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Interplay between disorder and electron interactions
in a d =3 site-disordered Anderson-Hubbard model: A numerical mean-field study

Michael A. Tusch and David E. Logan
University of Oxford, Physical Chemistry Laboratory, South Parks Road, Oxford OXI 3QZ, United kingdom

(Received 21 April 1993; revised manuscript received 28 June 1993)

We consider a numerical mean-field study, at the unrestricted Hartree-Pock level, of a gaussian site-
disordered Anderson-Hubbard model on a simple cubic lattice. The phase diagram at half filling is ob-
tained, including magnetic and metallic-insulating phases, and all relevant phase boundaries are found to
occur in a relatively weak-coupling regime. Variation with filling fraction y is also considered, with par-
ticular reference to the y-differential disorder-induced enhancement of electron interactions that lead to
site-differential local-moment formation. The inhomogeneous distribution of local charges and magnetic
moments over the sites is found to influence strongly the distribution and character of pseudoparticle
states. This enables a simple microscopic rationalization of the metal-insulator transition and its phase
boundaries in terms of an interplay between disorder and electron interactions, giving in addition a natu-
ral explanation for the two-fluid-like coexistence of delocalized charge-carrying states and strong-local-
moment sites.

I. INTRODUCTION

Understanding the combined effects of disorder and
electron interactions is a central issue in condensed-
matter physics. The problem has thus attracted great in-
terest (see, e.g. , Refs. 1 —22) by a wide variety of methods,
although much remains to be learned —even
qualitatively —about the interplay between disorder and
interaction effects.

We describe here a detailed numerical study, at a
mean-field level, of perhaps the simplest model with
which to study the simultaneous occurrence of disorder
and interactions: a one-band disordered Anderson-
Hubbard model (AHM) with uncorrelated site disorder,
in d =3 for a simple cubic lattice, and with nearest-
neighbor hopping matrix elements T; = —T. ' ' The
model Hamiltonian is

H =pe;n; Tg c; c +—Ugn;+n;
i, o- (ij &, o- i

with n; =c;t c, , o =+ denoting the spins, and the (ij )
sum over nearest-neighbor sites. On-site electron interac-
tions are embodied in the repulsive Hubbard U, and the
site energies I e'; I are here regarded as independent ran-
dom variables drawn from a Cxaussian distribution g(e)
of variance 5 . The model is thus characterized by three
parameters: U= U/8, a scaled measure of the interac-
tion strength, with B = 12 T the unperturbed ( U =0=b, )

simple cubic bandwidth; b, =b, /B, a scaled measure of
the site disorder; and the electron filling fraction
y =N, /N, the ratio of the number of electrons (N, ) to
sites (N).

Granted a finite-size numerical study, no approxima-
tions are made here in treating the site disorder. Interac-
tions are treated at the unrestricted Hartree-Fock (UHF)
level, which, for any disorder realization, is a mean-field
approximation whose study we believe is justified for

several reasons: (i) It is central in describing the instabili-
ties to local moment formation, a feature of particular
importance in disordered systems where local moment
formation occurs on an inhomogeneous scale. ' ' ' With
disorder present, a rich range of physica1 behavior is cap-
tured at a UHF level, as is evident from recent work on
both spatially disordered' ' and site-disordered
AHM's. (ii) As discussed below, UHF also provides an
adequate description of the limits of the model and per-
mits ready examination of the system in a wide region of
the (5, U) phase plane between these limits. The resul-
tant metallic-insulating and magnetic phase boundaries at
half filling are in fact found here to occur in a relatively
weak-coupling U regime where UHF for the ground state
is likely to be quite reasonable. (iii) UHF is amenable to
systematic improvement, forming a natural starting point
for inclusion of many-body correlations. In the strong-
coupling limit of the pure d =2 Hubbard model, for ex-
ample, a random-phase approximation (RPA) about the
half-filled UHF ground state yields the exact linear spin-
wave spectrum of the spin- —,

' Heisenberg model (see, e.g. ,

Ref. 23), and a one-loop correction to the sublattice
magnetization ' ' gives excellent agreement with d =2
Monte Carlo studies. With disorder present, a knowledge
of the inhomogeneous mean-field ground states is thus a
necessary prerequisite in this regard.

For these reasons, and also for its physical clarity, we
believe a mean-field approach such as UHF to be at least
a natural starting point for the model system with both
disorder and interactions present. With it, we attempt
here to gain a broad microscopic picture of the interplay
between disorder and electron interactions. In Secs.
II—IV we focus on half-filling, y =1, with particular
reference to the (b„U) phase diagram. In Sec. II we de-
scribe briefIy the UHF approximation employed and the
measures used to determine the character of the phases.
Section III gives our assessment of the magnetic phase di-
agram, and the antiferromagnetic, spin glasslike and
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paramagnetic phases. In Sec. IV we consider metallic-
insulating behavior and the metal-insulator transitions
(MIT). The dominant type of MIT in the (E, U) plane
for y = 1 is the M-(gapless)IT occurring when pseudopar-
ticle states at the Fermi level Ez become localized; al-
though we also find a direct metal to Hubbard insulator
transition confined to a very narrow region of the phase
plane at small but nonzero disorder h.

In Secs. V and VI we extend the work to filling frac-
tions y & 1, considering the evolution of the system with y
up to half filling for representative points in the (E, U)
plane. The motivation for this is described in Sec. V.
Since states towards the lower edge of the U=O nonin-
teracting spectrum are increasingly strongly localized,
the disorder-induced enhancement of interactions in lead-
ing to local moment formation may be differential in the
filling fraction y. In particular, and in contrast to non-
disordered systems, it has been argued ' that a "quasia-
tomic" regime of strong local moments and mainly singly
occupied nonoverlapping pseudoparticle states must con-
sequently result for low y, regardless of whether the in-
teraction strength U is large enough to ensure the ex-
istence of moments at half-filling. This is considered in
Sec. VI. The existence and characteristics of the quasia-
tomic regime are described in Sec. VI A; the evolution of
the system with y beyond the quasiatomic y domain and
up to half-filling is considered in Sec. VI B; and the varia-
tion of results with U and 6 is discussed in Sec. VI C. A
brief summary is given in Sec. VII.

Throughout the paper we attempt to give a microscop-
ic rationale for observed behavior, central to which is the
inhomogeneous distribution of local magnetic moments
(and charges) over the sites. These, for example, will be
shown to determine the sites which typically give the
dominant contribution to pseudoparticle states at EF
(thus providing evidence for a recently suggested ' paral-
lel to the single-impurity Anderson model ), and may in
turn be related to the localization characteristics of the
Fermi-level pseudoparticle states, and hence to the MIT.

Before proceeding we comment on the limits of the
model, the simplest of which is the atomic limit B =12
T=O. The Gaussian site energy distribution g(e) is
shown in Fig. 1(A), and from particle-hole symmetry
(which is preserved for B%0) the Fermi level
EF(y ) = U —EF(2 y), such that at—half filling
Ez(1)=—,'U. From stability of the atomic limit ground
state to particle-hole excitations, sites in an e interval of
width U below E~(y) are the singly occupied local mo-
ment sites, with a charge and local moment magnitude of
unity. All other sites are nonmagnetic, those with
e &EF(y ) Ubeing doubly —occupied by electrons and
those with e)Ez(y) being empty, and at half filling in
particular the fraction of moment carrying sites clearly
increases with U/d. Vfe also note that, regardless of the
interaction strength U, and for any 5 & 0, there is no true
Hubbard gap in the atomic limit single-particle spectrum
D (E) for any y. These features are correctly preserved at
a UHF level.

