAS +Z“’)+=n (2,corr) 1+n(2corr)K . (11)
e eAd eA e

B. Quasiparticle shifts and partition functions

We will solve the mass action laws, Egs. (9) and (11), by
inserting appropriate expressions for the quasiparticle
shifts and the partition functions for atoms, dimers, and
molecular ions which were derived earlier. The shifts A,
can be decomposed into the Hartree-Fock (HF) and
Montroll-Ward (MW) contributions, characterizing the
self-energy of charged particle interactions in second or-
der with respect to the Coulomb potential
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V(g)=e?/(gqq?), and a polarization contribution (PP)
which is due to interactions between the charged parti-
cles and the neutral bound states,

A, =AHF ANV APP (12)

For simplicity, we have used the Padé approximations
of Ebeling and Richert®® for the charged particle self-
energy in alkali plasmas, AHF+AMY which interpolate
between the known limiting cases of nondegeneracy
(Debye-Hiickel theory), the strong-coupling limit for the
electrons (Gell-Mann and Brueckner result®'), and the
case of strongly correlated ions. Thus, these formulas
cover the whole density region from the plasma to the
liquid state in which we are interested in within an es-
timated error of about 20% (Ref. 52).

The polarization contribution AP? was calculated via
the quantum defect method for arbitrary densities for the
interaction of electrons with all alkali-metal atoms.>
The results can be given in a parametrized form as linear-
ized virial coefficients BP 4 with respect to a local polar-
ization potential V*F(R ) (see Ref. 34),

PP _
A nABCA 5

B = [dRV™(R), (13)
—2xR
prrR)= — S A XR(TUR) L
2(4meg) (R*+r3)?

The dipole polarizability a; and the cutoff radius r, were
calculated in Refs. 35 and 53. «=(Be?n?/¢y)!/? is the in-
verse screening length.

The shift of the energy spectrum of atoms, AE,, P>
due to the interaction with free quasiparticles (PP) as well
as with other atoms and clusters (vdW, HC), and can be
derived from the different in-medium corrections to the
Bethe-Salpeter equation (see Refs. 34, 35, and 53),

AER=AEL +AEY +AENS . (14)
The polarization contribution is given by
AES =n 2 BPP similar to Eq. (13). The second one

descrlbes the long-range van der Waals attraction be-
tween atoms and was calculated by means of the quan-
tum defect method again,> AE)$Y =n > B'¢W. The
last contribution is due to the short- range hard-core
repulsion between clusters. This contribution was treated
by utilizing the modified Carnahan-Starling expression
derived by Mansoori et al.* for the chemical potential of
a mixture of hard spheres, AE}§ =pfC,.

The mass action laws for the dimers and molecular
ions, Egs. (10), require expressions for the partition func-
tions K 4, and K, 4. We treat these quantities in the

2
usual way by separating the internal quantum numbers

{v,P} with respect to the translational, spin, electronic,
rotational, and vibrational degrees of freedom,

(b)

Eg(e”v’

Afasj,"“ailt a$tovid | (15)
0 VP N N N N

These different contributions are given by>®
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o’,‘,’; =pBhc /By,

-1
C()AN

Bhe

oVt =

, (16)

1—exp
el —
7%, exp(BDAN+AEAN) ,

where B Ay @ 4, and D 4, are the characteristic rotation-

al constant, the vibrational frequency, and the dissocia-
tion energy of the cluster A4, respectively. c is the speed
of light.

We have taken into account interaction corrections to
these mass action laws via the quantity AE Ay Compar-
ing the dipole polarizabilities of alkali-metal atoms and
dimers, >’ f=aA2/aA, one finds f=1.5. Applying the
London relation®® for the van der Waals constants,
C, p~ia,a3AE AEp /(AE ;,+AEyg), and considering
the respective resonance energies of the atoms and the
dissociation energies of the dimers for AE , and AEj, the
following estimates can be given for the virial coefficients
between the higher alkali-metal clusters,

B ~1.5B% ,
B, ~0.45B ) (17)
By, ~0.4BYY .

Effective hard-core radii for the dimers and molecular
ions can be derived from the known atomic and ionic ra-
dii and the equilibrium distances in these clusters.
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C. Results for the composition of Cs and Rb

The system of Egs. (9)-(11) was solved for Cs and Rb.
The nonideality corrections to the mass action laws were
treated as described above. All the parameters which are
necessary for the evaluation of the given formulas are
summarized in Table I. We have displayed the composi-
tion of Cs and Rb along their liquid-vapor coexistence
curves in Figs. 2. For a given temperature, the fractions
of the different species were calculated as a function of
density. The relevant values are those which match the
total density as measured by Jiingst, Knuth, and Hensel. *

We can clearly distinguish between three different re-
gions. The first, the low-density vapor, is a weakly ion-
ized gas with an ionization degree of less than 10% and
extends up to the critical density. It consists mainly of
atoms and dimers, the latter reaching a maximum con-
centration of about 22%. Even for the lowest densities
considered here, a considerable number of dimers was
found indicating that the limiting case of an atomic vapor
is approached for still lower densities, p =0. 1p,.

