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The self-consistent cluster-embedding method is discussed theoretically. A definition of the total ener-

gy for an embedded cluster has been introduced. The method has two advantages. (i) It can describe
both localized and band properties, including their excitations. (ii) It can give a good description of the
magnetic properties for both spin-ordered and spin-disordered states. The electronic structure of NiO is
studied using a high-quality basis set to calculate the electronic structure of a small embedded cluster
and an antiferromagnetic insulating ground state is obtained. The picture has both localized and band
properties. A small energy gap separates the unoccupied and occupied nickel 3d orbitals which are well
localized. Each 3d orbital is attached to a particular nickel ion. Below the 3d levels are two diffuse oxy-
gen 2p bands, and above the 3d levels are oxygen 3s, nickel 4s, and oxygen 3p bands. Experimental data
concerning photoemission and optical absorption can be interpreted naturally. The spin magnetic mo-
ment of the nickel ion is calculated correctly. The simulation of the spin-disordered state shows that
NiO remains as an insulator in the paramagnetic state. The Neel temperature of NiO is calculated
directly to give a reasonable result. The Hubbard U parameter for nickel 3d electrons is estimated. The
calculation shows that the excited nickel 3d electrons are also well localized and the overlaps are less
than 4.5%. We propose the following: The overlap of the excited 3d electrons is too small to form a me-
tallic band, but the overlap is sufhcient for the "hole" to migrate through the crystal. In this sense, NiO
is a charge-transfer insulator with a gap of about 4 eV (mostly from oxygen to nickel). The calculated
small energy gap (about 0.5 eV) provides the activation energy of NiO which is supported by the experi-
mental results.

I. INTRODUCTION

A cluster model has been used to study localized physi-
cal phenomena in ionic solids. A major problem in this
approach is how to simulate the effect of the crysta1 envi-
ronment on a cluster so the cluster can represent a por-
tion of a solid. This is referred to as "embedding. " A
procedure in which the cluster is surrounded by many
point charges has been used in cluster calculations by
many authors. ' Its explicit purpose is to keep the total
system electrically neutral and to reproduce the ionic
crystal field. However, the potential produced by the
point charge array is not accurate except where the point
charge is far away from the cluster. Use of point charges
for embedding forces one to restrict the basis used in the
calculation: A diffuse basis set may make the electrons
localize on the point charges which leaves the results to-
tally meaningless. However, if diffuse functions are not
employed, the calculated unoccupied orbitals are usually
not correct and sometimes the valence electron orbitals
are effected because of the lack of diffuse basis.

A self-consistent embedded-cluster model has been
proposed by Ellis, Benesh, and Byrom. In this model,
the crystal charge density is constructed by extending the
cluster charge density periodically. The "collapse disas-
ter" is prevented by truncating the deep core potentials
(which surround the cluster) to a constant, thus introduc-
ing one empirical parameter. This model has been used
to study the electronic structure and the magnetic prop-
erties of a variety of metallic, semiconducting, and insu-
lating materials. The method presented here is the

same as that of Ellis except for some technical details. In
this paper, we give the method a theoretical discussion
from the viewpoint of total energy. It is found that al-

though there is an empirical parameter, this self-
consistent cluster-embedding method is accurate if some
conditions are satisfied. A definition of the total energy
for the embedded cluster is introduced, which makes this
method useful in studying the magnetic properties, espe-
cially the spin-disordered state. The main restriction of
this method is that the electron hybridization is limited
to the cluster atoms. So the calculated eigenvalues are
discrete. Inglesfield's embedding approach' has no such
drawback, but it requires knowing the Green function of
crystal in advance.

For the past 50 years, the insulating nature of the
transition-metal monoxides has been a continuing prob-
lem for the condensed-matter physics community. NiO
has been extensively studied previously. Early investiga-
tions of the properties of NiO are summarized in a review

by Adler and Feinleib. "Various theoretical calculations
have been performed. Controversy still exists. The
essential question is what model furnishes a reasonable
starting point for describing the properties of NiO.
Spin-polarized energy-band calculations have given some
correct answers for the ground-state properties of
NiO. ' ' But it failed to give a correct magnetic mo-

ment of a nickel ion. Besides, the predicted energy gap is

too small. Mott, Hubbard, and Anderson have argued
that the one-electron approximation breaks down for
these transition-metal monoxides because of strongly
correlated 3d electrons. ' ' Mott illustrated that the
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simple band picture breaks down and a gap opens when
the Coulomb interaction parameter is larger than the
bandwidth. ' A systematic description of the Mott insu-
lators has been given by Brandow. ' Recently, Fujimori
and Minaniza, 2& and Sawatzky and Allen have given
another picture of NiO: The empty upper Hubbard 3d
band and the filled lower Hubbard 3d band separated by
the Coulomb energy U. The oxygen band resides in be-
tween these two 3d bands and forms a charge-transfer
gap with the upper 3d band.

NiO is believed to have both localized and band prop-
erties. It is an antiferromagnet. An accurately embed-
ded cluster calculation in which a high-quality basis set is
employed has two advantages. (i) This method can de-
scribe both localized and band properties, including their
excitations. (ii) This method can give a good description
of the magnetic properties for both spin-ordered and
spin-disordered state. Here, we use a high-quality basis
set for a four-atom embedded cluster to calculate the
electronic structure of NiO. The results show a success:
the dual properties and the magnetic properties of NiO
are well described. Based on the results, we proposed a
new explanation to the insulating nature of NiO.

This paper is organized in the following way. Section
II gives a theoretical model. The basic formulas are de-
rived for the self-consistent cluster-embedding method.
Section III gives a computational procedure. Section IV
gives calculated results for a two-atom Ni-0 cluster. Sec-
tion V gives calculated results of a four-atom NizOz clus-
ter and its comparison with the experimental data.

E„,[p]= f p(r)e„,(p"~(r),p '""(r))dr, (2.2)

where the function e„ is taken from the exchange-
correlation energy density of a uniform interacting elec-
tron system. T[p] and p(r) have the following forms:

p(r)=p""(r)+p '""(r)=g g I@i(r)l',
occupied I

(2.3)

&[p]=g g f %i*(r)(—7 )N&(r)dr .
o. occupied I

(2.4)

At the present time, we do not include relativistic e6'ects.
By varying the ground-state energy with respect to
Nk'(r) under the conservation rule, 5fp(r)dr=0, the
Kohn-Sham equations are obtained:

—V'+2f, dr' —2 g + V„,(r) '@„(r)
M Z.

fr —r'f, , r —R,

=A,krak(r), (2.5)

where the exchange-correlation potential V„,(r) is

Atomic units are used throughout this paper (e =2,
R=1, 2m, = 1). The local spin-density approximation
means

II. THEORETICAL MODEL V„;(r)= . (p(r)e„, ) .a

Bp (r)
(2.6)

I

EG[p)=T[p)+E„,[p]+ff, drdr'

p(r)Z; m Z;Z

,
~ f fr R

f

~ fR, —R
f

(2.1)

In this section a theoretical discussion of the self-
consistent cluster-embedding method is given. The cen-
tral problem is how to distinguish the cluster electrons
from the background electrons without changing the to-
tal energy of the system.