The nontrivial limits of the model are the noninteract-
ing (U=O) but disordered Anderson limit, where Eq.
(1.1) reduces to a site-disordered tight-binding model, and
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FIG. l. (A) The Gaussian site energy distribution g(e), with
atomic limit site occupation illustrated for half filling: singly
occupied local moment sites [region (a)], doubly occupied sites
(b), and unoccupied sites (c). (8) Disorder-averaged D(E) vs
E=E/B in the noninteracting limit for 5= —,'~ and N=10
sites; mobility edges in D(E) {Ref.26) are indicated by arrows.
The unperturbed simple cubic spectrum (dashed line) is shown
for comparison.

II. UHF

The most general form of UHF is the spin-rotationally
invariant "Heisenberg-spin" form. In view, however, of

the nondisordered (E=O) pure Hubbard model. For
U =0, Anderson localization of states at E~(y) leads to a
pure disorder-induced MIT at a critical value b,, (y) of
the scaled disorder. With a Gaussian g(e) it is
known that for b, )—,

' all states in the noninteracting
spectrum are localized. At 6=—,', E =0 band center
states become delocalized, and for b (—,

' both localized
and extended states occur, separated by mobility edges at

E, ; mobility edge trajectories are considered in Refs.
2S—27. Thus, at half filling b,,(1)= —,', while b,, (y) & —,

' for
y &1. Figure 1(B) shows the disorder-averaged single
particle spectrum D(E) for U=O and b, = —,'„obtained
numerically for X = 10 sites; the unperturbed simple cu-
bic spectrum is also shown, in terms of whose bandwidth
B all energies are scaled. States at E=0 [=E~(1)] are-
extended at the chosen b„and mobility edges (from Ref.
26) are shown.

At half filling, y =1, and for bipartite lattices such as
the simple cubic, the ground state of the pure Hubbard
model is believed generically to be a two-sublattice anti-
ferromagnetic insulator for all U)0 (see, e.g., Refs.
28 —30). In contrast to some many-body approaches, this
feature is preserved at a UHF level, where the y =1
ground state is a uniform Neel antiferromagnet with a
Hubbard gap in the single particle spectrum D (E) for
any nonzero U. ' The effect arises from the Fermi sur-
face nesting characteristic of the unperturbed simple cu-
bic lattice, a feature we anticipate obviated by the pres-
ence of disorder, leading for suitably small but nonzero 5
to the possibility of a paramagnetic metal to antiferro-
magnetic metal to antiferrornagnetic insulator sequence
with increasing U, which is typical of the pure half-filled
Hubbard model for nonbipartite cubic lattices (see, e.g. ,
Ref. 32).
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the expected dominance at half filling of P,' '=0 Ising-like
UHF ground states, we here consider explicitly "Ising-
spin" UHF where the single-particle states are pure spin
orbitals. The validity of this approach has been checked
for a range of points in the (E, U) phase plane for y =1
by (a) investigation of the stability matrix, which, if
positive definite or semidefinite, shows the Ising-like solu-
tions under test to be at least locally stable with respect
to RPA-like collective particle-hole excitations; and (b)
direct implementation of the Heisenberg-spin UHF. In
all cases the Ising-like solutions we consider were found
to be stable.

For any disorder realization the spin-separable Ising-
spin UHF Hamiltonian is

H=ge, n, T—g ctc, =gH (2.1)

The effective cr-spin site energy e; (o.=+) is given by

e;~=a;+ Un; =e;+—'U[n, —op;], (2.2)

where {n; } are the mean occupation numbers in the
UHF ground state, and we have introduced the site local
charge n, and local magnetic moment p, ( =2s;, ) given by

n; =n;++n;, p,. =n, + —n; (2.3)

Pseudoparticle states are found from H ~% )
=E ~%' ) with ~'I' ) =g;a; ~P; ) expanded in the
site basis, together with the self-consistency
equations n; =g &E ~a; ~

for the {n; }. Since

H =H({n, }),a—n iterative self-consistency procedure
is implied, and the equations are solved numerically by
Lanczos diagonalization at each iteration step. This al-
lows us to study quite large systems (up to N =10 )
despite the need to average over many disorder realiza-
tions of the bare site energies {e;} for each (b„U) point.
The principal limitation is that I.anczos degeneracies pre-
clude direct examination of the 6~0 limit. We find,
however, that values of 6 as low as 0.025 can be em-
ployed without diSculty, and the 6=0 pure Hubbard
limit for y =1 is in any event soluble analytically at the
UHF level (see, e.g., Ref. 31).

To map out the phases at half-filling we obtained self-
consistent solutions for several hundred points in the
(b., U) plane, and for each point a sufficient number of
disorder realizations was considered to give adequate
statistics (up to 20 near phase boundaries). In general,
many stable UHF solutions may coexist for a given disor-
der realization at a given ( b„U ) point. By repeating the
calculations for several different initial or input states—
including uniform Neel antiferromagnets (AF s), disor-
dered AF configurations with input {n;,~p;~} derived
from the atomic limit 8 =12T=O, paramagnetic states
(via restricted HF), and states with random initial
charge-spin distributions —we explore a good proportion
of the possible final or converged solutions. Since UHF is
variational, our criterion for the nature of the ground
state is energetic, as discussed further in Sec. III.

For a given disorder realization at any (b„U) point,
the distribution of self-consistent local charges and mag-
netic moment magnitudes over the sites may be charac-

terized by the mean charge and local moment magnitude
per site of energy e, viz.

n(e)=N, ' g n;, ~p(e)~=N, ' g ~p~, (24)

where N, is the number of sites with bare site energy e,
such that N, /N=g(e)dE In. the 8 =12T=O atomic
limit described in Sec. I, for example, n; (and

~ p; ~) has the
same value for all sites with a given e;=e, whence
lp(e) ~

=min[n (e),2 —n (e)] with n(E) =0, 1, or 2 accord-
ing to site occupancy; see Fig. 1(a).

The bulk magnetic character of converged UHF solu-
tions is determined by magnetic ordering (or otherwise)
of the local moments, rejected in the relative phases of
the Ip, }.To characterize this we follow Dasgupta and
Halley and examine the Fourier transform of the z com-
ponent of the spin density,

S,(k) =—gp, exp(ik R; ) .1

l

(2.5)

D (E)=N '+5(E E)=N 'gD; —(E), (2.6a)

D;.(E)=y la;..I'S(& —E..) (2.6b)

the local o-spin DOS for site i; with S,'"—=S,(k=O)=0,
D (E)=D (E) holds on the average (or, for a given
disorder realization, in the N ~ &x limit). It is also help-
ful to introduce ' an e-resolved local DOS,
D (e;E)= —,'g D (e;E), where

D (e;E)=N, ' g D; (E) (2.7)

is the mean local DOS per site of energy e, and in terms
of which

D(E)= f D(e;E)g(e)dE. (2.&)

The total DOS is thus a composite of the local spectra
D (F.;E) which, if sites of energy e possess local moments,
will be shown in Secs. IV and VI to consist of overlapping
but resolved lower and upper local Hubbard subbands.

The M-(gapless)IT occurs when pseudoparticle states
at the Fermi level E~(y) = [ U —EF(2—y) ] become local-
ized. To assess directly the localized or extended charac-

A disordered AF phase, for example, produces an lS, (k) l

sharply peaked at ka/~=(1, 1, 1) (with a the lattice spac-
ing) on the order of the mean local moment magnitude
per site; a spin-glass (SG) phase gives numerous small
peaks in ~S, (k)

~
with none dominant; and a paramagnetic

(P) state has p, =0 for all sites. These are considered in
Sec. III.

