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Variational Monte Carlo study of the partially polarized electron gas
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The variational Monte Carlo (VMC) method, using Jastrow-Slater (JS) wave functions, is used to study
the partially polarized interacting electron gas for densities spanning the range encountered in bulk met-
als. We concentrate on a spin polarization (=0.42 which allows direct comparison of polarized and un-

polarized states for a fixed total number of electrons in the simulation supercell. The radial distribution
functions g++ (r), g (r), and g+ (r) are given particular attention and compared with a model
developed by Perdew and Wang (PW) that satisfies known constraints. At high density the agreement
with the PW model is good. At the lower densities (electron-gas parameter r, =4—8) there are
differences that can be roughly characterized as the PW model giving a somewhat more extended
exchange-correlation hole than the VMC calculations. These discrepancies could be due to limitations
either of the PW model or of the JS wave functions used here. Both the VMC and PW results are con-
trasted with the Hartree-Fock result for parallel spins.

I. INTRODUCTION

The variational Monte Carlo (VMC) method' is a
straightforward and appealing approach for investigating
quantum systems. One posits a many-body wave func-
tion, typically involving several parameters to be deter-
mined by minimizing the resulting energy, and then one
can calculate (at least in principle) a wide variety of
characteristics of the state described by the wave func-
tion. The VMC method has been applied to a number of
atoms and molecules, and to condensed matter systems,
as well as being implemented in the study of model Harn-
iltonians for such systems.

For extended condensed matter systems, the simplest
and yet most fundamental model is the interacting homo-
geneous electron gas (HEG). The understanding of the
HEG is crucial, not least because it forms the basis of the
widely used and highly successful local density approxi-
mation to the exchange-correlation potential that arises
in density-functional theory (DFT). Both the unpolarized
HEG and the completely spin-polarized HEG have been
studied not only by the VMC method' but also by
Green's-function-based quantum Monte Carlo methods '

that are more accurate. As a result of these studies the
dependence on the density n (r) of the correlation energy
E, [n] of these two limiting cases of the HEG is known.
Only scarce reports of the radial distribution function
(RDF), or equivalently the exchange-correlation hole
reAecting the correlation of pairs of electrons, are avail-
able, and again only for the unpolarized or fully polar-
ized cases.

For intermediate polarizations 0 & g & I [with the
definition g=(n+ n)I(n++n ) in term—s of the ma-
jority and minority electron densities, n+ and n, re-
spectively] little has been learned explicitly about the
correlation energy E, [n, g] except some limiting
behaviors, and even less is known about the RDF. Re-
cently Perdew and Wang have combined the available
knowledge concerning the partially polarized HEG with

some formal expressions to construct approximate ana-
lytic expressions for the RDF's g„,(r), s,s'=+ or
which give the probability of finding an electron of spin s'
at distance r given that there is an electron of spin s at the
origin. Since E, [n, g] can be written (see, for example,
Ref. 7) in terms of a coupling constant average of g„.
(where the coupling constant refers to the "turning on"
of interactions between electrons) the correlation energy
and the RDF are intimately related. Very recently Ortiz
and Ballone have reported VMC and fixed-node
diffusion quantum Monte Carlo studies of the partially
polarized electron gas. Their results for correlation ener-
gies are consistent with the more refined interpolations
that are currently in use.

Contrary to the modest amount of e6'ort expended in
evaluating the RDF is its fundamental status in the
density-functional theory of inhomogeneous electronic
systems. The (unknown) exchange-correlation energy
functional E„[n] is directly formulated in terms of the
(coupling constant average of the) exchange-correlation
hole. The considerable success of the local density ap-
proximation (LDA) to DFT is understood in terms of two
important features of the spherical exchange-correlation
hole that arises in LDA: (I) it is properly normalized to
account for a single unit charge, and (2) the energy de-
pends only on the spherical average anyway, so that an-
isotropic behavior is not so important. Here we consider
a question that has received virtually no attention to date:
what is the dependence on polarization of the RDF's in
the electron gas? Future more reliable implementations
of DFT are likely to require these RDF's as input.