The ground-state energy functional of N interacting
electrons and M nuclei can be written in the form

A. Full potential embedding

We separate the N electrons into N, electrons and Nz
electrons, and the M nuclei into M& nuclei and M2 nu-
clei, where N

&
and M, refer to the cluster and N2 and Mz

to the background. Since all exchange-correlation energy
is expressed explicitly in E„,[p], the distinguishing of
electrons should not change the total energy. If p, (r) is
the charge density of X, electrons, and p2(r) is the charge
density of Nz electrons, the total ground-state energy
(2.1) can be rewritten as

[p~(r)+p2(r) ][p~(r')+p~(r') ]
EG[pi+p2)=&[pi]+7[p2]+ f f dr dr'

M [p,(r)+p2(r)]Z; M Z, Z
f.-R f

"+&
fR -R

fi=1 J
(2.7)

Suppose we already know the charge density pz(r). Apply (2.3) and (2.4) to p, and T[p, ). By varying EG[p, +p2] with
respect to Pk*(r) under the conservation rule 5fp&(r)dr=0, we get the new Kohn-Sham equation:

p, (r')+p~(r') ~ Z;—V' +2f, dr' —2 g + V„,(r) .Pk(r)=Xi, Pk(r) .
i=1 i

(2.8)

Equation (2.8) can be solved only if the surrounding charge density pz(r) is already known. In the crystal, p2(r) can be
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obtained by using the periodicity. If we choose the primary cell of the crystal as our cluster, p, (r) as its charge density,
then

p~(r) = g p, (r—R ),
a@0

(2.9)

where Ro=o is the origin of the cluster. The summation is over all surrounding cells.
The total ground-state energy EG is proportional to the number of cells. We need a formula to represent the energy

of a cell. This formula should satisfy two requirements: For an arbitrary system which contains k cells, if the energy of
each cell is represented by the formula, then (i) the total ground-state energy is equal to the sum of the energy of each
cell; (ii) for a crystal, if k goes to infinity, the energies of all cells converge to a same value of EG Ik. For a system con-
taining two electrons, each electron has half of the total interaction energy. Using this idea and separating E„,[p, +p~]
into

E..l pi+p2]= f X(pi+pP&..((pi+p. )"' (pi+p. )""")«

= f Xpi~..(p"' p"""}«+f XÃ~, (p"' p""")«

i[Pi Pz]+E. 2[Pl P2]

we get

EG [X,M] =Ei [N„M, ]+E2[%2,M2 ],
where

p, (r)pi(r') p, (r)pz(r') ~ p, (r)Z;
E,[~i,M, ]=T[p,]+E...[p„p,]+f

I

—'I
r r+

i=1
(2.10)

Ez has the same form as E
&

except for exchange of p, and

p2. Fixed nuclei were assumed and the Coulomb interac-
tion energy between the nuclei was removed (for a fixed
lattice, this is a constant). The definition (2.10) has no
e6'ect on the calculation. But the accurate representation
of the energy of the embedded cluster makes this method
useful in the study of magnetic structure.

B. Orthogonality constraint

Unfortunately, formulas (2.8) and (2.9) cannot give
correct results. The electrons of the cluster atoms col-
lapse into the core region of surrounding atoms, making
the result totally meaningless. In Eq. (2.8), all potentials
produced by surrounding M2 atoms are exactly the same
as in Eq. (2.5), so why do Eqs. (2.8) and (2.5) give
different results? Actually, Eqs. (2.8) and (2.9) together
are not equivalent to the original Kohn-Sham equation
(2.5). Using Eq. (2.5), the electron wave functions of all

M atoms will orthogonalize with each other. But using
Eqs. (2.8) and (2.9), only the electron wave functions of
Mi atoms in the cluster will orthogonalize with each oth-
er. No electron wave functions of surrounding atoms ap-
pear in Eq. (2.8). The separation of the cluster electrons

I

pi(r) lr in core i =0
~ (2.11)

where j= 1,2, .. . ,M2, indicating the core regions of all
surrounding atoms. Suppose there is a potential V„:

from the background electrons and the absence of the
"orthogonality constraint" to the surrounding Mz atoms

caused the collapse. To our knowledge, there is no ana-

lytic theory of the "orthogonality. " We need to find a
way to simulate the property of the orthogonality at least
in the atomic core region. In the core region of an atom,
all electron orbitals are filled, the core is "hard, " which

means it is difficult for additional electrons to get into the
"hard core."

Instead of the wave function used in pseudopotential
arguments, we try to discuss this problem from the
viewpoint of the total energy. Here we introduce our
basic assumption: "The possibility of an electron of clus-
ter atoms getting into the hard core of surrounding atoms
is almost zero. "First, a new equation is derived from this
assumption. Then we discuss the physical meaning of the
assumption.

If p, (r) is the charge density of the cluster, then the as-

sumption can be expressed mathematically as

M~

2 g(Z, /~r —R. i) if r is in the core of surrounding atoms,
J

0 otherwise .
(2.12)
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Combining (2.11) and (2.12), we get

p, (r) V„(r)=0 (2.13)

in whole space. So we can add a term J V„(r)p,(r)dr
into the right side of Eq. (2.7) without changing the total
ground-state energy FG. If we write Eq. (2.8) as

H 4k(r)=~k4k(r) (2.14)

by using same variation method, we finally get a new
equation:

tH + V-J)4k(r) =~k0k(r) . (2.15)
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FIG. 1. Cluster area and the surrounding atomic cores.

The question is, does Eq. (2.15) imply Eq. (2.11), i.e., is
our basic assumption self-consistent? Actually, the po-
tential V„cancels the nuclear Coulomb potential in the
core regions of all surrounding atoms (not including clus-
ter atoms). Cluster electrons will only feel an electron-
electron positive Coulomb potential in these areas and be
forced out. The results of our calculation show, for a
cluster with 36 electrons, that only a total of 0.0006 elec-
trons remains in all core regions of the surrounding 116
atoms. So Eqs. (2.11) and (2.13) are satisfied very accu-
rately, which means the ground-state energy EG can still
be calculated by Eq. (2.7) and V„has no contribution to
the ground-state energy. We call V„ the "orthogonality
constraint. " Equations (2.15) and (2.9) are the basic for-
mulas of our calculation.

We have proved that if our basic assumption is correct,
Eq. (2.15) will give a correct charge density and V„will
have no contribution to the ground-state energy. Now
the key point is, is our basic assumption reasonable'? Fig-
ure 1 can help us to explain the situation more clearly.
Apparently, the potentials (nucleus-electron Coulomb po-
tential, electron-electron Coulomb potential, and the
exchange-correlation potential) produced by both cluster
atoms and surrounding atoms in the whole blank area of
Fig. 1 are exact. The orthogonality constraint prevents
the cluster electrons from getting into the dashed area
which represents the cores of the surrounding atoms. We
believe this is a good approximation to the real solid. A
simple argument is as follows. For a real solid, one addi-

tional electron that gets into a filled core means that one
original electron gets out of the core. The indistinguisha-
bility of electrons makes the core unchanged, i.e., the
core is "hard. " But in the cluster-embedding calculation,
p, is distinguished from p2. The only way for the hard
core to remain unchanged is to prevent p, from getting
into it.

One important conclusion can be obtained from the
above discussion: whatever the core radius is, the formu-
la (2.7) for the total ground-state energy remains valid
provided that the condition (2.11) is satisfied. The only
effect of increasing the core radius is that p, is pushed
further away from the surrounding nuclei. Compared
with the total volume, the change of core volume caused
by a reasonable change of core radius is very small. This
explains why the calculated results are not sensitive to
the core radius if the system is not in a "collapsed" state.
In this sense, the self-consistent embedded-cluster
method is accurate if the condition (2.11) is satisfied. In
the next section, we will see, by using two simple rules,
that the core radius can be actually well determined.

Apparently, the choice of V„ is not unique. We
choose definition (2.12), so the force which pushes the p,
out of core comes from the core charge density pz. Con-
sequently, the p& which is near the core is effected by the
core charge density p2. Our choice is similar to that used
by Ellis. ' They treat this problem by truncating the
deep core potentials (which surround the cluster) at an
energy VF to a constant. Usually Vz=Ez, the Fermi en-

ergy. It is found that the change of VF over a reasonable
range has very little effect on calculated properties. '

The embedding approach is actually a kind of electron
charge renormalization. It separates the cluster electrons
from the background electrons under the condition that
the total energy of the system is unchanged. It also
preserves the localized and spread properties of the
charge distribution in the cluster. The main restriction of
this method is that the calculated eigenvalues are discrete
because the number of atoms in a cluster is finite.

In conclusion, the following points have been em-
phasized: In the whole blank area of Fig. 1, the poten-
tials are exact. The orthogonality constraint V„keeps
the p& out of the dashed area. V„ itself has no contribu-
tion to the ground-state energy. We believe such a
charge density p, is a good approximation to the real
solid.