The second region, from 1 up to 2.5 times the critical
density, is characterized by partial ionization. Here all
the clusters have strongly varying concentrations which
is a result of the nonideality corrections to the mass ac-
tion laws. Dimers vanish at about 1.5 times the critical
density, whereas molecular ions occur only in the narrow
range between 1 and 2.5 times the critical density. They
reach maximum concentrations of about 38%. The ion-
ization degree is sharply rising with increasing densities
which is a result of pressure ionization (Mott effect) as
discussed above.

The third region, from 2.5 times the critical density up
to the melting point, is fully ionized and completely de-
scribed by the degenerate electron gas immersed in the
positive background of simple alkali-metal ions 4 .

TABLE 1. Parameters necessary for the calculation of the composition of Cs and Rb along the
liquid-vapor coexistence curve according to Eq. (9)-(11).

Parameter Cs Rb
ionic radius R in ag 3.16 2.78
atomic radius R 4 in ap 5.18 4.78
equilibrium distance dA 4 in ap 9.92% 8.88%
2 :
equilibrium distance d 4, in ap 9.0* 7.88%
cutoff radius r, in ap 4.478° 4.187°
polarizability aj in a3 382.4° 306.0°
E;,, of atoms in eV 4.19 3.89
E g of dimers in eV 0.49°¢ 0.40°
E s, of molecular ions in eV 0.66% 0.722
rotational constant of dimers B 4, in cm™! 0.0127° 0.0226°¢
rotational constant of mol. ions BA 4+ in cm™! 0.0092? 0.018*
vibrational frequency of dimers © 4, in cm™! 42.019° 57.75¢
34.0* 45.0%

vibrational frequency of mol. ions o, in cm™
2

2Reference 71(c).
"Reference 53.
°Reference 56.
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III. MAGNETIC SUSCEPTIBILITY
OF PARTIALLY IONIZED PLASMAS

A. Theoretical model for magnetic susceptibility

The dielectric function €(q,w) is given by the retarded
density fluctuation correlation function®**! and describes
the response of the charged particle system to the exter-
nal longitudinal field as well as the induced density fluc-
tuations. It is more convenient to relate the dielectric
function to the associated time ordered correlation func-
tion, the polarization function Il(q,w), via

e(q,0)=1—V(g)l(q,0) . (18)

Besides the self-energy 2.(k,z), also the polarization
function Il(q,w) has to be decomposed with respect to
the contributions of N-particle clusters in systems with
bound states,

(q,0)=1"q,0)+0%q,0)+ - +ITM(q,0) . (19)

We will first discuss the contributions of one-particle
states, I1'"(q,w), to the polarization function. In the
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FIG. 2. Composition of Cs (a) and Rb (b) vs density along
liquid-gas coexistence curve. Shown is the fraction of free elec-
trons (continuous line) and of electrons localized in atoms (bro-
ken line), molecular ions (short broken line), and dimers (short
dotted line). Critical points (CP’s) are indicated by arrows.
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simplest case, this part is given by the random phase ap-
proximation (RPA) which neglects correlation effects as
well as density fluctuations due to the Coulomb interac-
tion and is valid for the high-density limit, r¢ <<1. Con-
sidering only the electronic contribution, the Lindhard
expression®’ is derived,

fele (K)]—f.le.(k+q)]

Ho(q,a))=2§ fiote,(k+q)—e, (k) .

For metallic (2=<r3=5.5) and lower densities, correla-
tion effects are important especially at short distances
where they prevent the electrons from feeling the full
consequences of the induced density fluctuations. These
correlations are usually taken into account by introduc-
ing the concept of static local-field corrections G (gq),
which have been calculated for a uniform electron gas in
various approximations. For recent reviews, see Refs.
19, 27, 60, and 61. The polarization function is then
given by

HO(q)w)
1—G(q)V(g)yq,0)

n'(q,e0)= 1)

In contrast with the spin-symmetric dielectric response
to an external field coupling to the (charge) density fluc-
tuations, the response of the electron system to a magnet-
ic field is spin-antisymmetric. The magnetic susceptibili-
ty x(q,®) is therefore calculated from the spin-density
fluctuation correlation function. The treatment of corre-
lation effects analogous to the dielectric function leads to
the following expression:

. #ﬁno(q,a))
1— G (@)V(gyq,0) ’

xVg0)= (22)
where pp is the Bohr magneton. For the case of a nonin-
teracting [G,(g)=0] and degenerate electron gas, the
Pauli susceptibility follows from Eqgs. (20) and (22) in the
static and long-wavelength limit,

3uyn,
3= lim {limy%qo=0}=—=2"¢

, 23
Bu,—~+xo g—0 281;' ( )

where e is the Fermi energy and n, the free-electron
density. Band-structure effects in solid and also liquid
metals are usually described by introducing an effective
electron mass m* in Eq. (23) which leads to a modified
expression for the Pauli spin susceptibility in accordance
with the Landau theory of Fermi liquids, Yp=x%m*/m,
(see Ref. 18).