In this study we make the initial step in applying the
VMC method to address these questions. We have
chosen the VMC method, rather than some other quan-
tum Monte Carlo method, in anticipation of investigating
better wave functions in the future (incorporating, for ex-
ample, three-body correlations). In principle, deficiencies
in the calculated RDF's could be used directly to suggest
corrections to the Jastrow factor; in practice, all we have
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to compare with is the Perdew-Wang model, and it is not
clear yet how accurate it is, especially for intermediate
polarizations.

In Sec. II we discuss some features of the VMC method
related to our implementation. As we will discuss in Sec.
III, it is not at all a simple matter to investigate arbitrary
spin polarizations at a given density, which accounts for
the lack of such studies in the past. Results are presented
in Secs. IV and V, and a discussion and comparison with
known results is provided in Sec. VI.

II. METHOD OF CALCULATION

The point of departure of the VMC method is the
many-body wave function, which as usual we take to be
of the (unnormalized) Jastrow-Slater form

XD+(Ir, +])D ([r, ]),

where R denotes the set of electron coordinates. The
Markovian walk through electronic configuration space
was generated using the standard Monte Carlo sampling
algorithm of Metropolis et al. ' Determinant evalua-
tions and updates were performed using an X algorithm
rather than the brute force X; similar techniques are de-
scribed in Refs. 1 and 3. This speed advantage is possible
because each attempted primitive move changes merely a
single row in the determinant.

The interelectronic repulsion Coulomb term V(R) and
compensating positive background are evaluated with
standard Ewald methods and will not be discussed fur-
ther here. The local kinetic energy is given by

where To is the determinantal (free-electron) kinetic ener-

gy, and the correlation contribution to the local kinetic
energy t, of the [is ] electron is

where D+ and D are the majority and minority Slater
determinants of the free-electron gas that enforce an an-
tisymrnetric wave function. The Jastrow factor is a sym-
metric coeKcient that can be written as

(2)

g2
[V;, U —iV;, Ui +2V;, U V D ] .

2m

We have used the form of "pseudopotential"

r/b„,u„(r)= (1—e "),

(7)

(8)

in terms of the partial Jastrow factors

N, N,
J„=exp

i = li'=1
u„. r,, —r,-,

= exp[ —U„.] . (3)

Here X, is the number of particles of spin s ( = + or —).
Note that J+ =J +.

The Coulomb nature of the electron gas dictates that
u„(r) —1/r at large distances. This form has the im-
mediate consequence that one cannot cut o6' the sumrna-
tions at a finite distance, a fact that had led practitioners
to apply supercell techniques to model the HEG. We fol-
low this practice. Since u„can be written as

u„,(r) = +w„(r),r
(4)

where A is a constant and m„. is short ranged, the stan-
dard practice is to handle the A/r factor as the e /r
Coulomb repulsion is handled (although it is conceptually
quite distinct), by subtracting out a term that mathemati-
cally looks like a compensating factor of opposite sign.
The result is an Ewald expression just like the one that
occurs in handling the Coulomb interaction, ' ' plus the
m„. term which is short ranged and therefore can be
treated in real space.

In the VMC method one wishes to sample with a ran-
dom walk the local energy

' V'2 ln+,
2m

F = Vln+,
2m

E = T)„=2T—I'

one can show that

(10)

(12)

where A =e /%co =(r, /3az)'~ independent of relative
spin satisfies the plasmon constraint, and
b++ =b =(2A)', b+ =b + = A ' satisfy the
cusp condition for parallel and antiparallel spin electrons,
respectively. There is no fundamental reason why an ap-
proximate variational wave function should be required
to satisfy these conditions precisely, but allowing their
variation has been found not to result in any noticeable
lowering of the energy. Form (8) has been used by Ceper-
ley' for the electron gas (with a spin-independent value of
b ) and by Louie and co-workers " ' to study dia-
mond, silicon, and solid hydrogen.

