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Fully relaxed point defects in crystalline silicon
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We have studied intrinsic point defects in crystalline silicon via a tight-binding molecular-dynamics
scheme. The intrinsic defects studied in this work are the vacancy, the interstitial, the divacancy, the
split divacancy, and the vacancy-interstitial complex. Fully relaxed geometries, gap states, and forma-
tion energies are investigated. It is shown that the relaxation effects cannot be neglected, in particular,

in the peak position of band-gap states.

I. INTRODUCTION

Intrinsic defects in silicon have been extensively inves-
tigated both experimentally and theoretically, since the
understanding of the role of defects in silicon is essential
to control the quality of semiconductor devices. Intrinsic
point defects such as the vacancy (¥), the interstitial (1),
the divacancy (V,), the split divacancy (V%), and the
vacancy-interstitial (¥-I) complex are introduced inten-
tionally or unintentionally during the device fabrication.

The vacancy has been studied by electron-spin-
resonance (ESR) measurements’? and by ab initio calcu-
lations within the local-density approximation.®~> Since
Corbett and Watkins® proved that divacancies could be
produced by high-energy electron or neutron irradiation,
independent of vacancy migration or congregation, a
good model of divacancy with different charge states was
suggested.” The energy levels in the forbidden gap intro-
duced by divacancies have been studied by ESR experi-
ments®? and theories.’ !> However, the formation ener-
gy has not been calculated yet, mainly because its elec-
tronic structures are severely distorted in the fully re-
laxed geometry.

Most intrinsic defects are studied theoretically by the
first-principles calculations within the local density ap-
proximation. This method has been very fruitful for cal-
culation of electronic structures, though the fully relaxed
geometry is not fully incorporated in most of calcula-
tions. The advent of the ab initio molecular-dynamics
(MD) method'* removed this limitation. However, the ab
initio MD method is computationally expensive for the
dynamical calculation at the present stage and the appli-
cation to large systems is still limited. Therefore it is
necessary to introduce a scheme that retains the
minimum accuracy of the ab initio method and at the
same time retains the computational efficiency.

In this study we adopt the MD method combined with
the universal tight-binding (TB) method introduced by
Goodwin, Skinner, and Pettifor.!* Since the electronic
overlap integrals are parametrized, this method is very
efficient. The parameters are fitted to the universal
binding-energy curve of the first-principles calculations,
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and this method is therefore very accurate and can be ap-
plied to large systems of defects. We will generate the
fully relaxed defect geometries by the TB MD method
and study the relaxation effects in the electronic energy
levels in the forbidden gap and the formation energies of
various point defects. These results are further compared
to other theoretical and experimental works when possi-
ble.

II. METHOD

We adopt the TB scheme developed by Goodwin,
Skinner, and Pettifor’> in our defect studies. This
method simply uses Chadi’s empirical tight-binding
scheme.!” However, since Chadi’s scaling law of the posi-
tional dependence, 1/r2, is not transferable to different
structures, a different scaling law with an exponential fac-
tor is introduced such that the new TB scheme can gen-
erate the universal total-binding-energy curve. Combin-
ing this new TB scheme with the MD simulation method,
one may study complex systems such as liquid'® and
amorphous'® silicon. The details of this method have
been described by Goodwin, Skinner, and Pettifor.'’

In order to find the equilibrium structures of different
defects, we have run 2000 time steps (one time step
=1.08X 107! s5) at 300 K to equilibrate the structures.
Then the system is slowly quenched to zero temperature
by scaling velocities with the rate of 0.98 per every time
step. Several runs are made in order to make sure the
true ground-state configurations are obtained. We use
the cubic supercell containing 64 silicon atoms, where the
periodic boundary conditions are applied to all x,y,z
directions to emulate the bulk silicon. For a single va-
cancy or interstitial complex, one atom is simply removed
or added in the supercell. The cutoff distance 3.2 A was
chosen such that the first nearest neighbors are con-
sidered in the MD simulation.

III. RESULTS AND DISCUSSION

Typical point defects that may be formed during the
fabrication of devices are the vacancy, the interstitial, the
divacancy, and possibly the V-I complex. In this study
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we will discuss the fully relaxed geometries near defects,
the formation energies, the electronic density of states,
and the defect levels in the forbidden gap. These will be
compared to other results.

A. Fully relaxed geometry

A vacancy is formed simply by removing one atom
from the 64-atom supercell. The fully relaxed geometry
is obtained by slowly quenching the equilibrated struc-
ture at finite temperature (7’=300 K). The resultant
geometry is illustrated in Fig. 1(a). Atoms 1 and 2 move
away from the vacancy whereas atoms 3 and 4 are dis-
torted toward the vacancy. Net displacements of neigh-
boring silicon atoms range from 0.3 to 0.27 A Asa re-
sult the relative distance between atoms 1 and 2 is 4.55 A,
larger than the ideal second-nearest-neighbor distance of
3.86 A, while the relative distance between atoms 3 and 4
is equal to 3.25 A.