The usual Stoner model for the explanation of the
enhancement of the magnetic susceptibility in metals is
derived from Eq. (22) by taking into account exchange
and correlation effects in form of static local-field
corrections G,(q), and considering the effective mass
of the electrons, m®*. The Stoner parameter
asy=lim,_,o{ V(q)G(q)Xo(g)m™* /m,} is about 0.2-0.6
for simple metals at the melting point which yields typi-
cal enhancement factors of about 1.25-2.5. As men-
tioned above, the local-field corrections are not directly
measurable and the effective electron mass can be mea-
sured only under limited conditions. Thus, the results for
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the Stoner parameter depend on the theoretical model ap-
plied for their calculation. A summary of a large number
of theoretical results was given by Kushida, Murphy, and
Hanabusa® together with the experimental data available
for Li and Na near the melting point.

An additional quantity which can give insight into the
behavior of the q-dependent magnetic susceptibility is the
Korringa relation. Expressing the nuclear relaxation
rates 1/7T in terms of the Knight shift K one finds for
the case of noninteracting electrons,

47

1 =
#

T,

Te

Vn

2
K?kpT . (24)

Korringa

v. and y, are the gyromagnetic ratios of the electrons
and the nuclei, respectively. Utilizing the representation
of 1/T, by the integral over the imaginary part of the
susceptibility and of K by the static, uniform susceptibili-
ty, a more general relation can be derived, 172

/

which expresses the relaxation rate relative to the Kor-
ringa value for arbitrary densities. w, is the nuclear reso-
nance frequency. Within the Stoner model, this ratio be-
comes mgr=1/(2k)X kaqu g{(1—agp)/[1—alg)]}?
where the g-dependent Stoner parameter is defined by
alq)=V(q)G,(q)xo(g)m* /m,. For alkali metals at the
melting point, ngr has typical values of 0.5-0.7. The
agreement of both the enhancement factor 1/(1—agr)
and of the ratio 7g1 would be a hint for a consistent mod-
el for the susceptibility. 5

From the behavior of the real and imaginary part of
X(g,®) within the Stoner model one can conclude that 5
has to be a decreasing function when expanding the metal
along the liquid-vapor coexistence curve. Warren, Bren-
nert, and El-Hanany!” found the opposite behavior, a
strong increase up to values greater than 1, for Cs from
their measurements of the Knight shift and the nuclear
relaxation rates. This indicates once more the limited va-
lidity of the Stoner model.

The next terms in Eq. (19) describe the contributions of
N-particle bound states to the polarization function
I(q,w). RSpke and Der% derived an expression for the
dielectric function considering two-particle bound states
in addition to the free-particle states, ERD(q,w)
=1+V(g)1'"(q,0)+11'®(q,®). In the static and long-
wavelength limit, this dielectric function can be written
as

& [ dq q* Imy(q,w,)
oy 2w [Rex(0,0)]?

T,

T,

7’]5

»

Korringa

(25)

A

> +B+0(g?) . (26)

limeRP(q,0=0)=
q—0 q

The coefficient 4 stems from IT'V and is connected
with the free-particle density via the inverse screening
length «. The quantity B is derived from I1'?) and shows a
Clausius-Mosotti-like behavior via the two-particle densi-

ty 72> and their dipole polarizability a;, according to
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(2,corr)
ny’ a
A=k*B, B=1+ 4 b . 27)
1— ;Tn(AZ,corr)aD

We adopt this approach in order to include the bound
state contributions to the magnetic susceptibility.
Evaluating the respective diagrams, one finds a Curie-like
behavior for the localized spins of two-particle bound
states (atoms A) in the static and long-wavelength limit
2

. Hph 4
= lim {limy?(q,0=0)}=—"7%% . (28)

Xc mﬁ-wiqu q } kT
Generalizing this result for the higher clusters with
N =3, molecular ions 4, with one localized spin yields
a Curie-like contribution, Eq. (28), proportional to their

partial density n , +. Dimers 4, have paired spins and
2

thus no Curie-like paramagnetic contribution.

All bound states have diamagnetic contributions due to
orbital magnetization. The respective molar susceptibili-
ties are given by the expectation value {r?) of their wave
functions,

4y el

Xmol =
e 6m,c?

(rz)AN , (29)

where L is Avogadro’s number. Considering the rela-
tions between the volume susceptibility x,, the mass sus-
ceptibility x,, and the molar susceptibility ¥,

XV:ng ’ Xg :Xmol/Mmol ’ (30)

where p is the density and M, the molar mass, the total
volume susceptibility is given by

tot — A++ e Ay 4" 4, 31
Xv =Xy Xy+txv+xy: +xy° . (31

B. Explicit expressions for the contributions
to the magnetic susceptibility

Within the frame of the given model, the expanded
liquid metal consists of free electrons e and ions 4 T, of
neutral atoms A4 and dimers A4,, and of molecular ions
A, with strongly varying concentrations along the
liquid-vapor coexistence curve. All these species contrib-
ute to the magnetic susceptibility of the system so that we
need the respective density- and temperature-dependent
expressions.