For any disorder realization, relevant densities of
single-particle excitations (DOS), or pseudoparticle spec-
tra, also follow directly. The total (normalized) DOS is
D (E)= ,'g D (E), wh—ere the total o.-spin DOS is given

by
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ter of pseudoparticle states of energy E (and at EI; in par-
ticular} we consider the mean inverse participation ratio
(IPR): L(E), where an overbar here denotes a disorder
average for pseudoparticle states of both spins within a
narrow range E+0.025B. For a single o.-spin pseudopar-
ticle state of energy E =E, L( E)=g; ~ a; ~

and
-1/m for a state uniformly spread over m sites. In the
therinodynamic limit L (E) is thus zero for a delocalized
state and non-zero for a localized state with magnitude
roughly the inverse of the number of sites participating in
the state. For a finite system, L (E))0 necessarily, but
the location of mobility edges may be estimated satisfac-
torily from a threshold mean IPR, L„appropriate to a
particular system size, such that for L(E))L,
[L(E)(L, ] states of energy E may be deemed localized
[extended]. In the noninteracting limit, this threshold
has been addressed via a finite-size scaling analysis by
Chang, Bauer, and Skinner, who find L, to scale with
system size as

L, =1.14/No 48 . (2.9)

To estimate the M-(gapless)I phase boundary in the
present case, Eq. (2.9} will be used for L, . For N =512
sites, the resultant L, =0.06 indeed reproduces correctly
b.,(1)= —,

' for U=O (see Fig. 2). Although the effect
of U on the N scaling of L, is not known (and a computa-
tional determination of it would be prohibitively expen-
sive), the location and features of the MIT phase bound-
ary are not sensitive to the chosen L„as discussed fur-
ther in Sec. IV [and as is evident from the y =1 Fermi
level IPR profile in the (b„U) plane, Fig. 5].

While the IPR is an important diagnostic in assessing
the character of pseudoparticle states, it gives little direct
physical insight into why the states are localized or ex-
tended. Localization of pseudoparticle states stems ulti-
mately from disorder inherent in the distribution of
effective o -spin site energies [e; ] which enter the UHF
Hamiltonian H of Eq. (2.1); and since e; = e;
+ —,

' U [n; —a.p, ], this arises both from explicit disorder in
the bare [E;] [embodied in g(e)] and also from the
charge-spin disorder rejected in the distribution of
[n;,p; ]. In order to determine the extent to which sites
with different bare site energies e contribute to pseu-
doparticle states of a given energy E—and thus to relate
the nature of pseudoparticle states, at Ez in particular, to
the self-consistent distribution of local magnetic moments
over the sites —we consider the Fermi-level charge densi-
ty H(e;EF)= 2g H (e;Ez).—' H (e;E) is the quantum
probability density that electrons in cr-spin pseudoparti-
cle states of given energy E will be found on sites with
bare site energy e and is given by

garding D =D ). Further, it is evident that H (e;E)
is related to the pseudoparticle spectra defined above by

H (e;E)=g(~)D (~;E)ID (E) . (2.11)

Although H(e;E~) [or H (e;EI,)] does not give direct
information on localization it enables us, when combined
with the IPR, to rationalize the localization characteris-
tics of Fermi-level pseudoparticle states —and hence the
M-(gapless)IT —in terms of site-differential local moment
stability [refiected in ~p(e)~]. Further, introduction in
particular of the e-resolved quantities enable contact with
a recent statistical mean-field approach ' to a site-
disordered AHM (formulated at a coherent potential ap-
proximation level within a UHF framework), the results
of which will be shown to be in good agreement with the
present study.
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III. y =1 MAGNETIC PHASES

Our assessment of the y = 1 magnetic phases for
U &0.8 and O. OS &6&0.8 is shown in Fig. 2. Represen-
tative examples of ~S, (k)~ are shown in Fig. 3 for (a)
(6, U)=( —,'„1)and (b) (5, U)=( —,'„—,'), where the system
is a relatively clean antiferromagnet, and (c)
(&, U) =( —,'„0.15) as an example of a spin-glass-like
phase.

For any disorder realization at a given (b„U) point,
different initial or startup states give final or converged
UHF solutions very close in energy, typically within 1%.
The magnetic ordering associated with the lowest-energy
converged solution is deemed to be that of the ground
state. While the global UHF ground state in a disordered
system, with many potential local energy minima, is in
general unlikely to be thus found, we note the following:
(i) Different AF startups (see Sec. II) typically converged
to the same solution and invariably gave the lowest-
energy final state, whatever its magnetic character. In

gp (e;E )5(E E)—
H (e;E)= +5(E E)—(2.10) 0.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0,8

where p(e;E )=g;~a; ~ 5(e; —e) is the corresponding
probability density for a single o-spin state of energy
E . By definition jdeH (e;E)=1, and with St"=0,
H =H on the average (cf. the comments above re-

FIG-. 2. Overall y =1 phase diagram. AF, antiferromagnet;
SCx, spin glass; P, paramagnet; M, metal; I, gapless insulator;
HI, Hubbard insulator. The indicated region around the M-I
boundary {thick, solid line) shows 0.05 & L{E+)& 0.07.



48 INTERPLAY BETWEEN DISORDER AN D ELECTRON. . . 14 847

g9 0..6gg

FIG. 3. Representativp entative examples of lS, (k)l
in the (k~, k„) plane with k =m

i a (4, U) =( —,'2, 1) (AF); (b)

(6, U) =( —,'2, 2 ) (AF); and (c) {6,U)
=( —,',0. 15) (SG).
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majority of disorder realizations at a given (b„U) point
[see, e.g. , Fig. 3(b)]. Likewise, in approaching the SG-AF
border region from the SG side, ~S, (k)~ for the lowest-
energy states retains characteristic SG-like structure for
almost all disorder realizations, with numerous randomly
distributed small peaks in S,(k) and none dominant. In
the AF-SG border region, however, we find the situation
mentioned above of mixed AF or SG lowest-energy states
according to the disorder realization at a given (E, U)
point. A disorder average of ~S,(k)

~
here would by itself

suggest an AF phase, since the AF peaks in ~S, (k)~ will
be reinforced on the average while the small random SG-
like peaks will tend to wash out; but since SG lowest-
energy states occur with significant measure, we do not
regard ( ~S, (k)~ ) as an appropriate diagnostic. Rather,
the behavior mentioned hints at the absence of a direct
AF-SG transition, with a possible two-phase region of
not insignificant width; but further resolution is unfor-
tunately difficult, since around the AF-SG border (where
~p~ =0.05) final-state energy difFerences are very small.

Although a magnetically ordered ground state results
if the local moments are appropriately phase locked, it
will nevertheless be significantly disordered due to the in-
homogeneous distribution of local moment magnitudes
over the sites. To examine this and relate it to the rela-
tive location of the different magnetic phases in the
disorder-interaction plane, Fig. 4 shows disorder averages
of the mean local moment magnitude per site of energy e,
~p(e)~ [Eq. (2.4)], and the corresponding mean local
charge n (e) for (b„U)=( —,'„1)and ( —,', , —,

' ), where the sys-
tem is a disordered AF [cf. Figs. 3(a) and 3(b)], and
(b„U)=( —,', , 0. 15) in a SG region [see Fig. 3(c)]; the cor-

responding atomic limit distributions described in Sec. II
are also shown. For the AF examples, Figs. 4(a) and 4(b),
the atomic limitlike character of the ~p(E)~ /n (e) distri-
butions is evident. The main effect of electron hopping
processes (T) is to erode the distributions close to the lo-
cal moment boundaries at Z=e/B =+—,

' U. This narrows
somewhat the Z range of sites with strong moments, and
the extent of erosion increases with decreasing U for fixed
disorder A. The essential characteristics of the atomic
limit nonetheless remain evident for the U= —,', 1 exam-

ples of Fig. 4: Strong atomiclike local moments persist
on sites with bare site energies Z in a range of width —U
below the y = 1 Fermi level at EF=EF/B = —,

' U, the max-
imum such occurring at the center of the local moment
range K=0 where n (0)= 1.