III. COMPUTATIONAL PROCEDURE

A general program package for the embedded-cluster
system has been developed by the present author based
on the general free-cluster program package developed by
Chen. The local-spin-density-approximation Kohn-
Sham equation (2.15) is solved self-consistently. Begin-
ning with the trial charge density p& of free atoms, the
charge density p2 of the surrounding atoms is obtained by
using Eq. (2.9). Then the trial Hamiltonian H and V„
are attained. After solving Eq. (2.15), the eigenfunctions
pk(r) are used to build the new charge densities p, and

p2, and the next iteration begins. We discuss several
points in detail.
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A. Cluster

From Eq. (2.15), it is apparent that the eigenvalues are
determined by the total potential IH + V„I. Unlike the
free cluster, the point symmetry of an embedded cluster
is of much less importance to the eigenvalues because the
surrounding atoms can provide almost the same poten-
tials as the cluster atoms. This will be discussed further
in Sec. VA. In order to avoid the approximate density
decomposition (according to Mulliken populations) and
to keep crystal stoichiometry, clusters like Ni„O„are
chosen. Since disk-storage space is limited, there are two
choices: Use a small basis set to calculate a relatively
large cluster, or use a high-quality basis set to calculate a
small cluster. In this paper, we prefer the latter since a
high-quality basis set is crucial to investigating both lo-
calized and extended properties of NiO and to getting re-
liable excited states. NiO is an antiferromagnet. Because
of the superexchange effect, we should calculate at least a
four-atom embedded cluster which is actually the max-
imum size our computer can afford. A two-step method
is used because of the lack of disk-storage space. In the
first step, a two-atom Ni-0 embedded cluster is calculat-
ed with the self-consistent determination of the surround-
ing charge density. The purpose of this step is to obtain
the charge density p&, and to study the direct exchange-
correlation effect. In the second step, a four-atom Ni202
embedded cluster is calculated with fixed surrounding
charge density p2. Initially, p2 is built from p& of the first
step. Then p2 is built from p& of the new result of the
four-atom Ni202 cluster again and again. Self-
consistency is reached roughly in this repetitive way. A11

properties of solid NiO are obtained from this step.

atoms. Because all inner orbitals are filled, the core re-
gion has a spherical shape. In the core regions, we multi-
ply V„by a function f which is almost a step function
(see Fig. 2). The only purpose of f is to keep the con-
tinuity of the potential at the point ro. The cutoff radius
ro is adjusted according to two simple rules: (i) avoid nu-
merical instability; (ii) keep total energy minimum. In
practice, adjusting ro is simple. When ro is too small,
"collapse" occurs, the total energy becomes much lower,
and there are many negative Mulliken population num-
bers which show instability. Increasing ro will increase
the total energy (p, is pushed away from the surrounding
nuclei) and decrease the number of negative Mulliken
populations. When all orbitals have physically meaning-
ful Mulliken populations, the adjusting is finished so the
total energy is at a minimum. We call this value of ro an
optimum value which gives the best quality of the poten-
tial produced by the surrounding atoms. There is still
some empirical character to the optimum choice of ro.
Our experience shows that when ro is a little larger or
smaller than the optimum value, the order of energy lev-
els remains the same. There are some small shifts of or-
bital energies, mostly in the same direction. This actually
does not change the general picture.

D. Two fitting procedures

In order to avoid the calculations of enormous num-
bers of four-center, two-electron integrals, two fitting
procedures have been used. One is the charge-density
fitting:

(3.1)

B. Basis

The linear combination of Gaussian orbitals (LCGO)
are used as the basis function. Table I gives our basis set,
which was originally provided by Wachters and van
Duijneveldt. The nickel 3d bases were reoptimized by
Rappe, Smedley, and Goddard III. For oxygen, a d po-
larization function was used. The use of the ortho-
gonality constraint makes it possible to use a high-quality
basis set, which is crucial to the calculation. Compared
with the original basis, 4 exponents have been inserted
and 19 diffuse exponents have been added. The smallest
exponent is 0.0095, which enables the basis to reach up to
seventh nearest atom. The ratios between added adjoin-
ing exponents is about 2. In order to reduce the size of
the Hamiltonian matrix, two nicke1 s, one nickel p, and
one oxygen s bases remain as contracted bases (they
represent mostly the inner electrons). All other bases are
uncontracted. A sma11 change of the basis set tested in a
two-atom-cluster calculation only caused less than 0.03-
eV energy differences. We considered this to be an ade-
quate indication of convergence.

C. Core region of surrounding atoms

The orthogonality constraint V„of Eq. (2.12) is evalu-
ated numerically in each core region of the surrounding

The fitting basis functions are the same as in (3.1). Nu-
merical integrations were performed to determine the
least-squares-fitting coe5cients. We use the von Barth

r r
/

r rrr
r J

/ /r
r r

r r
/ r

r rr rr r
rrr

/

r
r

/
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/

r

rr

r
/r
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FIG. 2. The f function.

where f„ is the fitting basis. We used spherical Gaussian
1 2 2 — 2

functions of s type (e "
) and r type (r e "

) centered
at each atom. The fitting coefBcients ak were evaluated
analytically by a variational procedure which minimizes
the errors in electrostatic energy. The second is
exchange-correlation potential fitting:

(3.2)



48 SELF-CONSISTENT CLUSTER-EMBEDDING CALCULATION. . . 14 873

and Hedin ' form of the exchange-correlation potential,
as parametrized by Rajagopal and co-workers.

Because p& is almost zero in the core region of sur-
rounding atoms, we use the approximation

E„,i [p»pz) f piexc(p", p '"")dr

= f p)&„,(pr, p)' ")dr (3.3)

Original

Exponent

TABLE I.

Our basis
S(11)

Basis set of (a) a nickel atom and (b) an oxygen atom.

(a)
Original

Coefficient Exponent

Our basis
P (10)

Coefficient

same
same
same
same
same
same

same
same

same
same
same
same

0.130 176
0.046 392

284 878.0
419 97.9

962 7.67
276 1.96

920.488
341.805

138.023
59.2 587

20.3 712
8.59 400
2.39 417
0.918 169
0.205 000
0.129 199
0.060 093
0.027 950
0.013000

3.200 x 10-'
2.460 X 10
1.254 X 10
4.926 x 10-'
1.495 X 10
3.264 X 10

4.0474 x 10-'
1.9186x 10-'

1.0000
1.0000
1.0000
1.0000
1.0000
1.OO0O

1.0000
1.0000
1.0000

same
same
same
same
same

same
same
same
same

1774.18
423.403
138.311
53.1703
22.3874

9.928 48
4.11625
1.71031
0.672 528
0.170446
0.083 145
0.040 558
0.019785
0.009 651

2.9500x10-'
2.3370X 10
1.0406 X 10
2.8226 x 10-'
4.3486 X 10

1.0OOO

1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

same
same
same
2.064

same

Exponent

58.730 0
16.7100
5.783 00
2.826 482
1.381 463
0.675 200

Coefficient

1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

d (12)

0.1825

Exponent

0.342 741
0.173 980
0.088 315
0.044 830
0.022 756
0.011 551

Coefficient

1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

Original

Exponent

Our basis
S(11)

Coefficient

(b)
Original

Exponent

Our basis
P(13)

Coefficient

same
same
same
same
same
same
same

same
same
same
same
same
same

105 374.95
15 679.240
3 534.544 7

987.365 16
315.978 75
111.654 28
42.699 451

17.395 596
7.438 309
3.222 862
1.253 877
0.495 155
0.191 665
0.090 435
0.042 671
0.020 134
0.009 500

1.4300 x 10-'
1.123 OX 10
5.9800 X 10
2.5562X 10
9.259 0 X 10
2.817 49 X 10
6.771 64 X 10

1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

same
same
same
same

2.102 525

0.850 223
same

0.128 892

same

200.000 00
46.533 367
14.621 809
5.313064
2.667 525
1.339 281
0.672 412
0.337 597
0.171 369
0.086 989
0.044 157
0.022 415
0.011 378

1.154000

1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

1.0000
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oxygen

nickel

0 FIG. 4. Magnetic structure of NiO. Only Ni ions are shown
in the diagram.

0 0
0 0

() ~

(b)

FIG. 3. (a) Two-atom cluster. (b) 116 surrounding atoms.

in these regions. The results actually remain the same,
but the CPU time is reduced by about one-third.