1. Susceptibility of the ion cores

The first contribution in Eq. (31) is the diamagnetic
susceptibility of the alkali-metal ion cores Cs* and Rb™
which have closed electron shells. Therefore, this part is
considered to be almost constant, whether or not the ions
are free or bound in atoms, dimers, or molecular ions.
Furthermore, it is assumed to be independent of density
and temperature. Then, this contribution is simply given
by xit =pxA, /M2, . The densities p for a given tem-
perature T were taken from the data of Jiingst, Knuth,
and Hensel* for the coexistence curves of Cs and Rb.
Freyland!! and Warren, Brennert, and El-Hanany!” used
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relatively old data® for the molar susceptibilities

of Cs (—35X107% cm®mol™!) and Rb (—25X107¢
cm®mol™!). Using Hartree-Fock wave functions®® in Eq.
(29), one finds not so different values, namely
—40.6X107% cm®mol™! for Cs and —24.9%X10°°
cm?® mol ™! for Rb.

2. Free-electron susceptibility

The contribution of free electrons consists of both
paramagnetic and diamagnetic parts, Y% =yx%P* + y%di,
The paramagnetic susceptibility is given by the Stoner
model, Eq. (22). The Lindhard function, Eq. (20), was
calculated for the static case in its general form for densi-
ties and temperatures along the coexistence curve of Cs
and Rb. In this way, we accounted for the gradual tran-
sition to nondegenerate conditions and the possibility of
thermal excitations when approaching the critical point.
The frequently used high-density limit of Eq. (20) is
strictly valid only for the metal near the melting point.
We have considered the local-field corrections in the form
given by Ichimaru and Utsumi®” which are valid for
rs =15. The use of this parametrization has also lead to
improved data for the conductivity of Cs from the melt-
ing point up to twice the critical density.3® The resulting
enhancement factors and Korringa ratios for Cs and Rb
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are compared in Table II with the experimental findings
and a satisfactory agreement can be pointed out.

The diamagnetic part was calculated by Vignale,
Rasolt, and Geldart®® in the RPA. They found that the
many-particle corrections have a considerably smaller
effect on ¥%%? than on y%P*". Furthermore, the diagmag-
netic susceptibility is decreased by the interactions and
not enhanced as the paramagnetic part. The numerical
results indicate an almost linear decrease with respect to
rs. The high-density expansion of Kanazawa and Matsu-
dawa® which was often used to extract the paramagnetic
susceptibility from the measured mass susceptibility,
shows an opposite behavior and may be the source of
(small) systematic errors in the earlier curves for the spin
susceptibility as in Fig. 1.

3. Susceptibility of localized states

The unpaired electrons bound in atoms 4 and molecu-
lar ions 4," yield a paramagnetic susceptibility accord-
ing to the Curie law, Eq. (28), with the respective partial
densities instead of n,. Furthermore, they show also or-
bital magnetization with a corresponding diamagnetic
susceptibility according to Eq. (29). For the calculation
of the expectation value {r?), we need the wave functions

TABLE II. Calculated enhancement factors of the Pauli spin susceptibility and Korringa ratios for
Cs and Rb at the melting point using the local-field corrections of Ichimaru and Utsumi (Ref. 67) and
the cyclotron resonance mass given by Grimes and Kip (Ref. 83) compared to experimental data and

more detailed theoretical calculations.

Enhancement Korringa
Element factor ratio
Cs 2.336 0.412 Present calculation
1.76x0.06 Knecht,” dHvA
2.24+0.06 Knecht,® dHvA
2.44 Dupree and Seymour®
2.14+0.01 Springford, Templeton, and Coleridge,® dHvVA
2.20 Vosko, Perdew, and MacDonald,? theory (DFT)
0.578 Narath and Weaver®
0.61+0.02 El-Hanany, Brennert, and Warren,” NMR
0.590 Shaw and Warren,? theory (XC)
Rb 1.703 0.627 Present calculation
1.72440.008 Knecht,® dHvA
1.554+0.10 Dunifer, Pinkel, and Schulz,® spin waves.
1.93 Dupree and Seymour®
1.78 Vosko, Perdew, and MacDonald,® theory (DFT)
0.617 Narath and Weaver®
0.628 Shaw and Warren,® theory (XC)

?B. Knecht, J. Low Temp. Phys. 21, 619 (1975); de Haas—van Alphen effect ({HvA).
*R. Dupree and E. F. W. Seymour, Phys. Kondens. Mater 12, 97 (1970); see also R. Dupree and D. J.