For this form of pseudopotential the first term of Eq.
(7) is everywhere negative, and the second term is explic-
itly negative. The third term, and the net value, may be
of either sign. Ceperley' has noted that the kinetic ener-

gy can be written, and evaluated, in various ways.
Defining the quantities

=T + V(R)
%(R)

g V', %(R)
2m

%(R)+ V(R),

%'hile these must all have the same mean value over the
random walk regardless of the wave function, they can
have quite different variances depending on the quality of
the wave function. Since one interest is to explore the
quality of this variational wave function, we have moni-
tored the mean values and variances for the diferent ex-
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pressions. We have verified that K has much the smallest
variance of the three possibilities IC, T, and F (see Sec.
VI).

III. SUPERCELLS AND NUMBER OF
ELECTRONS IN THE SIMULATIONS

taining one unit of charge, while the antiparallel spin
RDF rejects only a redistribution of electrons:

J [1 g—„.(r)]4~r dr =5„
The total RDF (averaged over relative spins) is given by

2 2

We have used simple cubic supercells repeated in three
dimensions, which allows one to include effects of the
long-range Coulomb interaction at the cost of constrain-
ing the system by the resulting artificial periodicity.
Tests using progressively larger supercells and finite-size
scaling of the resulting quantities (principally energies)
are required to assess and try to eliminate supercell
effects. The alternative is to treat a finite volume. How-
ever, in a typical simulation with 5XSX5=125 elec-
trons, all but —3 X 3 X 3=27 would be surface electrons
not sampling a bulk environment, which clearly is unac-
ceptable. Thus obtaining bulk properties from a finite
volume is not feasible without periodic boundary condi-
tions.

The plane-wave states P(r)= exp(iG r) that go into
the Slater determinants are labeled with superce11
reciprocal-lattice vector G. Rotational and translational
symmetry requires that complete shells ("stars") of G
states be occupied if any member is occupied, and expec-
tations (and experience) dictate that the plane-wave states
with small kinetic energies 6 be occupied first. To avoid
complex determinants we use sines and cosines rather
than plane waves. In our simple cubic lattice of super-
cells the allowed numbers of electrons of either spin are 1,
7, 19, 27, 33, 57, 81, 93, 99, 123, 147, 171, 179, . . . .
Thus one is allowed only discrete numbers of majority
and minority electrons per supercell, and therefore
discrete values of the polarization g, although the density
can be varied arbitrarily by adjusting the lattice constant.

This discreteness has inhibited studies of the partially
polarized HEG, since it is impossible to carry out calcu-
lations of different polarizations at a given density for
fixed number of particles N in the supercell, or to do
finite-size scaling at a fixed polarization. An exception to
the first difhculty is the "magic" combination
57+57=114=81+33. This allows a direct comparison
of simulations with 114 total electrons, first unpolarized
and then with polarization (81—33)/114=0.421. We
will concentrate primarily on this magic" case. Super-
cell (finite-size) efFects cannot be eliminated, but are mini-
mized because the number of electrons is identical. We
discuss supercell effects on the RDF's below.

IV. RADIAL DISTRIBUTION FUNCTION

The RDF g„.(r) is defined as the probability that there
is an electron of spin s' at a distance r from a given elec-
tron of spin s taken to be at the origin. It is normalized
so that it becomes unity at large distances. The RDF is
important because it is a direct manifestation of the
correlation between pairs of electrons, and plays a funda-
mental role in the theory of the correlation energy.

Several features of the RDF are known. The parallel-
spin RDF represents an exchange-correlation hole con-

g(r)= 1+( 1 —g
2

g++(r)+
2 g (r)

1+( 1 —g (14)

The Kato-Kimball' ' cusp condition is

g — s 1(r =0)=g'(0)= g(0),
dr ao

and since antisymmetry of the wave function with respect
to electron coordinates requires both g„(0) and g,', (0) to
vanish, this translates into a condition on g+ alone.
Here ao =A' /me is the usual Bohr radius.