IV. RESULTS OF THE TWO-ATOM CLUSTER

Figure 3(a) shows the two-atom Ni-0 cluster structure.
Figure 3(b) shows the surrounding 116 Ni and 0 atoms.
The lattice constant used in our calculation is 4.1684 A,
which is the value of the lattice constant in crystalline
NiO. When an atom is far away from the cluster, we
can use a point charge to approximate its potential. An
ionic embedding procedure was used here. Total 5084
point charges filling a 17X17X18cuboid are used. The
point charges were placed on atomic sites which sur-
round the Ni-0 cluster and 116 atoms. The location of
the embedding charges were those of the true crystal
structure. +2

~
e

~
charges were put on Ni sites, —2

~

e
~

charges on 0 sites. On the outmost boundary, fractional
( —,', —,', and —,') charges were put on the faces, edges, and

corners. This arrangement makes the Madelung constant
on a nickel atom and an oxygen atom in the cluster equal
to 1.747 565, the same as the exact Madelung constant of
an ionic crystal with the sodium chloride structure.
The orthogonality constraint is applied to both surround-
ing atoms and point charges. Here is the question: is this
arrangement a good representation of the crystalline en-
vironment? An investigation on this question has been
done. Table II gives the calculated electronic structure
properties with respect to the number of surrounding
atoms. Table III gives the calculated electronic structure
properties with respect to the number of point charges.
Both tables show a satisfactory degree of convergence
when 116 atoms and 5084 point charges are used. We ex-
pect that the 116 atoms and 5084 point charges will pro-
duce an accurate solid potential in the cluster area.

The total number of basis functions is 156. The total
number of fitting bases is 64. After several trial calcula-
tions, we find that the optimum values of the cutoff radii
of Ni and 0 atoms are 0.369 and 1.131 a.u. , respectively.
The total cluster electrons remaining in the surrounding
core regions are 0.0006 electron, which means condition
(2.11) is well satisfied. In the calculation of V„, 1376
points and 2494 points are used for the nickel core and
the oxygen core, respectively. A total of 183720 points
filling the big cuboid in Fig. 3(b) are used in the calcula-
tion of V„,. In general, after 60 self-consistent-field (SCF)
iterations the total energy can achieve the accuracy of
10 Ry. So we can compare the energy difference in
units of K.

Table IV shows the results with antiferromagnetic
structure. The antiferromagnetic structure of NiO, ac-
cording to neutron-diffraction experiments, is shown in
Fig. 4. It is easy to arrange the atomic spin directions of

TABLE II. The convergence test with respect to the number of surrounding atoms. (Two-atom clus-
ter. The total number of surrounding atoms and the point charges are 5200.)

Number of
surrounding

atoms

44
100
116

Ef
(Ry)

—0.3186
—0.3292
—0.3302

Energy
gap
(eV)

0.398
0.212
0.204

Width of Ni
3d bands

(eV)

2.08
2.27
2.27

Energy gap between
Ni 3d bands and
0 2p bands (eV)

0.75
1.32
1.30



SELF-CONSISTENT CLUSTER-EMBEDDING CALCULATION. . . 14 875

TABLE III. The convergence test with respect to the number of point charges. (Two-atom cluster.
The total number of surrounding atoms is 116.}

Number of
point

charges

2248
3482
5084

Madelung
constant

1.747 568
1.747 563
1.747 565

(Ry}

—0.3491
—0.3387
—0.3302

Energy
gap
(eV}

0.212
0.208
0.204

Width of Ni
3d bands

(eV}

2.26
2.27
2.27

Energy gap between
Ni 3d bands and
0 2p bands (eV}

1.31
1.29
1 ~ 30

surrounding atoms in our calculation. In density-
functional theory, only two spin directions are con-
sidered: up and down. Our spin-polarized calculation
produces two charge densities: p"P and p '"". Note, no
spatial direction is assigned to "up" or "down. " As an
approximation, we define the atomic spin direction in the
sense of electron spin direction: If Jp" dr is larger than

Jp '""dr, the atom has up atomic spin direction. The
exchange of p" and p"'"" implies a change of the atomic
spin direction. When we construct the background
charge density p2 in each surrounding cell, we can easily
choose the atomic spin direction by exchanging the p", i'

and p&
". The disadvantage of this definition is that

each atom has only two atomic spin directions. This will
not effect the calculation of ferromagnet and antifer-
romagnet. But for a disordered state, this is an approxi-
mation. %'hen we calculate the disordered state, the
spin-up atoms and the spin-down atoms are chosen ran-
domly by a random-number-generating subroutine under
the condition that the number of spin-up atoms should be
close to the number of spin-down atoms. Table V gives
our results. All results are calculated self-consistently.
No magnetic interaction appears in our calculation. The
difference of total energy is caused purely by the
exchange-correlation interaction. In general, the total
energy is determined by 12 second nearest nickel ions (to
the cluster-Ni atom). Because of the 0.03ps unphysical
spin magnetic moment of the oxygen ion and the diffuse
property of the charge density, there is a big effect corn-
ing from the six nearest oxygen ions (to the cluster-Ni
atom) and the six. nearest nickel ions (to the cluster-0
atom). The conclusion is that the parallel spin magnetic
moment lowers the total energy and the antiparallel spin
magnetic moment raises the total energy. To explain this
result, we note that the cluster contains only one Ni
atom. Only direct exchange-correlation energy between
cluster atoms and the surrounding atoms is included.
This result implies that the antiferromagnetic structure of
NiO is not formed by the direct exchange-correlation
effect.

V. RESULTS QF THE FOUR-ATOM CLUSTER

Figure 5 shows the four-atom Ni202 cluster. The sur-

rounding atoms and ionic embedding procedure used
here is similar to Sec. IV. The number of surrounding
atoms is 124. The number of point charges is 5380,
which makes the Madelung constant at the positions of
cluster atoms equal to 1.747 565, as in Sec. IV. From the
test results of Sec. IV, we expect that the 124 atoms and
5380 point charges will produce an accurate solid poten-
tial in the cluster area. The total number of basis func-
tions is 312. The total number of fitting functions is 128.
The cutoff radii of surrounding Ni and O atoms are the
same as in Sec. IV. A total of 240096 points are used in

the V„, calculation. Initially, the charge density p2 of the
surrounding atoms is built from p, (the result of Sec. IV)
according to antiferromagnetic structure, and is fixed
during the calculation. After 60 SCF (only involving p&,

p2 is' fixed) calculations, the p, of the four-atom cluster
reaches an accuracy of 10 Ry with respect to the fixed

p2. Then we use this calculated new p, to build the new

p2 and to calculate the next result. This repetitive
method is so time consuming that we can barely reach
the self-consistency. Actually, after four of these "itera-
tions, " the differences of all eigenvalues are less than
0.0015 Ry, the difference of the total energy is less than
0.005 Ry, and the unphysical spin magnetic moment of
the oxygen ion is reduced to less than 3X10 pz. We
think this result is acceptable. In this section, all back-
ground charge densities p2 are built from the same p& and
are fixed during the calculation. The SCF iteration is
only with respect to p&.

A. Cluster ground state

We build p2 from p& according to the antiferromagnetic
structure. After 60 SCF iterations, the total energy has
an accuracy of 10 Ry. There are 0.00098 cluster elec-
trons remaining in the surrounding core regions, which
means condition (2.11) is well satisfied. Table VI gives

TABLE IV. Results of the two-atom Ni-0 cluster with antiferromagnetic structure.

Fermi
ener gy

(Ry}

—0.3302

Energy
gap
(eV}

0.204

Width of Ni
3d bands

(eV)

2.27

Energy gap between
Ni 3d bands and
0 2p bands (eV)

1.30

Spin magnetic
moment

(p~ }

1.97
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TABLE V. Results of the two-atom Ni-0 cluster with di6'erent atomic spin direction arrangement of
surrounding atoms.