Shown in Fig. 1(b) is the optimum geometry of the ful-
ly relaxed V,, where two neighboring silicon atoms are
removed. Unlike the single V, all the neighboring silicon
atoms are distorted toward the vacancies along the axis
connecting the two vacancies. Net displacements of
neighboring atoms range from 0.6 to 0.45 A, which is al-
most twice that in the case of a single vacancy, as expect-
ed. Thus the neighboring atoms near the vacancy form
weak bonds with each other, as shown in Fig. 1(b). This
configuration is consistent with the results from ESR ex-
periment.®’
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FIG. 1. The fully relaxed geometry of the (a) vacancy, (b) di-
vacancy, (c¢) split divacancy, and (d) vacancy-interstitial com-
plex. All units are in A.
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The split divacancy (V') or Schottky defect is two va-
cancies at second-nearest-neighbor positions [see Fig.
1(c)]. This is an intermediate configuration between two
separate vacancies and the paired vacancies V,. The sil-
icon atom 5 between two vacancies moves toward one of
the vacancies by 1.25 A, making new bonds to the neigh-
bors of another vacancy. Atom 4 moves away from atom
5 by 0.5 A, sustaining the distance of 4.09 A between
atoms 4 and 6. The net dlsplacement of each atom in V7'
varies from 0.35 to 1.25 A.

A tetrahedral (7) interstitial defect is formed by adding
one extra silicon atom to a T site. It has four nearest
neighbors at 2.36 A and six second-nearest neighbors at
2.73 A that form weak bonds with the T interstitial atom.
Four nearest-neighbor atoms move outward the T inter-
stitial atom by about 0.20 A, whereas the second-
nearest-neighbor atoms do not move appreciably. Shown
in Fig. 1(d) is a V-I complex or Frenkel defect. A vacan-
cy is introduced near the interstitial defect. Atom 7,
which is the first nearest neighbor of both the vacancy
and the interstitial atom, moves toward the vacancy by
0.43 A, which is the largest among displacements by
neighboring atoms. In this case all neighboring atoms be-
tween the interstitial atom and the vacancy [atoms 5, 6,
7, and 8 in Fig. 1(d)] move toward the vacancy even
though the net displacement is different from atom to
atom.

B. Formation energy

The formation energy of a defect is the variance of to-
tal energy of the system when a defect is introduced.
Though the formation energy has not been studied well,
it is an important parameter because it is related to the
defect diffusion. In general the activation energy can be
written

E,=E;+E, , 8}

where E,, E;, and E,, are the activation energy, forma-
tion energy, and migration energy, respectively. With the
activation energy E, of each type of defect, one can write
the diffusion constant as

D=Dyexp(—E, /kT) . )

However, it is still difficult to determine E, and E,
Since our TB MD can provide the optimized geometries
for various defects, we are able to calculate a reasonable
formation energy and migration barrier.

Shown in Table I are the formation energies of unre-
laxed and relaxed configurations. The calculated forma-
tion energies of ¥V and T-interstitial are within the ob-
served values.!® The relaxation energies of ¥ and I are
1.42 and 2 eV, respectively, which are about 30% of the
total formation energy. Thus the relaxation effect cannot
be neglected even in the case of single point defects. The
migration barrier for the vacancy is 1.0 eV, which is cal-
culated by changing a position of a neighbor atom to the
vacancy site for unrelaxed geometry. This value should
be lower for fully relaxed geometry and hence gives better
agreement with the observed values 0.3 eV.?’ With this
rough estimation the activation energy should be



1488

TABLE 1. Formation energy and relaxation energy of vari-
ous defects. The values in parentheses in the third column are
the observed values in Ref. 20. The values in parentheses in the
fourth column are the percentages of the total formation ener-
gies. All units are in eV.

Formation energy

Defect Unrelaxed Relaxed Relaxation energy
Vacancy 5.10 3.68 (3.6-5.0) 1.42 (27%)
T-interstitial 6.30 4.3 (4.3-6.2) 2.0 (32%)
Divacancy 7.41 5.68 1.73 (23%)
Split divacancy 8.97 6.54 2.43 (27%)
Frenkel 1044  6.55 3.89 (37%)

E,=4.7 eV, which is within the range of observed values.
It is suggested?! that the activation energy ranging from
4.1 to 5.1 eV was well-fitted to the high-temperature
diffusion regime. The vacancy is therefore suitable for
the high-temperature diffusion regime. Unlike the
diffusion of the vacancy, the diffusion of the interstitial
atom occurs along different interstitial sites. It has been
suggested that the interstitial atom takes paths along
different sites. In our neutral case, the T site is the
minimum site and has migration barrier height 0.63 eV
along hexagonal sites. The migration along different sites
can occur athermally by exchanging charges as suggested
in previous work.?!