In the AF regime —for both a given disorder realiza-
tion, and over an ensemble of such —the e dependence of
the mean local moment magnitude per site of energy e,
~p(e) ~, gives a good representation of the distribution of
local moment magnitudes: Most sites in a narrow e inter-
val have moments close to the mean ~p(e)~; while RMS
fluctuations relative to the mean are most significant
close to the y = 1 local moment boundaries around
Z=+ —,'U, where ~p(e)~ becomes small, they are not the
dominant theme. This is not so for the small-U SG phase
(where the mean moment magnitude per site ~p ~

~ 0.05).
The typical SG ~p(e)~ of Fig. 4(c) shows very significant
erosion of atomic limitlike behavior, with tiny ~p(e) ~'s in
the range ~'F~ 5 —,

' U. In contrast to an AF phase, however,
the SG phase is typified by significant local moment insta-
bilities occurring on only a small fraction of sites with
~Z~

~ —, U for any given disorder realization. This arises

(b)

0
—1

FIG. 4. n (e) and ~p(e) ~
(solid lines) vs

Z =E/B, together with atomic limit
~ p( e)

~

(dashed line) for y =1, 5= —, , and (a) U=1,
(b) 2, and (t=) 0.15.
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from disorder-induced production of statistically rare lo-
cal environments which favor the formation of strong
atomiclike moments on only a small number of the sites
with a given ~Z~

~
—,
' U, the majority of such having very

small (or no) moments.
The relative locations of the different magnetic phases

in the (6, U) plane (Fig. 2) may be rationalized from the
above discussion. Dominance of the AF over the SG
phase is naturally expected for larger U, where moments
both become more stable and occur on a greater fraction
of the sites. Similarly, one expects the SG phase to be
favored over the nonmagnetic P phase for larger disorder
6 due to an enhanced probability of producing sites in
rare local environments.

We comment finally on the nonmagnetic P phase in the
y = 1 site-disordered AHM. For spatially disordered
AHM s, disorder in the distribution of hopping matrix
elements TJ = T(

~ R; —R~ ~ ), arising from disorder in the
site center-of-mass positions IR, ], also produces a range
of local environments leading to local moment formation
on an inhomogeneous scale. ' ' Bhatt and Fisher' have
recently argued against the occurrence of a P regime, and
hence normal Fermi-liquid behavior, in such systems.
They argue that at any mean site number density p„rare
statistical density fluctuations will always lead to local
moments on some sites; thus, even for low disorder (high

p, ), some stable moments will persist. If applied to the
present site-disordered AHM, these arguments might
correspondingly suggest the absence of a P regime, the
apparent presence of which in our calculations would
thus be ascribed to finite-size effects. Two points should
be noted in this regard: (i) In a recent finite-size numeri-
cal study at UHF level of a spatially disordered AHM
with quenched liquidlike disorder, we indeed appear to
find what Bhatt and Fisher' suggest —significant mo-
ments on a few rare sites even at high mean densities and
the absence of a true P regime. This is in contrast to the
present work. (ii) The appearance of a P phase in the
simple cubic site-disordered AHM would seemingly ac-
cord with the intuitive expectation that site disorder, in
removing the characteristic Fermi surface nesting of the
unperturbed (U =0=6, ) lattice, will lead to a P regime
for sufficiently low U, analogous to the half-filled pure
Hubbard model on nonbipartite cubic lattices. We be-
lieve it likely that this difference between the site-
disordered and spatially disordered AHM is real. In the
latter case, any site could potentially be in a rare region
of low local density and thereby be able to sustain a mo-
ment. For the half-filled site-disordered model, in con-
trast, only sites within a relatively small (U~b. ((I)
width —+—,

' U of 8=0 can potentially sustain local mo-
ments, as those with lower or higher 8's will be largely
doubly occupied or empty, respectively; and sites with
Z=O toward the center of g(e) are those which are least
likely to be surrounded by sites with widely differing 8 s,
and thus to have rare local environments.

IV. y = 1 METALLIC AND INSULATING PHASES

For the half-filled noninteracting pure Anderson limit
discussed in Sec. I, the system is metallic (insulating) for

0.8
0.6;.::::::.,-:. 06

op

0& '"

p.2 O,p

oo
Oq

FIG. 5 Fermi-level IPR profile L(E+) at half filling in the
(A, U) plane for 5)0.05 and N=512 site systems. The M-
(gapless)I boundary obtained from L(Ez)=0.06 is shown. The
HI region (see text and Fig. 2) has been excised and the profile
clipped at L(EF ) =0.2.

b, &A, (1) [6)b, (1)]with b, ,(1)=0.5. In the non-
disordered pure Hubbard limit, in contrast, the half-filled
bipartite system is a Mott-Hubbard insulator for all
U) 0, the Fermi level EF(1)=—,

' U lying in a true Hub-
bard gap between the split lower and upper Hubbard
bands in the pseudoparticle spectrum D (E). ' For the
relatively weak-coupling interaction strengths considered
here, however, the presence of only a small degree of site
disorder is sufficient to broaden the Hubbard bands, elim-
inating the true gap and producing a pseudogap in D (E),
in which E~(1) lies. Insulating (I) or metallic (M) charac-
ter is then determined by whether pseudoparticle states at
E~ are localized or extended, assessed via the inverse par-
ticipation ratio as described in Sec. II. We thus focus ini-
tially on the M-(gapless)I transition.

The Fermi level IPR profile [L(EF)] in the (5, U)
plane for y = 1 is shown in Fig. 5, obtained from N =512
site calculations. Projection of the appropriate threshold
IPR, L, =0.06 [Eq. (2.9)] on to the (b„U) plane gives the
M-(gapless)I phase boundary shown in the full phase dia-
gram, Fig. 2. The U=O critical disorder, 6,(1)=0.5 is
correctly reproduced; the relative insensitivity of the lo-
cation and features of the MI phase boundary to the
chosen L, is evident from the relative steepness of the
L(E~) profile around the L, =0.06 line on Fig. 5, and is
also illustrated by the shaded region 0.05 &L, &0.07
shown in Fig. 2.

To illustrate the self-consistent pseudoparticle spectra
and mean IPR L(E) as a function of energy E, Fig. 6
shows the disorder averaged total spectrum D(E) at
y =1 for fixed disorder 6= —,', and for U=0. 5 and 0.75;
the corresponding L(E)'s are also shown, together with
mobility edges likewise inferred from L (E, ) =0.06. With
increasing U, D (E~ ) decreases and the pseudogap
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(a) (b)

1.0— 1.0—

—1.0 —0.5 0.0 0.5 1.0 1.5
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0.0
—0.5 0.0 0.5 1.0 1.5

FIG. 6. Total spectrum D(E) (solid lin )
'

e vs E=E/B aty =1
for 5= —,

' and (a) U= . a=0.5 {AFM) and (b) U=0. 75 {AFI). The
L(E) for N =512, and the arrows show es-dashed lines show

timated mobility edges.