Rajagopal, Kimball, and Banerjee' (RKB) have de-
rived a further condition on the parallel spin RDF:

g,",(0)=—', aog,',"(0) . (16)

Combined with g„(0)=0=g,', (0), this constrains the
small-r behavior to be

g„(r)=—,'g,", (0) r + — r +. . .
0

(17)

r
g+ (r)=g+ (0) 1+ + '

ao
(18)

where g,",(0) and g+ (0) must be determined by calcula-
tion. RKB have emphasized that in the paramagnetic
and partially polarized electron gases the energy is partic-
ularly sensitive to the antiparallel RDF, and is less sensi-
tive to the parallel spin RDF's because they are strongly
constrained by Fermi statistics to be small where the
Coulomb repulsion is largest. The present calculations
allow the determination of the constants in Eqs. (17) and
(18), and these values and analysis of the small-distance
behavior will be provided in a separate paper.

The RDF's displayed in this paper were calculated by
sampling the configurations during the VMC runs; typi-
cally sampling was done each -N/2 attempted steps,
where X is the number of particles in the supercell. The
RDF's were collected on a histogram of width
bx =3 (r/r, ) =0.02 in the range 0 (x ~ 4 over a total of
5X10 total attempts. For a maximum step size chosen
to be 1.15r,ao the acceptance ratio was -60%. An ex-
ample of the "raw data" thus generated is shown in Fig. 1

for r, =8. [r, is the conventional electron-gas parameter:
in terms of the density n, (4m/3)(r, ao) =1/n. ] Note
that for the spin-polarized case the parallel minority-spin
RDF g (r) is noticeably more noisy than g+ (r) and
(especially) g++ (r) (there are 81~/33 =6 more + +
pairs as ——pairs). The RDF's were smoothed for pre-
sentation in subsequent figures with an approximately
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FIG. 1. Example of the radial distribution functions for r, =8
as collected from —5X10' attempted steps, before smoothing.
The dashed lines are from the Perdew-%'ang model, as in the
following 6gures. For clarity, g++ and g+ are displaced by
0.2 and 0.4, respectively.
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V. RESULTS

We confine our studies here to values of r, = —,
' to 8,

corresponding to a density range of 16 =4096 that spans
the range of most interest in solids. In cesium the
valence density corresponds to r, =5.6, in aluminum
r, =2, and in 3d transition-metal atoms the spin-polarized
d states can sample regions corresponding to r, —

—,'. We
have performed calculations for r, =

—,', 1, 2, 4, and 8, and
only representative results are presented here.
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A. Partially polarized (/=0. 42) case

The calculated RDF's for /=0. 42 and 114 electrons
(81 up, 33 down) for r, =

—,', 2, and 8 are displayed in Fig.
2 and compared with those resulting from the model of
Perdew and %'ang. The RDF's in each figure are dis-
placed consecutively by 0.2 units for clarity, and each ap-
proaches unity for x = rjr, -2 and beyond. —For r, =—,',
where correlation eFects are weakest, the agreement is
excellent. The calculated antiparallel RDF appears to be
slightly lower than the Perdew-Wang (PW') model for
x —1 —2, but the difference is within the statistical uncer-
tainty. Statistical uncertainty precludes any clear con-
clusion in the interesting region x —+0. Specifically, we
conclude that here and for other cases we discuss below
the VMC results for g+ (0) and g'+ (0) are not incon-
sistent with the P%' value.

For r, =l (not shown) the VMC and PW results are
still very close. For decreasing densities r, ~2, 4, 8
differences between the VMC and PW RDF's become
successively larger. For these values of r„g++ rises no-
ticeably above unity around x —1.8. Possibly the minori-
ty RDF g does as well, but more notably it reaches its
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FIG. 2. Smoothed (see text) radial distribution functions for
the 81+,33—case, for r/r, over the interesting region. Rela-
tive displacernents are as in Fig. 1. Symbols: VMC results;
dashed line: Perdew-%'aug model. Panels (a)—(c) correspond to
r, = —', 2, 8. Panel (c) is the smoothed version of Fig. 1.
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maximum at larger distance, near x-2.4. PW did not
attempt to reproduce the 2kI; r oscillations in their model,
which may account for its lack of an overshoot in the
parallel-spin RDF's and exaggerated overshoot in the an-
tiparallel RDF. When a parallel-spin RDF does not
overshoot unity, it will satisfy the sum rule equation (13)
by compensating (being larger) at smaller x. Although it
is not very obvious in Fig. 2 because of the displacement
of the curves, the shapes of g++ and g are quite
different, and this difference is very similar in the VMC
results and the PW model.