W. Geldart, Solid State Commun. 9, 145 (1971).

°M. Springford, I. M. Templeton, and P. T. Coleridge, J. Low Temp. Phys. 53, 563 (1983); de Haas—van

Alphen effect (dHvA).
dReference 84; density-functional theory (DFT).

°A. Narath and H. T. Weaver, Phys. Rev. 175, 373 (1968).

fReference 16; nuclear magnetic resonance (NMR).

8R. W. Shaw, Jr., and W. W. Warren, Jr., Phys Rev. B 3, 1562 (1971); exchange-correlation (XC) poten-
tial taken from R. W. Shaw, Jr., J. Phys. C 3, 1140 (1970).
hG. L. Dunnifer, D. Pinkel, and S. Schulz, Phys. Rev. B 10, 3159 (1974).
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of the atoms, molecular ions, and also of the spin-paired
dimers dependent on density.

These wave functions are tabulated in certain approxi-
mations such as the Hartree-Fock-Roothan scheme™ for
the isolated atoms of almost all elements. Using the
quantum defect theory for the determination of (r?) ,
for the alkali-metal atoms [as earlier for the calculation of
the quasiparticle shifts AF¥, Eq. (13)] yields reasonable re-
sults compared with more detailed calculations’! with de-
viations of less than 109%. The respective values for the
valence electron contributions are for Cs —25X107°
cm®mol ! and for Rb —22X 107 ¢ cm®mol .

Considerable less information is available for the mag-
netic susceptibilities of isolated molecular ions 4, and
dimers A4, (see Ref. 72). Though powerful methods such
as the molecular orbital method or ingenious variational
schemes have been developed for the construction of
their wave functions, most of the results refer to the
molecular ion and the molecule of hydrogen, to those of
the lighter elements such as Li and Na, and to some sim-
ple molecules like NH; and CH,. If there are experimen-
tal data from molecular beam studies available, typical
deviations from the calculated values are less than 10%.

Aside from the fact that there are to our knowledge no
data for the diamagnetic susceptibilities of the molecular
ions and dimers of Rb and Cs up to now, those data
would apply only for the dilute vapor, but not for the
dense vapor near the critical point where these clusters
reach higher concentrations. There, the wave functions
have to be solutions of respective N-particle Bethe-
Salpeter equations which take into account density
effects. Noting the complexity of calculating atomic wave
functions and energy levels’® even for the case of N =2,
and the extensive numerical calculations necessary for
the determination of the electronic structure of isolated
higher clusters, a solution seems to be out of reach.

Therefore, we make a simple estimate for these contri-
butions neglecting their density dependence. The wave
function of the valence electron in the molecular ion 4, "
is constructed within a variational method utilizing the
atomic wave functions already known from the quantum
defect theory. This method will lead to smaller binding
energies and to larger equilibrium distances compared
with more detailed theories as we know from the study of
the hydrogen molecular ion.” The resulting diamagnetic
susceptibilities according to Eq. (29) should therefore be
upper limits. The values for Cs,* and Rb," are
—47X107% cm®>mol ™! and —38.5X107% cm®* mol ™}, re-
spectively.

We adopted these values also for the diamagnetic sus-
ceptibilities of the neutral dimers. Though there is orbit-
al magnetization by two valence electrons compared to
one in molecular ions, these are more strongly bonded
and also the equilibrium distance is shorter in dimers.
The two effects tend to compensate.

The total diamagnetic susceptibility of the dimers, the
sum of the valence electron and the ionic core contribu-
tions, amounts to about — 128X 107% cm®mol~! for Cs,
and —88X107° cm®mol™! for Rb, within the given
model. These values seem to be reasonable in comparison,
for instance, with that of the I, molecule, —90X 107
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cm®mol .75 Applying the current estimate to Li,, a

value of —23X 107% cm®mol ™! is obtained which is also
in reasonable agreement with that of —33X1076
cm?®mol ™! given in Ref. 76.

A further mechanism which might contribute to the
total susceptibility of molecules is Van Vleck paramagne-
tism’’ which is due to virtual transitions to excited states
similar to the electric polarizability. Considering the
rough approximations made for the determination of the
diamagnetic contributions and the relatively small Van
Vleck susceptibility of H, (less than 5% of the diamag-
netic susceptibility’®), we neglect these processes. How-
ever, the latter argument has to be checked when the ma-
trix elements for these transitions are available for Cs,
and Rb, dimers, because the respective transition ener-
gies are much smaller than in H.

Ross et al.”® have recently performed total energy cal-
culations for expanded solid Cs in the local density ap-
proximation and found that the diatomic form is more
stable than the monoatomic form. Furthermore, energeti-
cally attractive low-lying electron excited states were pre-
dicted for Cs,-Cs, tetramers from a molecular-orbital
configuration interaction calculation. These states would
be thermally populated in the expanded metal region and
might contribute to the paramagnetic susceptibility
dependent on their symmetry.