'l.5-

0.5-

0.0
—1

effective o.-spin site ene gy
~ ~ r distribution

and (a) U=O, (b) U= 4, and (c)
12

FIG. 7. The y =1
f(e, ) vs e; EF for-
U=—12'

deepens; for U=0. 5 states at EF=—,'U are delocahzed
is an AFM, while for U =0.75 the systemand the system is an

AFI. Although commensurate with the intuitive ex-is an
hances localiza-that increasing U in general en-anc

tion and hence the insulating phase, such behav'
ubiquitous: or xe'q ':F fi d 5 somewhat in excess of the U=O
critical disorder 6 (1)=0.5 for example, Fig. 2 shows an

ed I—+M transition occurring at smallinteraction-induce —+
interaction strengths, followed by the expecte ~ a

13, 15larger U values.
'

er first theTo examine this microscopically we consi er rs e
self-consistent distribution f (e; ) [=f e;
effective o.-spin site energiee

' - ' ' '
s e =e.+ 'U[n; ——op;],

which enter t ethe UHF H [Eq. (2.1)] and play essentially
m as thethe same ro e in e1 in the disordered interacting system as e

er ies does inGaussian distribution g(F. ) of bare site energies oes in

for U=O. Figure 7 shows f (F;~) vs Z;~—

rder b, = —' and U=(a) 0, (b) 0.25, and (c) 0.5. For the

f (Z ) is narrowed by an overall a11 amount o or er re
l 0'

(e). This arises because astive to the noninteracting g e .
h ' low-e sites are significant ynoted by Ma an ing, o

the UHF ground state, witdoubly occupied in e
n = 1 =n; see Fig. 9(b) below for n(e)/~@(e)~], so

ff (Z ) decreases the effective site disor er re a-lowing 0 I~ e
U =0 increasing the fraction otive to

=E, which naturally participate most signifi y
''

nificantl in

b'1' the metallic phase for small11 U as oun y ai ize e
studies and is evi-and Singh' in their macroscopic

dencedint ey= - r of Fi .h =1 M-(gapless)I phase boundary of Fig.
&0.65 the system is insulating for U—2: For 05(h . e

i initiall driven metallic by increasing
e

' - 1 IPR rofile Fig. 5 where, forther seen in the Fermi-leve pro

for 6&0.5 w ere eh the system is metallic for U=, sug-
nt of thegesting the i ei oo1'k 1'h d of small-U enhancement o

1 conductivity in the metallic regime.
~ Uf hThe first major effect of increasing rom

stabilize the metallic phase, as above.
But as the interaction strength is increase ur er,

'n 1 stabilize on a progressively
lar er fraction of sites, a "pseudogap" deve1ops in

=E ( =—'U), as illustrated in Fig. 7(c), by
in U to 0.5 for the chosen 5= —,', . A precursor oincreasing U to . or e

in U. Since the density of sites withfurther with increasing . ince
ant1 ine. =EF—which thus participate most significant y in

E —drops significantly as U isseudoparticle states at F— isP
d ch sites are with increasingro ressively increase, suc

d d b sites with much higher orrobability surroun e y
e 's such that the efFective o.-spin site energylower e; 's suc t a e

o in matrixdifference e~b, e
~

is large compared to the hopp' g
T hich connects them. Localization o p

'
n of seu-element T, w ic conn

nd this is thedopartic e s a es1 t tes thus ultimately occurs, and is
dominant factor underlying the M~(gap ess

-0 6 f 6=—' as in Fig. 2. It is also seen in
the L(E~) pro e o ig.fil f F . 5 where, for given b, , L(EF) u-
t ately increases with increa

'
gsin interaction strengt .im

Although the evolution of f (8; with U gives use u
insight into localization of pseudoparticicle states, it does

f ell us which are the sites for which Z,. =EF,
h their density decreases as U is increase owand m y eir
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'd '
the Fermi-level charge densityobtained by considering e e

H (e;E~) defined in Sec. II.
-fillinFor E, U =( —,'„1)the system is an AFI at half-fi ing,

o a in D(E) [Fig. 8(b)]. In
Fi . 8(a), the disorder-averaged Fermi-leve g d

y
' '

d the corresponding distribution ofty is superimpose on e
a nitudes(e)] and magnetic moment magnitu es

e
~
j. This shows, as recently predicted,[p(e . iss

artici ate only weaklywi s'th strong atomiclike moments par
'

p
in Fermi-leuel pseudoparticle states, w hich are in contrast
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1.5- 0.5-

1.0-

0.5-
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FIG. 8. (A) n (e)/~p(e) ~
and H(e;Er ) (dashed line) vs Z=e/8

for (A, U)=( —,'~, 1) and y =1. (B) Corresponding D{F.) vs E
{solid line); for {i) and {ii), see text.

dominated by sites With bare site energies E close to the lo-
cal moment boundaries, whose efFective o.-spin site ener-
gies e; are close to the Fermi level E~(1)=—,

' U. As dis-
cussed in Ref. 21, the same correspondence holds also in
the single-impurity Anderson model.

The sites for which Z, =EF, which participate most
significantly in Fermi-level states, are therefore those
close to the local moment boundaries: the effective site
energy for a o.-spin electron incident upon a site which is
preferentially occupied by tr'-spin electrons (with
o'=+o) is e;'* '=e;+ —,'U[n, +- ~p,. ~], and sites with

e; = —
—,
' U close to the lower local moment boundary in

[p(e)[ have n;+~@;~ =2 [Fig. 8(a)], whence e',

=—2U=E+. Conversely, sites close to the upper local
moment boundary e, = —,

' U have n; —
~ p; ~

=0, whence

e,' '= —,'U again. Why the density f (e; ) of sites with

e; =Ez decreases for given 6 as U is increased towards
the M~I phase boundary [as in Fig. 7(c)] is also clear,
for the fraction of sites with e; =+—,

' U close to the local
moment boundaries decreases exponentially as
-exp( —[—,'U) /2A ).

To support the above, Fig. 8{b) shows the y = 1

disorder-averaged total pseudoparticle spectrum D (E) vs
E for (b„U)=( —,'„1). From (2.8) D(E) may be deconvo-
luted in terms of the local spectra D (e;E) appropriate to
sites of energy e. Figure 8(b) [curve (i)] shows the contri-
bution from sites whose bare site energies lie within a
small width (+0.0758) of e=O where local moments
~p{e) ~

are a maximum [Fig. 8(a)]. This is essentially the
local D(e=O;E) and is seen to consist of well-resolved
lower and upper Hubbard bands centered on E=0 and
U, respectively, close to the corresponding efFective o.-

spin site energies 8'; ' and Z'; ', such sites indeed give lit-
tle contribution to states at E~= —,

' U and are responsible
for the twin peaks in f (e; ) evident in Fig. 7(c), whose
separation is -Z'; ' —Z'; '= U~p(0)~. In contrast, curve
(ii) of Fig. 8(b) shows the contribution to D (E) from sites
whose bare site energies are within a correspondingly
small width of the local moment boundaries at Z=+ —,

' U.
As expected from H (e;EF ) vs Z' [Fig. 8(a)], these contrib-
ute dominantly to states around E =Ez in the pseudogap,
the absence of resolved Hubbard bands in the local spec-
trum rejecting the typically weak magnetic moments on

such sites.
The above features persist as U is decreased. H (e;E~)

and the corresponding n(e)/~p(e)~ distributions are
shown in Fig. 9 for b, = —,', and U= (a) 0.5, (b) 0.25, and
(c) 0.025; for U=0. 5,0.25 the system is an AF. Although
~p(e)~ naturally erodes progressively as U= U/12 T de-
creases, significant moments persist for ~g~ 5 —,

' U and
remain largest at Z=O where n(0)=1. In addition, as
seen from H(e;E~), although reducing U leads to states
at Ez having increasing weight on sites with the strongest
moments, they nonetheless remain dominated by sites
close to the local moment boundaries. This is significant
in particular for the U =0.5 example [Fig. 9(a)] where the
system is an AF metal, in contrast to U=1, which is an
API: There is still relatively weak overlap of delocalized
Fermi-level pseudoparticle states on strong local moment
sites. Thus, in the metallic phase, there is appreciable
segregation of charge carriers and local moments, remin-
iscent of the assumptions which underly phenomenologi-
cal two-fiuid models (see, e.g. Refs. 9—11).