The antipara11el VMC and PW RDF's show increasing
discrepancy as r, increases. The PW model overshoots
unity in the region x -2 while the VMC results show lit-
tle or perhaps no such overshoot. At this time it is not
certain whether this difference is an artifact of the PW
model or a shortcoming of the VMC correlation factor.
The VMC RDF is very smooth until it becomes quite
noisy around x —0.3—0.4. As mentioned above, no
straightforward extrapolation to x ~0 is convincing, but
the VMC results are certainly not inconsistent with the
PW model values.

The density dependence of the parallel spin RDF's in
the PW model is quite small. The increasing difference
between the VMC and PW curves as r, increases rejects
almost entirely the change with density of the VMC re-
sults: as the density decreases, g„decreases for x (2
somewhat more than simple scaling with r /r, would im-

ply. This decrease, and the concomitant overshoot, is
perhaps to be expected as the electrons become more
correlated at lower density. The PW value of the oppo-
site spin overlap, g+ (0), decreases strongly, from 0.72
at r, =

—,
' to 0.03 at r, =8. Lack of the required statistics

at small r restricts our current VMC calculations from
making useful predictions on the behavior of g+ (0), ex-
cept to indicate general consistency with the Perdew-
Wang values.

0

0

0

0

Gl

'e

1.8

t.s- ~a~
57+, 57—

1.4—

1.0—

0.8—

0.6—

0.4—

1.8
57+, 57—

1.4—

g++

1.0—

0.8—

0.6—

0.4—

o.m- rs 2
P P ~ ~ I I

I
I I I I

I
I I

I
~ I I I

I
I

0 1 P. 3 4
Normalized Radius r/rs

O.P—

P 0 I I
I

~ I I
I

~ I I I
I

I I I I
I

~ ~ I

0 1 2 3 4
Normalized Radius r/rs

B. Unpolarized case

For the unpolarized case, also with 114 electrons, the
corresponding results are shown in Fig. 3. For consisten-
cy both g++ and g are shown as calculated. Compar-
ison of the VMC results and PW model follows the same
trends as in the partially polarized case, that is, good
agreement at high density, with discrepancies increasing
as the density decreases and correlation effects grow.

A feature in common with the partially polarized re-
sults (and with the fully polarized case, below) is that the
VMC RDF is smaller at larger x-3, compensating the
relatively larger value at x —1 —1.5. This distinction sug-
gests that the potential energy in the PW model will be
smaller than in the VMC calculations. Conversely, the
VMC kinetic energy may attain a smaller value than in
the PW model arising from the oscillation, i.e, the in-
volvement of fewer short-wavelength components. Due
to the complications mentioned in Sec. III, we have not
been able to carry out finite-size-scaling studies to check
these conjectures.
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FIG. 3. Radial distribution functions for the unpolarized
57+,57 —case analogous to Fig. 2, for r, = 2, 2, 8. Notation is

as in Fig. 2.
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In Fig. 4 we show the differences bg„=g„((=0.42)—g„,(/=0) for r, =4. The displacement of bg++
(bg+ ) relative to bg is 0.2 (0.8), chosen to separate
the curves conveniently. Each approaches zero at x -4.
In spite of the fact that the VMC and PW parallel-spin
RDF's do not agree precisely, this figure shows that they
give very similar polarization dependencies. The polar-
ization dependence of the antiparallel-spin RDF is van-
ishingly small in both cases.