The stability of an electron gas to formation of bound
states around a pair of ions was tested earlier by Ferraz,
March, and Flores® considering Thomas-Fermi screen-
ing between the charges within the Heitler-London
method for H,. They argued that this mechanism may be
responsible for the metal-nonmetal transition in dense H
and gave also reasonable estimates for the corresponding
critical rg values for the alkali-metal elements by a scal-
ing procedure.

IV. RESULTS FOR THE MAGNETIC PROPERTIES

We calculate the magnetic properties along the liquid-
vapor coexistence curve with the data for the composi-
tion of Cs and Rb obtained in Sec. II. We will compare
with values for the mass susceptibility x, originally mea-
sured by Freyland.!"'? Extracting the electronic,
paramagnetic volume susceptibility x5 as shown in Fig.
1, the peculiarities of the magnetic properties are dis-
cussed with regard to the metal-nonmetal transition.

A. Magnetic susceptibility

The calculated magnetic mass and volume susceptibili-
ties along the coexistence curves of Cs and Rb are shown
in Figs. 3 and 4, respectively. Within the present ap-
proach, we are able to reproduce the experimental
behavior for the mass susceptibility y, over the whole
density range from the low-density, nonmetallic vapor up
to the high-density metal at the melting point. The devia-
tions from Freyland’s data do not exceed 25% for densi-
ties up to twice the critical density which is a reasonable
result considering (a) the approximations made for the
solution of the EOS and the calculation of the respective
quasiparticle shifts and partition functions, (b) the uncer-
tainties in determining some of the density dependent
contributions to the total susceptibility, and (c) the error
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bars for the experimental values, especially in the vapor,
and the absence of experimental results for the region
near the critical point.

For densities between two and three times the critical
density, where the mass susceptibility is decreasing, our
values are systematically too small. This indicates that
the chemical picture of individual species as applied here
becomes more and more invalid with increasing density.
The behavior of the mass susceptibility in that region can
also not be derived from the one-electron theories
developed for solid state densities. An extended cluster
model which considers large and fluctuating clusters in
addition to the present model seems to be more appropri-
ate for this region. The corresponding results for the
magnetic properties of small metallic clusters in Li, Na,
and K available so far®® indicate stable localized spins
in the 4, and A, clusters.

Approaching the melting point, the enhancement of
the susceptibility is described by the conventional Stoner
model for the electron gas in metals (see Table II). Con-
sidering the cyclotron resonance mass as given by Grimes
and Kip® for the effective electron mass together with
the local-field corrections of Ichimaru and Utsumi,®’ the
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FIG. 3. Total magnetic mass (a) and electronic, paramagnetic
volume susceptibility (b) of Cs along the liquid-gas coexistence
curve. Continuous line: experimental values of Ref. 11 (solid
squares). Short broken line: present calculation. Short dotted
line: Curie law for one electron per atom. Critical point (CP) in-
dicated by arrow. Taking into account the effective mass m * of
Ref. 83 at the melting point yields values indicated by arrows
which are in reasonable agreement with the measured suscepti-
bilities (see Table II).
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arrows in Figs. 3 and 4 show good agreement with the ex-
perimental values for the mass and volume susceptibility.
However, such an agreement is not unique and has also
been achieved with other combinations of these parame-
ters (see Ref. 60). The density-functional formalism
developed by Vosko and co-workers®* yields the best
enhancement factors at the melting point for all alkali
metals compared to the experimental values.

Furthermore, we have displayed the electronic
paramagnetic susceptibility per volume y%P*. We com-
pare with the previous results which were extracted from
the experimental data by subtracting the diamagnetic
contributions of the simple ions and the conduction elec-
trons (see Fig. 1). The Curie law for one electron per
atom is considered to yield an upper limit for the
paramagnetic susceptibility.

The experimentally observed deviations from the Curie
law at vapor densities are clearly a result of the formation
of spin-paired dimers in that region as already pointed
out by Freyland.!"!? He extracted dimer fractions for Cs
and Rb by applying simple mass action laws to his data
without considering nonideality corrections similar to
our values in the dilute vapor. Hohl* has given recently
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FIG. 4. Total magnetic mass (a) and electronic, paramagnetic
volume susceptibility (b) of Rb along liquid-gas coexistence
curve. Continuous line: experimental values of Ref. 12 (solid
squares). Short broken line: present calculation. Short dotted
line: Curie law for one electron per atom. Critical point (CP)
indicated by arrow. Taking into account the effective mass m *
of Ref. 83 at the melting point yields values indicted by arrows
which are in reasonable agreement with the measured suscepti-
bilities (see Table II).
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analogous estimates for Cs, Rb, and K based on new ex-
perimental data for the EOS.*> The deformation of the
Curie curve can thus serve as a measure for the amount
of spin-paired species in the system.