From Fig. 9, the fraction of moment carrying sites
around 8=0 decreases as U is decreased further through
the AFM and into the SGM phase, and the peaks in
H(e;E~) merge to give a rather sharp distribution cen-
tered on e=O which remains thus in the paramagnetic
metallic regime as illustrated in Fig. 9(c). This implies
that, at the P-SCx boundary, where moments first stabilize
on increasing U from zero at given 6, the sites on which
moments first stabilize will participate significantly in the
delocalized Fermi-level states. This effect, which has
been observed by Milovanovic, Sachdev, and Bhatt' for
a spatially disordered AHM, again provides a parallel
to' the single-impurity Anderson model, and is in
agreement with the predictions of our recent statistical
mean-field theory. '

The considerations above refer exclusively to gapless
insulating and metallic phases at y =1. The final phase
we consider is that of a Hubbard insulator (HI) where

2-

FIG. 9. n(E)/~p(e)~ and H(e;Er) (dashed line) vs g at y =1
for 5= —,'2 and (a) U= ~, (b) U= 4, and (c) U=0.025.
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EF(1) lies in a true gap in the pseudoparticle spectrum
D (E). For the half-filled pure Hubbard-limit of no disor-
der, 5=0, such obtains for all U & 0, the gap magnitude
@0(U) increasing with U. As b, is increased from zero
for given U, disorder will cause the Hubbard bands to
overlap at some critical b,g( U), eliminating the gap; since
@0(U ) increases with U we expect E~ ( U ) to increase with
U. The HI phase is relevant to the M IT only if the transi-
tion is directly M~HI. This would imply the existence
of a triple point (b.„U, ) at which the M, gapless I, and
HI phases coincide —where b, ( U) intersects the M-
(gapless)I phase boundary —and such that for 5 & b, , the
MIT with increasing U is directly M~HI. Ma, ' using a
decimation renormalization-group approach, has estimat-
ed the triple point to be (b,„U, ) = (0.08,0.44).

As above, pseudoparticle states at EF( 1 ) =—,
' U in a

pseudogap are dominated by sites with ~Z~ = —,
' U close to

the local moment boundaries. For U »5, the exponen-
tial tails in the site energy distribution g(Z) clearly render
diScult, in a finite-size calculation, an accurate deter-
mination of where a true gap opens; but our estimation of
b,g ( U ) is shown in the phase diagram of Fig. 2, and the
following points should be noted: (a) The direct M-HI
transition is clearly limited to a very small portion of the
(5, U) plane, in a regime which is both weak coupling
and weak disorder. For 6 ~ 0. 1 we are fully confident
that the MIT is M-(gapless)I, which is thus by far the
dominant form of MIT in the phase plane. (b) Although
we cannot strictly address the triple point, extrapolation
of the b, ( U) line and the M-(gapless)I boundary of Fig. 2
(dotted line) suggests ( b,„U, ) = (0.06,0.33 ), agreeing ade-
quately with Ma. ' For 6=0.05 our numerical evidence
is certainly consistent with a direct M —+H I transition at
a U = U, =0.3: With U just below U, the spectrum is
clearly gapless, and incrementing U by -0.01 across U,
produces a visible gap in D (E) whose magnitude does not
appear to be a statistical artifact and is largely insensitive
to the disorder realization. (c) The seeming existence of a
H I is consistent both with the ubiquity of such in the
b, =0 limit and with the expectation that a small degree
of disorder, in removing the strict Fermi-surface nesting
of the simple cubic lattice, will produce the
AFM ~AFH I sequence with increasing U that is charac-
teristic of half-filled pure Hubbard models on non-
bipartite cubic lattices. Finally, although (see Sec. I)
there is no gap in D (E) for any U or b, & 0 in the strict
atomic limit 8 = 12T=0, this limit corresponds to
U~~ and 6—+ ~ with U /6 fixed and is thus far re-
moved from the small 6 and U domain relevant to the
direct M ~H I transition.

Finally, in relation to the y = 1 magnetic phases of Sec.
III, we note (a) that the small-U paramagnetic phase is
confined largely to the metallic regime as one might ex-
pect, since increasing disorder 5 favors both the I over
the M phase and the SG over the P phase. (b) The small-
U interaction-induced I—+MT occurs largely in the SG
phase and the larger- U "normal" M ~IT in the AF
phase, again as expected since increasing U produces in-
creasingly stable local moments on a progressively larger
fraction of sites.

V. FILLING FRACTIONS y & I: MOTIVATION

In the pure 6=0 Hubbard limit for filling fractions
y & 1, the problem of magnetic ordering in the UHF
ground state is formidable and has not to our knowledge
been fu11y explored. Further, with 6=0, magnetic order-
ing may be intimately connected to electronic properties
(see, e.g. , Ref. 35), as also obtains at half filling for nonbi-
partite systems such as the triangular lattice, where a
change in magnetic ordering at a critical U leads to the
opening of a charge gap in D (E) and hence an MIT.

With disorder present to a non-negligible extent, how-
ever, and for the relatively small scaled interaction
strengths U examined here, we do not expect the essential
neglect of magnetic ordering to be severe for the electron-
ic characteristics we consider; for in the presence of dis-
order the electronic properties considered in the preced-
ing sections —such as D(E), L(E), and H(e;E~)—
appear quite insensitive to magnetic ordering. For exam-
ple, very similar results are found if low-lying excited SG
converged UHF solutions in the AF region of the y = 1

phase diagram (Fig. 2) are considered. As discussed in
Sec. III the distribution of local charges and moment
magnitudes over the sites appear quite insensitive to mag-
netic ordering; as in Sec. IV, it is these that primarily
control the properties of pseudoparticle states. To illus-
trate this, consider ( b, , U ) = ( —,'„—,'

) where the correct

y = 1 ground state is AF. A typical ~S,(k)
~

arising from a
SG converged UHF solution at this point has the charac-
teristic form of Fig. 3(c); but the corresponding
n ( )el~p(e)~, 0 (E), L(E), and H(e;E~) are barely distin-
guishable from those appropriate to the AF ground state
[Figs. 4(b), 6(a), and 9(a)].

For y & 1 we thus continue here with the Ising-spin
UHF of Sec. II, and likewise with S,"'=0 since, for the
relatively small U's examined, we do not consider the
possibility of ferromagnetism. The phases of the local
moments used for the initial or startup charge-moment
distributions in the iterative self-consistent solution of the
UHF equations wi11 in general be taken here as randomly
distributed over the sites, although we have considered a
number of runs with magnetically ordered Ising startups,
and with Heisenberg-spin UHF, to confirm that results
are indeed not sensitive to the magnetic ordering in the
converged UHF states.