0

0
~ M

1.4

1.2—

0.8—

0.6—

F03+, 0—

C. Fully polarized case 0.4—

In Fig. 5 the corresponding results are shown for a ful-
ly polarized electron gas with r, =4, simulated with 203
particles. The agreement in RDF's (only a single,
parallel-spin RDF in this case) between the VMC calcula-
tions and the PW model is very close. Note the (just visi-
ble) oscillation and dip in the VMC results below the PW
curve near x -2, which compensates for the slightly
higher value in the x —1.5 range. Since what discrepan-
cies there are between VMC and PW have shown up by
r, =4 for (=0 and (=0.421, we expect little if any
disagreement for r, =8 for the fully polarized case, so we
have not performed that calculation.

D. Total radial distribution function

Since the aim of Perdew and Wang in constructing
their model RDF's was to reproduce the total correlation
energy, and this function can be written solely in terms of
the total RDF, a comparison of the total RDF's to the
VMC results may be illuminating. In fact, Perdew and
Wang actually modeled only the total RDF, and obtained
the partial RDF's from approximate scaling relations for
parallel spins, and determining the antiparallel RDF to
satisfy Eq. (14). Thus comparing total RDF's is the only
completely fair comparison with the Perdew-Wang mod-
el. The total RDF's [constructed from Eq. (14) for the
VMC results] are shown in Fig. 6 for both the polarized
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FIG. 5. Radial distribution function for the fully polarized
case, with r, =4. Symbols: VMC calculation; dashed line (al-
most hidden): Perdew-Wang model.
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FIG. 4. The di6'erence between polarized and unpolarized ra-
dial distribution functions for r, =4. Symbols: VMC calcula-
tions; dashed lines: Perdew-Wang model. The ++ and +-
results are displaced by 0.2 and 0.8, respectively, for clarity.

FIG. 6. Total radial distribution function for r, = 2, 2, and 8,
for (a) the polarized case, and (b) unpolarized case. The curves
are displaced by 0.2 units for clarity.
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and unpolarized cases. For r, =
—,
' there is no noticeable

difference. For r, =2 the VMC results are slightly larger
in the region x & 1, and the difference becomes more ob-
vious for r, =8. This figure vividly illustrates the strong
decrease in g (0) with decreasing density (but recall that
the range of density in Fig. 6 is 16 =4096).

E. Supercell size dependence

A possible dependence of the VMC results on the num-
ber of particles in the simulation should be addressed;
after all, 114 particles correspond only to a roughly
5 X 5 X 5 arrangement on average. To investigate possible
size dependence we have calculated the RDF's for r, =4
using 284 particles (203+,81 —). This choice was made
because the polarization is g = 122/284 =0.430, very
close to the 81+,33—case we had already calculated
which has (=0.421. The RDF's are indistinguishable
from the 81+,33—case and are not shown. We con-
clude that the current VMC results for the RDF's are
limited somewhat by statistics but not by simulation cell
size.

VI. DISCUSSION

There are relatively few previous results with which to
compare our RDF's. It is instructive to consider the
lowest-order approximation, the Hartree-Fock (HF) ap-
proximation. In HF opposite spin electrons are uncorre-
lated: g+ (r) = 1. The parallel-spin RDF's are given by

0

0

Cl

1.8

t 6. (a) Perdevv Wan—g Model

1.4

1.0—

0.6—

r =8

It is worthy of note that the small amplitude oscillation
of g++(r) in the 2(x (3 range in the Hartree-Fock
RDF seems to be reproduced by the VMC calculation. A
more careful statistical analysis would be necessary to es-
tablish this beyond doubt.