No.
Atomic spin direction

arrangement para.

12 second nearest
Ni atoms

anti.

Total energy
(relative to the

fifth row)
(K)

all spin up (58 up, 0 down)
disordered 1 (29 up, 29 down)
disordered 2 {29 up, 29 down)
disordered 3 (29 up, 29 down)
antiferromag. (29 up, 29 down)
disordered 4 (31 up, 27 down)
disordered 5 (29 up, 29 down)
disordered 6 (29 up, 29 down)
all spin down (0 up, 58 down)

12
9
8
7
6
6
5

4
0

0
3
4

6
6

8

12

—36
—19
—3
+6

0
+5

+28
—15
+4

p ~Q Ni2

the eigenvalues and Mulliken populations of spin-up or-
bitals. The spin-down orbitals are the same as the spin-
up orbitals except for the exchanging of atom 1 and atom
2. %'e have paid special attention to the nickel 3d elec-
trons and oxygen 2p electrons: the Mulliken populations
of two nickel atoms and two oxygen atoms have been
shown separately. The Mulliken population analysis
yields the spin magnetic moment of 1.91@~ for the nickel
ion, which is in agreement with the experimental data of
1.77p~, 1.64p~, and 1.90pz. The energy-band cal-
culation gives 1.04p~. ' ' Terakura et al. believe that
the deviations are from the spherical-potential approxi-
mation used in the band-structure calculation. '

The general picture is as follows. A 0.51-eV energy
gap separates the unoccupied and occupied nickel 3d or-
bitals which are well localized. Each 3d orbital is at-
tached to a particular nickel ion. Below the 3d levels are
two diffuse oxygen 2p bands. Above the 3d levels are ox-
ygen 3s, nickel 4s, and oxygen 3p bands. Our picture is
different from Svane and Gunnarsson, but similar to
that of Terakura et al. except for two differences. Figure
6(a) shows the total density of states of NiO according to
the spin-polarized energy-band calculation done by
Terakura et al. ' Figure 6(b) shows our calculated eigen-
values. The six nickel orbital groups (two unoccupied,
four occupied) are very similar to the results of Terakura
et a/. Both small energy gaps, 0.51 and 0.2 eV, do not
agree with the experimental data of 4 eV. ' An ex-
planation of this discrepancy will be given in Sec. VE.
There are two differences between our results and that of

Terakura et al. : (i) the relative positions of two oxygen
2p bands are different, which will be discussed in Sec.
V C; (ii) our results have both localized and band proper-
ties. The Mulliken populations show that each 3d orbital
is attached to one nickel atom, but each 2p orbital is
shared by two oxygen atoms (see Table VI). Besides the
Mulliken populations, a "charge overlap" is used to de-
scribe localized and band properties. The charge overlap
between two orbitals i and j is defined as follow:

(Charge Overlap), "= f min(p, .(r),p (r))dr . (5.1)

Unless otherwise specified, the "overlap" in this paper
means charge overlap. The overlap between two orbitals
of type 36 (orbital 36, spin up, attached to Ni2, orbital 36,
spin down, attached to Ni, ) is 2.98%. In contrast, the
overlap between two orbitals of type 28 (orbital 28, spin
up, 80% shared by two oxygen atoms and 17% of' Ni&',
orbital 28, spin down, 80% shared by two oxygen atoms
and 17% of Ni2) is 84.48%. The overlap between two or-

(V

Q
E

O
Z

C3 W

P.2 0.4 0.6 0.8
Energy(Ry)

7 65&32 &

II

(c)

Nil Q 4E OZ

FICs. 5. Four-atom Ni&02 cluster.

FICx. 6. (a) The total state density of NiO obtained by the
spin-polarized energy-band calculation (Ref. 15). (b) Eigenval-
ues of the embedded Ni202 cluster. (c) Eigenvalues of the em-
bedded Ni-0-Ni-0 cluster.
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bitals of type 39 (oxygen 3s electrons) is 96.07%. This
means each 3d electron is well localized and attached to a
particular nickel atom, while the oxygen 2p and 3s elec-
trons are shared by all oxygen atoms and form the bands.
As we will see, the coexistence of both localized and band
properties is very important in understanding NiO.

As expected, the result is an antiferromagnetic insulat-
ing state. There is an energy gap of 0.51 eV. Two nickel
ions have opposite spin magnetic moments and two oxy-

gen ions have no spin magnetic moment, so the total
magnetic moment of the cluster Ni20z is zero. Section
IV has proved that the direct exchange-correlation efFect
between two nickel atoms can only make two spins paral-
lel. But we get a spin antiparallel state. A reasonable ex-
planation is the 90 "superexchange efFect": the electron-
ic wave functions of two nickel ions are coupled through
the intermediate oxygen ions. ' Here we want to em-
phasize that the 90' superexchange efFect at least does not

TABLE VI. Eigenvalues and Mulliken populations of Ni202 cluster in ground state (spin-up orbit-
als).

Orbital No. Energy (Ry) Ni s Ni p Ni& d Ni2 d 0 s 0& p 02 p

0 3s

0 3p 44
(Ni 4p) 43
Ni 4s 42

41
40
39
38
37

0.6349
0.5959
0.4737
0.4459
0.2540
0.1534

—0.2740
—0.3243

0.77
1.05

0.05

0.01

0.01
0.43
0.07

—0.25
—0.20
—0.11

—0.01
—0.04
—0.02
—0.03
—0.04
—0.01

0.01

—0.01
—0.04
—0.01
—0.03
—0.04
—0.02

0.93
0.97

—0.28
—0.01

1.10
1.08
0.02

—0.01

0.51
0.32
0.23
0.14
0.10

0.02
0.01

0.51
0.32
0.23
0.14
0.10

0.02
0.01

above are the unoccupied orbitals

Ni 3d

0 2p

36
35
34
33
32
31
30
29
28
27
26
25
24
23

—0.3618 (E&)—0.3669
—0.4014
—0.4033
—0.4583
—0.4912
—0.5001
—0.5236
—0.6278
—0.6424
—0.7025
—0.7149
—0.7228
—0.7744

0.01

0.01

0.02

0.17
0.15

0.01

0.03
0.01

—0.06
0.05

0.01

0.88
0.96
0.93
0.94
0.82
0.17
0.07

0.09
0.04
0.01

0.01
0.02
0.03
0.02
0.04

0.01

0.03
0.04

—0.09

0.97
0.95
0.95
0.01 0.02
0.02 —0.01

0.01
0.01
0.03
0.05
0.01
0.04
0.02
0.08
0.40
0.46
0.45
0.43
0.43
0.44

0.01
0.01
0.03
0.05
0.01
0.04
0.02
0.08
0.40
0.46
0.45
0.43
0.43
0.44

0 2s

Ni 3p

Ni 3s

0 1s

Ni 2p

Ni 2s

Ni 1s

22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

—1.7033
—1.7119
—4.7990
—4.8446
—4.8819
—4.9503
—4.9927
—5.0300
—7.5430
—7.6960

—37.2385
—37.2385
—61.4159
—61.4204
—61.4252
—61.4817
—61.4858
—61.4907
—70.2378
—70.3242