The enhancement of the electronic paramagnetic sus-
ceptibility at about twice the critical density can be ex-
plained in our model by the formation of molecular ions
A, " which give a Curie-like contribution due to their lo-
calized electrons. This peak in the susceptibility-density
plot for Cs was interpreted by Chapman and March® as
the limitation of enhanced Pauli paramagnetism and a
consequent crossover to a Curie-like regime. They treat-
ed a correlation-induced metal-nonmetal transition in ex-
panded fluid alkali metals phenomenologically by a finite
temperature extension of the theory of Brinkman and
Rice.?! At this special point, p~0.8 gcm ™ ? and
T=1780 K, they found a ratio kzT/E~0.18 from the
renormalization of the electron degeneracy temperature
due to the effects of correlation. Taking the fraction of
free electrons from our composition data [see Fig. 2(a)]
we find a very similar value of 0.25. As the molecular ions
vanish with increasing density, a susceptibility minimum
occurs at about three times the critical density.

The results for the paramagnetic susceptibility between
two and three times the critical density may change when
higher clusters are taken into account as proposed above
for the improvement of the data for the mass susceptibili-
ty. Although chemically stable higher clusters such as
Aj or A3" are of less importance within our model, fluc-
tuating charged and neutral clusters may develop in that
region at elevated temperatures. A phenomenological
model for those fluctuating clusters was utilized by
Likalter?” in order to explain the behavior of the electri-
cal conductivity in the region of the metal-nonmetal tran-
sition.

The decrease of the electronic paramagnetic suscepti-
bility in the liquid metal range from the melting point
down to three times the critical density seems to be a
consequence of a reduced effective electron mass. This as-
sumption is supported by the one-electron band structure
calculations mentioned earlier,?"??> where a reduced den-
sity of states at the Fermi level was found for various
crystal structures simulating the decreasing coordination
number during the expansion of the liquid.

B. Korringa relation

Though the consideration of bound states leads to a
reasonable overall agreement between the calculated and
measured susceptibilities, the experimentally observed
behavior of the Korringa ratio % cannot be explained
within our model.

For the normal liquid metal domain, the Korringa ra-
tio mgr is recovered from the one-particle contribution
x'V to the total susceptibility and a reasonable agreement
with the experimental value can be pointed out (see Table
II).

In the expanded metal domain, a decrease is obtained
for the Korringa ratio from the Stoner model which is in
contrast to the experimental findings.!” This failure is

not removed by the two-particle contribution y'?. In
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fact the decrease becomes more pronounced. Because the
scaling of the nuclear relaxation rate with the Knight
shift as expressed by the Korringa relation does not apply
for localized spins, this result is not surprising.

We conclude that the current approximations for the
polarization function are not sufficient for the explana-
tion of the behavior of the Korringa ratio in the expand-
ed metal. Warren, Brennert, and El-Harany!” have
developed a semiquantitative description of the Korringa
ratio behavior in terms of enhancement of the dynamic,
nonuniform susceptibility. From this point of view, the
observed increase in the Korringa ratio at low density is
seen to reflect a change in the character of electron spin
fluctuations from ferromagnetic enhancement in the nor-
mal metal to antiferromagnetic enhancement in the ex-
panded metal. In terms of the present description, the
development of antiferromagnetic spin fluctuation char-
acter corresponds to formation of Cs, dimers and other
spin-paired clusters. A similar phenomena in low-
dimensional solids is the well-known Peierls distortion.
The physics may be the same in both cases, i.e., a lower-
ing of the electronic energy by formation of the spin-
paired bound state which more than compensates an in-
crease in the ion-ion repulsion (elastic energy in the
solid).

C. Charge density at the nucleus

The charge density at the nucleus, {|¥(0)|?)y, aver-
aged at the Fermi level, can be extracted from the NMR
and susceptibility measurements. Comparing the Cs re-
sults with the atomic value of |W¥(0)|2=2.58X%10%
cm 3,3 Warren, Brennert, and El-Hanany'” found a ra-
tio of £~ for the normal liquid metal at high densities.
Below three times the critical density, the ratio is de-
creasing markedly while, after reaching a minimum value
of about 0.28 at twice the critical density, it starts to in-
crease. The value 1 has to be approached in the low-
density vapor. They have pointed out that this behavior
cannot be due to spin pairing in dimers because these par-
ticles do not contribute to the paramagnetic susceptibili-
ty.

ESR studies of neutral Li, Na, and K clusters®® have
shown a diminishing s character with increasing cluster
size. The ratio £ decreases monotonically from the atom-
ic value 1 towards the respective value in bulk metal and
shows no sign of a minimum behavior. The band struc-
ture calculations for the expanded liquid?"?? also yield a
simple monotonic increase towards the atomic value and
fail to account a decrease of this quantity.