An important question (and one not seriously ad-
dressed in this study) is: what are the limitations of the
VMC method? The approximate nature of the wave
function has two distinct (but perhaps related) conse-
quences. First, the expectation value of the energy is not
guaranteed to be accurate, but only an upper bound, and
second, the variance of the (local) energy is nonzero. Al-
though the energies have not been our concern here, we
gain some insight into the difficulties by monitoring the
kinetic energy, in the three forms I', T, and K =2T —I'
discussed in Sec. II. In a sequence of 2000 Monte Carlo
steps (a very short run) in a fully equilibrated system the

( ) 1 3
siny —y cosy

y=k rF, s

(19)
Q4—

0.2— artree —Fock

and since kz, —1/r„ this function is a universal function
of x =r/r, . [For the unpolarized case r, kF =(9a/4)'~
=1.919.] The HF results become exact in the high den-
sity (r, —+0) limit. Figures 2 and 3 confirm that the den-
sity dependence of the parallel-spin RDF's is not striking-
ly diff'erent from an r/r, scaling up to r, =8; of course the
antiparallel RDF differs strongly at small r from the HF
of unity except at very high density.

The HF RDF's are contrasted with those of the PW
model and VMC calculations in Fig. 7 for r, =8. One
difference is the kFr oscillations, which are just visible in
the HF paraHel-spin RDF's and are expected to be re-
duced by correlation. Perdew and Wang did not attempt
to model these oscillations, since they are not anticipated
to be crucial in determining the correlation energy. Our
VMC calculations cannot accurately reproduce kFr oscil-
lations either, because they arise from the sharpness of
the Fermi surface and the Fermi sphere is sampled only
discretely in our supercell calculation. Another feature
of the HF RDF for parallel spins is that it never exceeds
unity, but there is no formal restriction against g„(r)
exceeding unity.

Figure 7 indicates to what extent the correlation
modeled in the Perdew-Wang RDF results in a larger
exchange-correlation hole than is obtained in the present
VMC calculations. Over much of the range 0 &x &2 the
difference is roughly twice as large for PW as for VMC.
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FIG. 7. Comparison of the Hartree-Fock radial distribution
function (heavy lines) with (a) the Perdew-Wang model and (b)
variational Monte Carlo results for r, = 8, which are the same as
in Fig. 1(d). Curves are displaced for 0.2 units for clarity. The
Perdew-Wang RDF's differ from Hartree-Fock somewhat more
than do the VMC results. Note that the kFr oscillations in the
Hartree-Foek curves are just visible.
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FIG. 8. Cumulative averages of the three expressions for the
kinetic energy, T, F, and K =2T —F, for a short simulation.
Certain steps result in large changes in energy, suggesting that
particular regions of the wave function contribute inordinately
to the variance of the energy. Note that K is a far superior ex-
pression for evaluating the kinetic energy.

VII. SUMMARY

We have applied the variational Monte Carlo method
to study the polarization dependence of the spin-resolved
radial distribution functions in the electron gas. Our re-
sults extend the knowledge of the RDF's beyond the re-
sults for the unpolarized' and fully polarized' electron

running average value of each of these quantities is plot-
ted in Fig. 8. The means of all three of these quantities
must finally be equal (independent of the quality of the
wave function), and indeed we find them to be equal
within their variances (this is not evident from Fig. 8).
Figure 8 illustrates why the variance of K is so much
smaller than that of T (typically 3 —5 times larger) and F
( —10 times larger): the large variations in energy usually
have the same sign in T and I' and therefore strongly
cancel in K. The more illuminating feature of Fig. 8 is
that it suggests that the variance of the kinetic energy
may be dominated by certain regions where the wave
function is particularly poor. At this point we have not
determined which configurations are sampling these
dificult regions, i.e., how to characterize these regions.

gases, both based on coupled clusterlike methods. For
parallel spins the exchange-correlation hole is somewhat
larger than the Hartree-Fock result but less extended
than the model of Perdew and Wang. For the antiparal-
lel RDF the VMC result is less structured than that of
Perdew and Wang. In both cases the differences are
small at high density (r, =0.5 —1) but become pro-
nounced for r, =4—8. The present results support earlier
suggestions (for example, Rajagopal, Kimball, and Man-
erjee' ) that the correlation energy is more sensitive to
the antiparallel-spin RDF g+ than to the parallel-spin
RDF, so that particular attention should be given to im-
proving the antiparallel correlation factor in the
Jastrow-Slater wave function.