—595.5220
—595.5230

—0.05

1.00
1.00

1.00
1.00
1.00
1.00

—0.02
—0.03

1.00
1.00
1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00
1.00
1.00

1.01
1.05

1.00
1.00

0.01
0.01

0.01
0.01



14 878 HAOPING ZHENG 48

occur in the highest three occupied nickel 3d orbitals (or-
bitals 36, 35, and 34, since their hybridizations with oxy-
gen ions are less than 6%), which have the same spin
direction as two unoccupied nickel 3d orbitals. In order
to study the 180' superexchange effect, the embedded
cluster Ni-0-Ni-0 is calculated. Because of the small
difference of the environments between two nickel atoms,
the energy levels of two nickel ions are slightly different
and the converging is difficult. By freezing the occupa-
tion numbers and using a very small damping factor, a
roughly converged result is finally obtained. The eigen-
values of ions with lower levels are shown in Fig. 6(c).
Only some general conclusions can be confirmed. (i) The
general picture of the eigenvalue structure is the same as
the cluster NizOz. (ii) The dual property (both localized
and band properties) is the same as the cluster NizOz.
(iii) As was the case for the 90' superexchange effect, the
180' superexchange effect at least does not occur in the
highest three occupied nickel 3d orbitals (orbitals 36, 35,
and 34, since their hybridizations with oxygen ions are
less than 3%), which have the same spin direction as the
two unoccupied nickel 3d orbitals. The cluster Ni-0-Ni-
0 will not be discussed further. Compared with the re-
sults of the two-atom cluster, the results for the cluster
Ni20~ show some interesting changes. (i) The energy gap
is increased from 0.204 to 0.51 eV. (ii) The spin magnetic
moment of each nickel ion is decreased from 1.97pz to
1.91@~. (iii) The Fermi energy is lowered from —0.3302

to —0.3618 Ry. (iv) The width of Ni 3d bands becomes a
little smaller, the width of oxygen 2p bands becomes
larger. All these changes make the results better com-
pared with the experimental data. Actually, our results
show that the superexchange effect between two nickel
ions doubles the unit cell and reduces the energies of the
occupied orbitals.

As mentioned in Sec. III, there is a symmetry problem:
the eigenvalues in Table VI do not show the point sym-
metry of solid NiO. From Eq. (2.15), we know that the
eigenvalues are determined by the total potential. Three
factors can break the point symmetry of the total poten-
tial. (i) Antiferromagnetism. For a nickel ion, if we con-
sider only the 6 nearest oxygen ions, the potential will
have the point symmetry of solid NiO. But if we consider
the 12 second nearest nickel ions, the exchange-
correlation potentials are different for two spin parallel
nickel ions and for two spin antiparallel nickel ions. (ii)
The cluster does not have the point symmetry of NiO.
For an ion in the cluster, four nearest ions have an
orthogonality-constraint term and two other nearest ions
(in the cluster) are automatically orthogonalized. This
leads to a small difference in the potential. (iii) For each
ionic shell in the cluster, beginning from the seventh
nearest atoms, some ions are replaced by point charges.
Actually, the core orbitals show roughly the point sym-
metry of solid NiO because the first two factors have less
of an effect on them. Comparing Figs. 6(b) and 6(c), we
can see that the geometric difference of the cluster does
not change the general eigenvalue picture.

2.0 '-

1.8- B. Optically allowed transitions

1.6
E

o ] 4

)—

1.2-

0 1.0-

& 0.8-
cL

O 0.6—
Xl

0.4-

4.9
7.2 8.

4.3

1I

0 I I I

2 4 6 8 10 12 14 16 18 20 22 24 26

(o) Energy (eV)
A

1 2 3 4

B C

5

D
1

FIG. 7. (a) The experimental results of the optical-absorption
coeKcient of NiO (Ref. 46). (b) The optically allowed transition
energies obtained by using the eigenvalues. (c) Three transition
energies obtained by the transition-state method. Each dashed
line connects the same transitions.

We believe use of a high-quality basis set combined
with the accurately embedded cluster makes the first
several unoccupied orbitals acceptable. This provides a
good interpretation for the experimental optical-
absorption coefficient.

Because pz is fixed and the electron rearrangement of
p& is limited by pz, the transition energy obtained by the
Slater transition-state method is higher than the real
value (the limitation of rearrangement raises the energy).
On the other hand, the transition energy obtained by us-
ing eigenvalues is lower than the real value with an error
of second order in the derivative of the total energy. In
order to estimate the real value, we use both the eigenval-
ues and the transition-state method to get the optically
allowed transition energies. Figure 7(a) shows the experi-
mental results for the optical-absorption coefficient of
NiO obtained by Powell and Spicer." Figure 7(b) shows
optically allowed transition energies obtained by using
the eigenvalues. All optically allowed transitions, from
nickel 3d and oxygen 2p valence orbitals to the unoccu-
pied nickel 3d, oxygen 3s, nickel 4s, and oxygen 3p orbit-
als, were included. The highest unoccupied orbital we
count is an oxygen 3p orbital with an eigenvalue 0.6349
Ry (8.6 eV). Figure 7(c) shows our results according to
the transition-state method. Because the transition-state
calculation is very time consuming and sometimes is
difficult to converge, only three transition energies have
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been calculated.
Part A of Fig. 7(b) contains the transition energies

from oxygen 2p orbitals to the unoccupied nickel 3d or-
bitals. These are charge-transfer transitions. Because the
nickel 3d orbitals are localized and oxygen 2p orbitals are
diffuse, transferring one oxygen 2p electron to an unoccu-
pied nickel 3d orbita1 will cause large electron rearrange-
ment. This caused a relatively big difference between
Figs. 7(b) and 7(c) [the rearrangement is limited in Fig.
7(c), which raises the energy drastically]. Part C contains
the energies from oxygen 2p orbitals to nickel unoccupied
4s orbitals. Because both orbitals are difFuse, the electron
rearrangement is small and the difference between Figs.
7(b) and 7(c) is small (about 0.2 eV). This small difFerence
implies that in part A, Fig. 7(b) is more reliable. We use
Fig. 7(b) to interpret the experimental data and under-
stand that the real value will be a little larger than that in
Fig. 7(b) if the transition involves a large electron rear-
rangement.

Our picture is that the main absorption edge comes
from the charge-transfer transitions between oxygen 2p
orbitals and unoccupied nickel 3d orbitals (part A). Our
calculated first transition energy (4.1 eV) in Fig. 7(b) gives
the correct main absorption edge. The peaks around 13.0
and 13.8 eV come from the transitions between oxygen 2p
orbitals and unoccupied oxygen 3s orbitals (part B). The
0.8-eV energy difference represents the energy difference
between two oxygen 2p bands [see Fig. 6(b), groups 7 and
8]. The peak at 17.6 eV comes from two groups of transi-
tions, oxygen 2p orbitals to unoccupied nickel 4s orbitals
(part C), and nickel 3d orbitals to unoccupied oxygen 3p
orbitals (hybridized with nickel 4p electron, part D).

The weak optical-absorption lines below the threshold
are generally ascribed to dipole-forbidden transitions be-
tween 3d states of the same nickel ion. The localized
property of 3d excitations will be shown in Sec. V E. By
using the eigenvalues in Table VI, we can get ten 3d-3d
transition groups. Their average values are (in eV) 0.55,
1.06, 1.23, 1.75, 1.82, 2.33, 2.51, 2.71, 3.02, and 3.40 eV.
The experimental data between 1.0 and 3.4 eV are 1.1,
1.7, 1.9, 2.2, 2.7, 3.0, and 3.3 eV." Apparently, they are
close to each other. Besides, by using the eigenvalues, the
nickel 3p to 3d threshold is 61 eV, which is close to the
experimental result of 64 eV.

C. Photoemission spectra

Because of the reason mentioned in Sec. V B, we simply
use the eigenvalues in Table VI as the ionization poten-
tial, which is believed to involve an error of the second
order in the derivative of the total energy. Only relative
energy differences are important.

Figure 8(a) shows the photoemission experimental data
and the results of the energy-band calculation of NiO re-
ported by Shen et al. Figure 8(b) shows our calculated
results. In general, our results are similar to the energy-
band calculation. Both show that nickel 3d bands are
higher above the oxygen 2p bands. The oxygen 2p bands
are thought to agree relatively well with the experimental
data; the nickel 3d bands are relatively poor compared
with the data. The major difference is that the lowest cal-
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culated oxygen 2p band of Fig. 8(a), which corresponds to
the lowest 2p peak in Fig. 6(a), is absent from our results.
Photoemitted electrons coming from this band are not
observed.