For y & 1, and largely for the reason of statistical con-
trol of low-e sites, we also employ a cut Gaussian g (e),
nonzero in the interval e~ = —e ~ & e (e~. Provided
eL &( —

—,
' B the choice of cut is largely immaterial to us,

and in practice we choose eL =ez /8 = —1 . %'e add
that, for the scaled disorders 6 ~ 0.5 considered here
with y & 1, the M-(gapless)IT phase boundary given in
Fig. 2 at half filling for the pure Gaussian g(e) is barely
affected by the chosen cut. The main modification in in-
troducing a cut in g (e) naturally occurs at low filling
fractions where, for sufhcient low y in the strict atomic
limit B = 12T=0, all sites are either singly occupied or
empty. This situation obtains up to y =y ' such that the
atomic limit Fermi level EF(y') =el + U; and y' & 1 pro-
vided U & 2e& (i.e., U & 2 as considered here). For y )y',
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the atomic limit occupancy is as described in Sec. I for
the pure Gaussian g (e ).

To motivate the y & 1 work, we first consider the AHM
at low filling fractions. The empty band limit y =0 is
equivalent to the U=O disordered tight-binding model
(TBM), D(E) for which at b, = —,'2 is shown in Fig. 1(B)
[for the pure Gaussian g(e)]. The AHM Hamiltonian
(1.1) can be canonically transformed from a site basis to
a representation in terms of the exact eigenstates [ ~%' ) I

of the noninteracting TBM, with basic operators,
c =g;a; c; and c . Here a; is the coefficient of the
site atomic orbital

~ P; ) in the expansion
~% ) =g;a; ~P;) of the TBM eigenstate ~% ) of energy
E, whose associated IPR is L (E ) =g; ~ a; ~

. This
yields

II=QE n + g U pysc tcptcyicsi,
CX, CT aPy6

(5.1)

with

Uapys Uguk~a~i p louis (5.2)

In the limit of no disorder where the [ ~% ) I are ex-
tended Bloch states, and subject only to momentum con-
servation at the vertex, the interaction matrix elements
U &z& are state independent, reducing to U &&&= U/X.
One does not therefore anticipate a tendency to
interaction-induced local moment formation at
sufficiently low y, commensurate with the intuitive expec-
tation in nondisordered systems that interaction effects
will be dominant at half-filling, diminishing in impor-
tance as the filling fraction y is reduced.

For disordered systems, in contrast, the interaction
matrix elements U &&& are strongly infm. uenced by the 1o-
calized or extended character of the U =0 TBM states.
States in the lower region of the TBM spectrum —in par-
ticular those around and be1ow the lower edge at
E=E/B = —

—,
' of the zero-disorder simple cubic

spectrum —are natura11y strongly localized due to the
site disorder; see, e.g. , Fig. 1(B). And at low filling frac-
tions y, it is these localized, low-E TBM states which
largely control the nature of the interacting system with
U) 0, since the more strongly localized the states are
[i.e., the larger L(E)], the greater the enhancement of
electron interactions in suppressing double occupancy of
the states, leading thereby to strong local moment forma-
tion. This is directly evident from (5.2) for the state diag-
onal element U =U, which reduces to U
=UL(E ).

In fact, since the localization lengths g of low-energy
TBM states decrease with increasing localization, we an-
ticipate for sufficiently small filling fractions y an effective
double exclusion principle whereby the ground state of
the U )0 interacting system consists essentially of a nar-
row energy range of mainly nonoverlapping and singly
occupied TBM states, and thus strong local moments as-
sociated with the occupied states which, although local-
ized and nonoverlapping in space, are not atomically lo-
calized on single sites. Nevertheless, in such a y regime,

we expect behavior strongly reminiscent of the true atom-
ic limit of the model, since with U = U dominant in
(5.1) the AHM Hamiltonian reduces to

H=gE n +gU n tn
a, o

(5.3)

which is formally similar to the true B =12T=O limit of
the AHM (1.1), but with e; +E—and U~U . This sim-
ple Hamiltonian has been used successfully by Kamimura
and Aoki (see, e.g. , Refs. 4 and 36) in relation to the in-
termediate regime of doped, uncompensated semiconduc-
tors such as P:Si. For low electron filling fractions, y,
qualitative considerations along the above lines have also
been used by us to rationalize the experimental
behavior of binary monovalent alloys such as liquid
Cs„Au, „—=Cs [CsAu], , with electropositive Cs
somewhat in excess of the stoichiometric composition
(x =

—,',y =0) where the system is a charge-transfer ionic
insulator —Cs+Au

VI. y &1: RESULTS

We consider the evolution of the system with increas-
ing filling fraction y up to the half-filled limit y =1. The
variation of results with U and 6 is considered in Sec.
VIC. In Secs. VIA and VIB we focus first on fixed
values of the scaled disorder and interaction strengths
(b„U)=( —,'„—,'

) where, as in Fig. 2, the system is an anti-
ferromagnetic metal at y =1. For 6= —,'„we note that
the fraction y, of sites with bare site energies below the
lower edge of the unperturbed simple cubic band (see Fig.
1) is y, =0.11.

A. The quasiatomic regime

The qualitative arguments of Sec. V suggest, for
sufficiently low filling fractions, the occurrence of a
"quasiatomic" regime ' where, as a consequence of the
strong localization of states in the lower edge of the U=O
disordered TBM spectrum, the ground state of the U & 0
interacting system consists essentiaHy of a narrow energy
range of predominantly nonoverlapping and singly occu-
pied TBM states up to the Fermi level EF(y). In the limit
of strictly nonoverlapping and singly occupied TBM
states, the energy gain in removing an electron from an
occupied TBM state of energy E is E &Ez(y), while
the cost of adding an opposite spin electron to such is
E + U )E~(y). Thus, as follows formally using (5.3),
for E &E~(y) the spin-summed total density of single
particle excitations (DOS) D (E) reduces to —,'Do(E), with

D,i(E) the DOS for the U =0 noninteracting TBM limit.
For E just in excess of Ez(y), however, a single electron
of either spin may be added to an unoccupied TBM state
with energy cost E; hence as E crosses E~(y), the DOS
jumps discontinuously to D (E)=Do(E).

In Fig. 10(A), for a filling fraction y =0.05, we show
the disorder-averaged DOS D (E) obtained from the self-
consistent UHF calculations; occupied pseudoparticle
states in D(E) are shown shaded. The mean IPR L(E)
for the pseudoparticle states is also included, confirming
that occupied states are strongly localized and the system
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FIG. 10. Disorder-averaged spectrum D(E) vs E with N =512 sites for (5, U) =( —,2, 2 ) and (A) y =0.05. Occupied pseudoparticle
states are shaded. Also shown is L(E) for pseudoparticle states (dotted line) and the corresponding U=O spectrum Do(E) (dashed
line). (8) y =0.25. Ez(y) is indicated by an arrow; for (i) and (ii) see text.

insulating. For comparison the corresponding nonin-
teracting Do(E) is also shown, and the behavior men-
tioned above is indeed seen. [That the "step" at D (EF ) is
not strictly discontinuous is in part due to some slight
overlap of occupied pseudoparticle states for y =0.05,
but stems more significantly from statistical 6nite-size
effects "blurring" the position of EF(y) for di6'erent dis-
order realizations. ]

To show further the characteristics of the quasiatomic
domain Fig. 11(a) gives, for y =0.03, disorder averages of
the self-consistently determined n (e) (dotted line) and
~p(e) ~

(solid line); H(e;EF ) is also shown. From Fig. 11(a)
it is seen that n(e) = ~p(e) ~

for all e. That is, for essential-
ly all sites i, the site local charge n; =

~p; ~, the magnitude
of the site local magnetic moment. The condition
n;= ~@;~ for all i is an obvious consequence of strictly

—10
—5.0

C
—2.5

0
—1

(
I I I I

0
0

—1 0
0.0

FIG. 11. (a) n(e) (dashed line) and jp(e)t
(solid line) vs Z=e/8 for (2i., U)=( —,', —') at

y =0.03; the Fermi-level charge density
H(e;E+) is also shown (right-hand scale), and
the atomic limit Fermi level eF(y) is indicated
by an arrow. (b) Same as (a), but for y =0.095.
(c) Same as (a), but for y =0.25.