With the continuing discoveries of important materials
that are not well described by the local density approxi-
mation or even the generalized gradient approximation
(GGA) to density-functional theory, there is increasing
reason to proceed to a fully nonlocal exchange-
correlation functional. Fahy, Wang, and Louie' have
performed pioneering work on the position dependence
of the RDF in diamond and silicon, but most of the seri-
ous deficiencies of the LDA and GGA occur in magnetic,
or nearly magnetic, materials rather than the simpler,
nonmagnetic materials. A prime candidate to give quali-
tative improvement is the weighted density approxima-
tion, whose implementation requires a knowledge of the
(coupling-constant-averaged) pair correlations that are
the topic of this paper. The study of pair correlations in
the polarized electron gas must be continued to supply
the necessary input to such calculations. In this way we
may learn how far one can proceed in the description of
real, inhomogeneous materials using a theory based on
the homogeneous electron gas.

ACKNOWLEDGMENTS

We thank J. P. Perdew for providing a program to cal-
culate the model radial distribution function of Ref. 7,
and for several communications on this topic. J. P. Per-
dew and P. J. Reynolds provided helpful comments on
the manuscript. We acknowledge useful conversations
with J. W. Serene and D. W. Hess in the early stages of
this work. This research was supported by Once of Na-
val Research Contract No. N00014-93-WX-24012. Some
of the computations were carried out at the Cornell Na-
tional Supercomputing Facility.

~D. Ceperley, Phys. Rev. B 18, 3126 (1978).
C. J. Umrigar, K. G. Wilson, and J. W. Wilkins, Phys. Rev.

Lett. 60, 1719 (1988).
3S. Fahy, X. W. Wang, and S. G. Louie, Phys. Rev. Lett. 61,

1631 (1988);Phys. Rev. B 42, 3503 (1990).
4D. Ceperley and B.J. Alder, Phys. Rev. Lett. 45, 566 (1980).
5P. J. Reynolds, D. M. Ceperley, B. J. Alder, and W. A. Lester,

Jr., J. Chem. Phys. 77, 5593 (1982).
J. G. Zabolitzky, Phys. Rev. B 22, 2353 (1980).
J. P. Perdew and Yue Wang, Phys. Rev. B 46, 12947 (1992).

Note that these authors constructed their model for the
coupling-constant-averaged radial distribution function. The

physical value used in this paper is obtained from the
differential relationship given in their Eq. (7).

8G. Ortiz and P. Ballone, Europhys. Lett. (to be published).
J. P. Valleau and S. G. Whittington, in Statistical Mechanics,

edited by B. J. Berne (Plenum, New York, 1977), Pt. A, p.
137.

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H.
Teller, and E. Teller, J. Chem. Phys. 32, 1087 (1953).
S. G. Louie, in Atomic Scale Calculations in Materials Science,
edited by J. Tersoff, D. Vanderbilt, and V. Vitek, MRS Sym-
posia Proceedings No. 141 (Materials Research Society, Pitts-
burgh, 1989), p. 3.



48 VARIATIONAL MONTE CARLO STUDY OF THE PARTIALLY. . . 14 867

S. Fahy, X. W. %'ang, and S. G. Louie, Phys. Rev. Lett. 65,
1478 (1990).

X. W. Wang, J. Zhu, and S. G. Louie, Phys. Rev. Lett. 65,
2414 (1990)~

I4T. Kato, Commun. Pure Appl. Math. 10, 151 (1957).
J. C. Kimball, Phys. Rev. A 7, 1648 (1973);J. Phys. A 8, 1513

(1973).
' A. K. Rajagopal, J. C. Kimball, and M. Manerjee, Phys. Rev.

B 18, 2339 (1978).
17F. A. Stevens, Jr. and M. A. Pokrant, Phys. Rev. B 8, 990

(1973).
I~J. G. Zabolitzky, Phys. Rev. 8 22, 2353 (1980).