We interpret four spectral features (represented by &5,

+, A, and 0 ) as the nickel 3d orbital groups (1, 2, 3, and
4), and two spectral features (represented by f and ~ ) as
the oxygen 2p bands (5 and 6). Ni 3d bands are narrow
(groups 1, 2, and 3). Oxygen 2p bands are broad (group
6). Hybridized Ni 3d —0 2p levels have medium band-
width (groups 4 and 5).

D. Magnetic properties

In order to estimate how stable the local antiferromag-
netic state is, we need to obtain the ferromagnetic state.
Actually, the ferromagnetic state is not stable in our cal-
culation. If the damping factor is large, it will change to
the antiferromagnetic state. Starting with the ferrornag-
netic charge density, we fix pz according to ferromagnetic
structure and use a damping factor of 0.05; after 176
iterations we get an accuracy of 10 Ry. The total ener-
gy is 0.327 eV (3790 K) above the energy of the antiferro-
magnetic state. This energy difFerence is much higher
than the Neel temperature, indicating a very stable local
antiferromagnetic (AF) order. It is reasonable to assume
that in a paramagnetic state, although the long-range AF
order has been destroyed, local AF order still remains
and the local moments of nickel ions persist essentially
unchanged. This assumption is supported by many ex-
perirnental observations.

Gubanov and Ellis have calculated the Neel ternpera-
ture of NiO by the "magnetic transition-state" ap-
proach. But there is no successful direct calculation of
the Neel temperature. Here we assume that every two
nickel ions are coupled together to form a pair with op-
posite spin directions, all pairs having the same charge
density. In order to determine the antiferromagnetic
structure and to calculate the Neel temperature directly,
some geometrical restrictions are needed to "keep the lo-

0.2 0.4 0.6 0.8
Crystal Momentum (units of 2T(/a)

(a)

FIG. 8. (a) The photoemission experimental data and the re-
sults of an energy-band calculation (Ref. 23). (b) The eigenval-
ues of the embedded Ni202 cluster.
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cal AF pair. " We assume (i) the total number of spin-up
nickel ions should equal the total number of spin-down
ions; (ii) in any cube (containing four nickel ions and four
oxygen ions), the four nickel ions should not have the
same spin direction. During the calculation, our four-
atom cluster remains in AF order; the surrounding atom-
ic spin directions are disordered. A random-number-
generating subroutine is used to choose the spin-up atoms
and the spin-down atoms. Then we apply two geometri-
cal restrictions to the 18 nearest nickel ions (other nickel
ions actually cannot change the result). Table VII gives
our results. The total energies in Table VII are shown
relative to the first row. The last two rows show the spe-
cial cases which violate our restrictions. One has all
spins up, the other has each cluster-nickel ion surrounded
by spin-parallel nickel ions. Both cases cannot happen in
practice because of the local AF order. Apparently, the
antiferromagnetic structure has the lowest energy among
the disordered structures. The disordered states are not
completely disordered due to the local AF order, so the
change of the system entropy may be not large. If we
neglect the change of system entropy, by averaging the
seven disordered results in Table VII, we get the Neel
temperature 224 K. The experimental result is 525 K.
We think that the discrepancy results from our inability
to include enough ions in our cluster, from the imperfec-
tion of the exchange-correlation potential we used, and
from the neglect of the change of system entropy. To the
best of our knowledge, this is the first direct calculation
of the Neel temperature which gives a reasonable result.

Table VII also shows the energy gaps, the optical-
absorption edges, and the spin magnetic moment of each
nickel ion;- It is clear that they are independent of the
long-range spin order. Nickel ions have actually the

same spin magnetic moment in all spin-disordered states
as in the antiferromagnetic state, which shows the con-
sistency of our assumption. We find that all spin-
disordered states have the same electronic structure in
the local AF pair as that of the antiferromagnetic state.
From the discussion in the next subsection, we can say
that NiO remains as an insulator when it transforms from
antiferromagnetic to paramagnetic states. The real solid
NiO is an insulator in both antiferromagnetic and
paramagnetic phase.

K. Energy gap

In this subsection, we propose a new explanation of the
insulating nature of NiO.

As in the case of the energy-band calculations, the
main discrepancy between our theoretical calculation and
experiments is the small energy gap. In order to give an
alternative explanation, the Hubbard U parameter for the
nickel 3d electron is estimated first. The ionization po-
tential of orbital 36 and the electron affinity of orbital 37
were calculated by using the transition-state method. We
take the point of view that U should be the difference be-
tween the ionization potential and the electron affinity.
The result is Udd =10.2 eV. As mentioned before, the
real value should be smaller than this value because of
the limited electron rearrangement during our
transition-state calculation. Compared with Sec. V 8, we
believe the real value is in the currently accepted range of
7-9 eV.

Second, we calculated the electronic structure of six ex-
cited states: both nickel ions in the cluster have one 3d
electron excited to an unoccupied 3d orbital. Table VIII
gives the results of spin-up orbitals; the spin-down orbit-
als are the same except for the exchanging of atom 1 and

TABLE VII. Results of the four-atom Ni202 cluster with different atomic spin direction arrange-
ment of surrounding atoms (the Ni20z cluster is in an antiferromagnetic state).

No.

Atomic spin
direction

arrangement

18 nearest
Ni atoms

up down

Total
energy

(K)

Energy
gap
(eV)

Abs.
edge
(eV)

Spin magnetic
moment (pz)

Ni, up Ni2 down

10

antiferromagnet
(31 up, 31 down)
disordered 1

(31 up, 31 down)
disordered 2
(31 up, 31 down)
disordered 3
(31 up, 31 down)
disordered 4
(31 up, 31 down)
disordered 5

(31 up, 31 down)
disordered 6
(31 up, 31 down)
disordered 7
(31 up, 31 down)
all spins up
(62 up, 0 down)

special case
(31 up, 31 down)

+360

+261

+ 193

+ 164

+212

+ 161

—280

0.510

0.507

0.509

0.510

0.507

0.510

0.510

0.508

0.524

0.512

4.129 1.9082

4.110 1.9064

4.124 1.9071

4.134 1.9075

4.119 1.9081

4.153 1.9063

4.140 1.9096

4.124 1.9063

4.124 1.9064

4.120 1.9073

1.9082

1.9056

1.9063

1.9067

1.9065

1.9070

1.9080

1.9059

1.9082

1.9096
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atom 2. The results of six 3d-3d transitions involving the
same nickel ion and the same spin direction (spin-keeping
transitions) are reliable because the electron rearrange-
ment is very small during the transitions (compared with
the ground state in Table VIII, the changes of the eigen-
values are less than 0.02 Ry). In contrast, the result for
state (8), in which both oxygen ions have one 2p electron
excited to an unoccupied nickel 3d orbital, is not reliable
because of the limitation of large electron rearrangement.
We discuss the state (2): one 3d electron was transferred
from orbital 36 to orbital 37, leaving a "hole" in the or-
bital 36. The excited orbital 37 (spin up) is mostly
(98.5%) attached to the Ni2 atom with only 1.0% hybrid-
ization to the Ni, atom and 0.2% hybridization to each
oxygen atom. The overlap between two excited orbitals
(orbital 37, spin up, attached to the Ni2 atom; orbital 37,
spin down, attached to the Ni& atom) is 1.85%. The
overlap between the two holes is 2.89%. Figure 9(a)
shows the charge distribution along the line connecting
two nickel ions. It is clear that the nickel electrons are

well localized and there is almost no overlap between the
two nickel ions. The result for state (3) is similar. The
overlap between the two excited orbitals is 4.17%, the
overlap between the two holes is 3.46%. Figure 9(b)
shows its charge distribution. Only three occupied nickel
3d orbitals (36, 35, and 34) have the same spin direction
as the two unoccupied nickel 3d orbitals. Table VIII
shows that the overlaps of the excited 3d orbitals are less
than 4.5% and the overlaps of the holes are less than 6%.
The spin-fiipped 3d-3d transitions have much lower prob-
abilities than that of spin-keeping transitions because
they are dipole forbidden and they reduce the spin mag-
netic moment of the nickel ion to zero. The electron
rearrangement in these transitions is large due to the
disappearance of the spin magnetic moment of the nickel
ion and the drastic change of exchange-correlation ener-
gy, which makes the result unreliable. Meanwhile, it is
difBcult to get a convergent result for a spin-Hipped 3d-3d
transition. Considering the results of spin-keeping transi-
tions, we assume that for a spin-Aipped 3d-3d transition,

TABLE VIII. Eigenvalues and Mulliken populations of the Ni20z cluster in eight states (spin-up or-
bitals) ~

State

(1)
ground

state

Orbital
No.