The formation energy of ¥V, is 5.68 eV with relaxation
energy 1.73 eV, which is much less than that of two
separated vacancies (2.84 eV), as expected. The relaxa-
tion energy of V7' is 2.43 eV, still less than that of two
separated vacancies. All these relaxation energies are
about 30% of the total formation energy, which clearly
cannot be neglected. By comparing the formation ener-
gies of V, and V7 with that of ¥, one may imagine the

relationship
0.82eV  0.86 eV
V+V — VI — V,. (3)

The binding energy of two vacancies is 1.68 eV. This
suggests that V, is very stable even at fairly high temper-
atures. However, ¥, may be formed through the inter-
mediate divacancy V7 since the binding energy is lower
in the intermediate configuration, as shown in the above
relationship, though the probability is low.

The formation energy of the unrelaxed Frenkel defect
is 10.44 eV, fairly higher than the other defects. After re-
laxation, however, it becomes comparable to the values of
other fully relaxed defects. The relaxation energy is
about 37% of the total formation energy, which was ex-
pected from the large distortions of geometry where the
atom between V and I gave maximum net displacement
(1.25 A). The probability of a Frenkel defect to be creat-
ed during the defect-formation process is approximately
equal to those of divacancies. For the V-I complex to be
a separate V and I, 1.43 eV is required,

1.43 eV
V+I — V—I. 4)

This suggests that not only the V, but also the V-I com-
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plex may be formed during the fabrication process of di-
vacancies.

C. Density of states near the band gap

The gap states introduced by defects play a crucial role
in electrical and optical properties of silicon devices. Fig-
ure 2 illustrates the density of states near the band gap.
The dotted line indicates an ideal configuration. For an
ideal configuration, the band gap with an appropriate
broadening factor is 1.24 eV, close to the experimental
value 1.17 eV.
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FIG. 2. The density of states near the band gap. The dotted
line indicates an ideal crystal. The dashed line is for the unre-
laxed configuration. The solid line is for the fully relaxed
configuration. (a) Vacancy. (b) T-interstitial. (c) Divacancy.
(d) Split divacancy. (e) Vacancy-interstitial complex.
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TABLE II. Energy levels of various defects before and after
relaxation. The observed values are from Ref. 22. All units are
ineV.

Energy levels

Defect Unrelaxed Relaxed Observed values
Vacancy E,+1.12 E,+0.76
T-interstitial E,+0.88 E,+0.52

E,+0.12
Divacancy E,+1.00 E,+0.94
E,+0.94 E,+0.46 E,+0.76
E,+0.42
Split divacancy E,+1.12 E,+0.76
E,+0.88 E, +0.46
E,+0.64 E,+0.34
Frenkel E,+1.12 E,+0.76
E,+0.76 E,+0.52

Vacancy has a triplet (¢;) degenerate level which gives
a strong peak near the conduction-band tail (E,+1.12
eV), where E, is taken to be zero. However, this level
splits into E,+0.76 eV and other levels inside the
conduction-band tails due to Jahn-Teller JT) distortions.
Furthermore, the valence-band tails are heavily
developed. Similar behaviors in the case of I are shown
in Fig. 2(b). There is a peak at E,+0.88 eV. After the
relaxation, the new peaks are developed near the
valence-band tails, E,+0.12 eV and E, +0.52 eV,
whereas the change in the conduction-band tails is negli-
gible.

In the case of ¥V, there are two doublets (e;,e,) at
E,+0.94 eV and one inside the conduction bands. Un-
der the JT distortion these will be split into several sing-
lets near E,+1.0 eV, E ,+0.46 eV, and near the
valence-band tails after the relaxation. In the case of V7'

the energy levels near the conduction-band tails and in
the middle of the band gap appear before the relaxation.
These become shifted toward the valence-band tails. The
energy levels are spread over the band gap (see Table II).
The gap states of the unrelaxed V-I complex are simi-
lar to the sum of those of respective defects. The V-1
complex reveals both the JT distortion and relaxation.
The triplet state splits into several singlets reproducing
gap states near the center and the valence-band tails. The
relaxation gives significant changes in the gap states, in
particular, in the valence-band tails. One notes from the
density of states of various defects that the valence-band
tails are related to the formation of weak bonds, which
was introduced by the relaxation near the defect sites.

IV. SUMMARY

We have studied the fully relaxed intrinsic point de-
fects in crystalline silicon with a tight-binding
molecular-dynamics methods. The details of fully re-
laxed geometry are generated by the TB MD method.
The calculated formation energies of various defects en-
abled us to estimate the binding energy of the divacancy
and the vacancy-interstitial complex. The binding ener-
gies of the divancancy and the vacancy-interstitial com-
plex are 1.68 and 1.43 eV, respectively. These complexes
are very stable even at fairly high temperatures. The
changes in the density of states near the band gap of vari-
ous defects are also discussed. It should be mentioned
that the relaxation effect cannot be neglected in the study
of defects, in particular, in the energy levels of the gap
states.
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