A displacement of charge density away from the ion
cores does occur in molecular ions in the expanded metal.
The charge density in H2+, for instance, reaches about
40% of the value in atomic H. Using the same wave
functions as for the determination of the diamagnetic sus-
ceptibilities, the respective values are 47% for Cs,” and
46% for Rb,™ which yield a strong decrease of the ratio
&, but not the minimum for £~0.25 as found experimen-
tally. A further drastic decrease would appear if excited
electronic states of charged and neutral clusters reach
considerable concentrations, and if fluctuating clusters
develop at elevated temperatures.
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V. CONCLUSIONS

We have calculated the magnetic mass and volume sus-
ceptibility along the coexistence curves of Cs and Rb and
were able to explain the experimental behavior of the
mass susceptibility x, over the whole density range from
the low-density, nonmetallic vapor up to the high-density
metal at the melting point.

The composition of Cs and Rb was determined by
means of a quantum statistical EOS originally derived for
partially ionized plasmas which takes into account the in-
teraction corrections between the various species in a sys-
tematic way. An approximate self-consistent solution for
the system of coupled mass action laws describes the for-
mation of atoms A, dimers A,, and molecular ions 4, %
out of the elementary particles electrons e and simple
jons 4 7.

The paramagnetic and diamagnetic contributions of
these species to the total susceptibility are, in general,
density and temperature dependent. We have used stan-
dard results for these quantities. The paramagnetic (Pau-
1i) susceptibility of free electrons was calculated on an ex-
tended RPA level utilizing the local-field corrections of
Ichimaru and Utsumi.® Taking into account the effective
electron mass,?? the conventional Stoner model for the
enhancement of the susceptibility in the normal metal is
recovered. Reasonable agreement is achieved for the
enhancement parameter as well as for the Korringa ratio
of Cs and Rb at the melting point (see Table II).

For the diamagnetic (Landau) susceptibility of free
electrons we have inserted the numerical RPA results of
Vignale, Rasolt, and Geldart. %8 The earlier results of
Kanazawa and Matsudawa® which were frequently used
to extract the paramagnetic part out of the total suscepti-
bility are valid only in the high density limit r4—0 and
give rise for (small) systematic errors for metal or expand-
ed liquid densities.

Localized spins in bound states yield both paramagnet-
ic and diamagnetic contributions to the total susceptibili-
ty. Atoms A and molecular ions 4, with one unpaired
spin have strong Curie-like contributions, whereas spin-
paired dimers can only have a Van Vleck-type
paramagnetism. The latter was neglected in this paper.
The diamagnetic (Langevin) terms were calculated by
means of the respective wave functions [see Eq. (29)]. We
have made simple approximations when rigorous results
were not available, especially for the higher clusters 4,
and 4,", which lead to upper limits for these diamagnet-
ic terms.

The deviations of the paramagnetic susceptibility from
the Curie law at vapor densities are clearly due to the for-
mation of spin-paired dimers A4,, as pointed out already
by Freyland'!''? in his experimental papers, and recently
by Hohl.® The maximum of the paramagnetic suscepti-
bility at about two times the critical density is explainable
in our model by the drastic increase of the fraction of
molecular ions 4,". Both features support the applica-
bility of the concept of cluster formation for the alkali-
metal elements when increasing the density from the va-
por to the expanded liquid domain. This model has al-
ready lead earlier to reasonable results for the thermo-
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34,35 36,37

dynamic and transport properties of alkali-metal
plasmas and liquids (see also Refs. 39 and 40).

A modified cluster model which considers large and
fluctuating clusters in addition to the present model
seems to be more appropriate for the region between two
and three times the critical density, where our values are
too small systematically. This seems to be an ideal sub-
ject for the concepts of cluster physics which are con-
sidered to bridge the gap between the molecular domain
with its well defined individual properties and the con-
densed matter domain where the collective behavior
dominates the physical properties.

The metal-nonmetal transition occurs in that domain
where neutral and charged clusters, and eventually also
higher fluctuating clusters, are formed. Such a picture
coincides with the recent reverse Monte Carlo calculation
of Nield, Howe, and McGreevy9° who treated the metal-
nonmetal transition as a bond percolation problem. They
found that some finite atomic clusters are present close to
the critical point as well as weak links within infinite clus-
ters.

These ideas are strongly supported by the recent re-
sults of Ross et al.” for the metal-nonmetal transition in
Cs. The formation of excited neutral clusters at elevated
temperatures in the dense vapor is very likely to occur as
one can conclude from their total energy calculations for
the Cs,-Cs, cluster. The respective extra paramagnetic
contributions of the excited states and the Van Vleck
term of the ground state would diminish the present di-
amagnetic deviations from the experimental susceptibili-
ties in the vapor and the expanded liquid.

Furthermore, the consideration of excited states of
higher chemically stable clusters or fluctuating clusters
would also lead to a drastic decrease of the charge densi-
ty at the nucleus in this density region as it was experi-
mentally deduced from NMR measurements.'®!” The
corresponding excitation mechanisms should be reflected
in the imaginary part of x(q,®) so that the simultaneous
increase of the Korringa ratio may be derived. Neither
feature is explainable by considering only the ground
states of the smallest clusters as in our present model.

The consideration of electron correlations beyond the
RPA level is found to be essential. The aspects of disor-
der which were not considered here have to be treated on
the same footing.
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