38
37
36(Ef )

35
34
33
32
31
30
29
28

Occupation
number

Eigenvalue
(&y)

—0.2740
—0.3243
—0.3618
—0.3669
—0.4014
—0.4033
—0.4583
—0.4912
—0.5001
—0.5236
—0.6278

Ni)
(%)

0.5
1.1

0.1

1.4
0.4

88.3
96.3
92.6
95.3
82.0
17.3

N&2

(%)

93.0
98.1

97.3
96.3
94.5
0.9
2.3
0.4
1.1
2.3
2.9

Oi
(%)

3.2
0.3
1.3
1.2
2.5
5.3
0.6
3.5
1.8
7.8

39.9

02
(%)

3.2
0.3
1.3
1.2
2.5
5.3
0.6
3.5
1.8
7.8

39.9

Overlap
(%)

3.92
2.10
2.98
4.53
5.99
6.19
4.73
7.92
5.92

19.76
84.48

(2)
36 to 37

(3)
36 to 38

(4)
35 to 37

(5)
35 to 38

(6)
34 to 37

(7)
34 to 38

37(exc.)
36(hole)

38(exc.)
36(hole)

37(exc.)
35(hole)

38(exc.)
35(hole)

37(exc.)
34(hole)

38(exc.)
34(hole)

—0.3209
—0.3557

—0.2755
—0.3642

—0.3268
—0.3643

—0.2849
—0.3759

—0.3078
—0.3829

—0.2624
—0.3878

1.0
0.1

0.6
0.1

1.0
1.3

0.5
1.3

0.9
0.4

0.5
0.4

98.5
97.4

92.6
96.8

98.5
96.0

92.3
96.0

98.5
95.4

93.0
94.6

0.2
1.3

3.4
1.5

0.2
1.3

3.5
1.4

0.2
2.1

3.2
2.5

0.2
1.3

3.4
1.5

0.2
1.3

3.5
1.4

0.2
2.1

3.2
2.5

1.85
2.89

4.17
3.46

1.83
4.74

4.37
4.93

1.90
4.98

4.02
5.91

(8)
28 to 37

37(exc.)
36
35
28(hole)

0.0344
0.0014

—0.0026
—0.8266

1.0
87.1

0.5
0.2

93.5
—0.4
98.1

0.2

2.8
6.5
0.6

49.8

2.8
6.5
0.6

49.8

4.37

99.94
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the maximum overlap of an excited electron is the same
as that of spin-keeping 3d-3d transition, and the max-
imum overlap of a hole is the same as that of the orbital
in the ground state. Following this assumption, the over-
laps of the holes in orbitals 30, 31, 32, and 33 are less
than 8%, and the overlap of the hole in orbital 29 is less
than 20%. The results for state (8) are not reliable. If the
surrounding charge density pz can be fully rearranged,
the eigenvalues of orbitals 35, 36, and 37 will become
lower and the eigenvalues of orbital 28 will become
higher. It is interesting to find that orbital 37 is still well
localized (which means Ni+ is localized), although we
cannot confirm it absolutely. The only certain thing we
can get from state (8) is that the overlap of the hole 28 is

larger than 84% because each hole is shared by two oxy-
gen ions. In conclusion, similar to the ground state, the
excited electrons and holes also have both localized and
band properties. For all spin-keeping 3d-3d transitions,
Table VIII shows that the overlaps of excited 3d orbitals
are less than 4.5%, and the overlaps of 3d holes are less
than 6%. For spin-Hipped 3d-3d transitions, the overlaps
of 3d holes may be less than 8% except for orbital 29,
which may be about 20%%uo. The holes in the oxygen 2p or-
bital are diffuse; the overlap is larger than 84%%uo, which
means the holes can move freely in the solid.

Now let us recall Mott's hydrogenic model. ' ' For a
simple lattice of hydrogen atoms with a large lattice con-
stant, each electron should definitely be assigned to a par-
ticular site. The optimum configuration of a conducting
state is one in which a single electron has been
transferred from its "home site" to another site far away.
The energy difference between the ground state and this
excited configuration, to a first approximation, is the
atomic ionization potential (13.6 eV) minus the electron
affinity (0.75 eV): about 12.85 eV. So the ground state is
clearly an insulating state.

We make two comments to the above argument. (i) If
we calculate the electronic structure of such a hydrogenic
model, to a first approximation, the energy gap will be
10.2 eV, the energy difference between the ground state
and the first excited state. (ii) The above argument is val-
id only if this excited state is still localized and cannot
form a metallic band. If the lattice constant is large
enough, the excited orbital will definitely be localized and
there is almost no overlap between the excited orbitals.
Such a system has two energy gaps: one is the energy
difference between the ground state and the first localized
excited state, the other is the charge-transfer insulating
gap. In a real material, if for some reason both the
ground state and the first excited state are we11 localized
and the overlaps are small enough, the material should
have two energy gaps.

Consider the case of NiO. (i) The minimum energy re-
quired to transfer an electron from the nearest oxygen ion
to a nickel site is about 4 eV (the main optical absorption
edge). At least the hole left in the oxygen 2p bands can
move freely in the solid. (ii) The minimum energy re-
quired to transfer a nickel 3d electron to an oxygen 3s
conduction band is about 7 eV. (iii) The minimum energy
required to transfer an electron from one nickel ion to
another nickel ion far away is about 8 eV (the Hubbard U
parameter for a nickel 3d electron). (iv) The 3d excited
orbitals and holes of a nickel ion are well localized. For
spin-keeping transitions, the overlaps of excited orbitals
are less than 4.5%, and the overlaps of holes are less than
6%%uo. For spin-Aipped transitions, the overlaps of holes
may be less than 8%, except for orbital 29, which may be
about 20%.

Based on the argument above, we propose a new ex-
planation for the insulating nature of NiO: The overlap
of the excited 3d electrons is too small to form a metallic
band, but the overlap is sufficient for the hole to migrate
through the crystal by electron exchange. In this sense,
NiO is a charge-transfer insulator with a gap of about 4
eV (mostly from oxygen to nickel). The calculated small



48 SELF-CONSISTENT CLUSTER-EMBEDDING CALCULATION ~ . . 14 883

energy gap of 0.51 eV provides the activation energy,
which is supported by the following experimental re-
sults. " The conductivity of NiO almost always in-
creases exponentially with increasing temperature. The
activation energy is about 0.2 —0.9 eV. The Hall mobility
is approximately 10 "—0.5 cm /Vsec and the predom-
inant carriers are holes.

F. Discussion

We believe the calculation is reliable in the sense of the
embedding procedure, the basis set, and the numerical
calculation of V„. But our embedded cluster is small
and contains only the 90 superexchange effect because of
the computational limitation. Guo, E11is, and Lam have
shown that the results of this method are converged when
the size of the embedded cluster is increased. From the
discussion in Sec. V A, we expect that the general picture
will remain the same and the numerical values will be
better compared with the experimental data if a big clus-
ter containing both 90 and 180' arrangements of Ni ions

is used. What we can confirm is that the ground state of
NiO is an antiferromagnetic insulating state. NiO has
both localized and band properties. Nickel 3d electrons
are well localized and attached to a particular site. Oxy-
gen 2p electrons are spread and form the bands. Nickel
3d levels are higher than oxygen 2p bands. Besides, the
excited nickel 3d electrons and holes are also well local-
ized. NiO remains an insulator when it transforms from
antiferromagnetic to paramagnetic phase in which local
AF order exists. This picture leads to a natural interpre-
tation of almost all experimental data. We believe the
self-consistent cluster-embedding method furnishes a
reasonable starting point for describing the properties of
NiO.
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