0 0
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nonoverlapping singly occupied states for which all sites
have zero double-occupancy probability, the quantum
probability P2; =n;&n;& that site i is doubly occupied in
the UHF ground state being P2; =—,

' [n,. —p, ].
However, although occupied pseudoparticle states at

low y are mainly singly occupied and nonoverlapping,
they are not atomically localized on single sites but are,
rather, typically spread over a small number of sites in
the vicinity of one with a particularly low e. This is
reAected, for example, in the Fermi-level charge density
H(e;E~) of Fig. 11{a). Although H(e;Ez) is sharply dis-
tributed around e=E'p(y) (the strict atomic limit Fermi
level, shown by an arrow), indicating the dominant parti-
cipation of such sites in Fermi-Level pseudopartiele states,
it has a nonzero width and a tail to higher e) e~(y) due
to participation of these sites in states at E&. As a corol-
lary, sites with e &e~(y), which dominate pseudoparticle
states of energy E =e, have a nonvanishing probability of
being unoccupied by electrons. This is refiected [Fig.
11(a)] in n (e) &1 for strongly occupied sites with
e & ez(y): while P2; =0 when n; = ~p; ~, the corresponding
probabilities that site i is singly occupied or empty are
given respectively by P„.=n,. and Po, = 1 —n,. ; only in the
strict atomic limit, where n, =1 (=. ~p;~) for all i with

&e (y), is Pi.; = 1 and Po; =0.
In the quasiatomic y regime the electrons are thus

strongly localized and highly correlated. In qualitative
terms this behavior persists up to a filling fraction of
around y, =0.11, the fraction of sites whose bare site en-
ergies lie below the lower edge of the simple eubie spec-
trum. This is evident from Fig. 11(b) for y =0.095, close
to y, .

B. Beyond the quasiatomic regime

For y y„a progressive deviation from quasiatomic
behavior occurs. To illustrate this, Fig. 11(c) shows the
self-consistently determined n(E)l~p(e)~ and H(E;E~)
for y =0.25; corresponding results for half-filling, y =1,
are given in Fig. 9(a). In the strict atomic limit, for filling
fractionsy )y' (=y, with U= —,'), sites with e&E+(y) —U
are doubly occupied with n (e)= 1, ~p(e) ~

=0; the singly
occupied local moment sites with e~ —U & e & e~(y) have
n (e)=1=~p(e) ~; and sites with e) e~ have
n (e) =0=

~ p(e) ~. Strong double occupancy of low-e sites
is evident in Fig. 11(c),but although significant local mo-
ments persist on sites in an interval of width U below
e~(y), more significant erosion of atomic limit behavior is
clearly occurring due to electron hopping eFects rejected
in B =12TAO; even those sites with strong local mo-
ments have a not insignificant probability of being doubly
occupied by electrons [ ~ p(e) ~

& n (e)].
In contrast to the y =0.03 example of Fig. 11(a), the

Fermi-level charge density H(E;Ez) for y =0.25 [whose
vertical scale is markedly reduced from that of Fig. 11(a)]
is more broadly distributed over a larger fraction of sites.
As for the y =1 case [Fig. 9(a)), it is, however, evident
that Fermi-level pseudoparticle states are again dominat-
ed by sites with bare site energies close to the local mo-
ment boundaries —the two peaks in H (e;Ez ) being

separated by —U—and that the sites on which local
magnetic moments are a maximum participate only rath-
er weakly in states at Ez. This accords fully with the pre-
dictions of our statistical mean-field theory ' and stems
physically from the parallel between the site-disordered
AHM and the single-impurity Anderson model de-
scribed in Ref. 21 (see also Sec. IV), whereby sites with
bare site energies close to the local moment boundaries
have effective o.-spin site energies which lie within a rela-
tively small width of the Fermi level Ez(y) to which
states they thus dominantly contribute. We add further
that, even for y&1, the mean local charge n (e ) for sites
with e=e on which local moments are a maximum is
indeed close to unity [Fig. 11(c)],again in agreement with
the theory. '

To support the above remarks, the disorder-averaged
total DOS D (E) vs E(=E/B) is shown in Fig. 10(b) for
y =0.25, the Fermi level lying in the weak pseudogap evi-
dent in the spectrum. As in Eq. (2.8), D(E) may be
deconvoluted in terms of the local pseudoparticle spectra
D(e;E) pertaining to sites with given bare site energies e.
Curve {i) of Fig. 10(b) gives the contribution to D{E)
from sites with bare site energies lying within a small
width (+0.075B) of e=e where local moments ~p(e)~
are a maximum [Fig. 11(c)]. From (2.8) this is essentially
proportional to the local spectrum D(e;E), which is
thus seen to consist of clearly asymmetric, but well-
resolved 1ower and upper Hubbard subbands. Commens-
urate with the H(E;E~) of Fig. 11(c), these strong local
moment sites indeed give a very sma11 contribution to the
Fermi-level DOS D(Ez), the Fermi level lying midway
between the lower and upper Hubbard subbands in
D (E;E), in agreement with the theory of Ref. 21. Curve
(ii) of Fig. 10(b) shows in contrast the contribution to
D (E) from sites whose bare site energies lie within a simi-
larly small width of each of the two peaks in H (E;Ez)'
[Fig. 11(c)], i.e., from sites close to the local moment
boundaries in ~p(e)~. As expected, and seen, these sites
indeed give the dominant contribution to the pseudopar-
ticle spectrum in the vicinity of the Fermi level Ez.

For both y =0.25, and at half filling y = 1 where appre-
ciable local moments persist for ( b„U ) = ( —,'„—,' ), the
Fermi-level charge densities of Figs. 11(c) and 9(a) show
that there is relatively weak overlap of pseudoparticle
states at EF on sites carrying strong local moments.
With increasing filling fraction, however, it is clear that
Fermi-level states are increasingly distributed over a
larger fraction of sites. As suggested in Ref. 21, this may
result in a transition from a gapless insulator (I) to a met-
al (M), with increasing filling fraction for given (6, U).
That this is so in the present case is seen from Fig. 12(a)
which, for (b, , U) = ( —,', —,

' ) and K =512 site systems,
shows the mean IPR L(E~) for Fermi-level pseudoparti-
cle states as a function of filling fraction y. For
y ~y, =0. 11 in the quasiatomic regime, pseudoparticle
states at EI; are naturally strongly localized and the sys-
tem insulating. This behavior clearly persists for y in ex-
cess of y„' at y =0.25, for example, as in Fig. 10(b), the
system remains a gapless insulator. With increasing y,
however, L(E~) steadily decreases. Adopting the thresh-
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(B) for U=

2 and 6= —,'2 {i),0.15 (ii), and 0.05 (iii).

with X, =yN the number of electrons. The y dependence
of ~p, ~

(with X=10 site systems for y ~0.25) is shown
in Fig. 14(A) for (b, , U) =( —,', , —,') (i) and ( —,', —') (ii) where
local moments exist at half filling. Also shown (iii) is

~ p, ~

for (b, , U)=(0. 15,0. 10). At half filling in this case the
system cannot support local moments and is a paramag-
netic metal (see Fig. 2); as seen from (iii) the same situa-
tion occurs for y =0.75, while very weak moments are
evident for y =

—,'.
Regardless of whether local moments persist around

half filling, however, it is clear in all cases that the
characteristics of the quasiatomic regime are recovered at
low filling fractions, ' for as y is decreased and E~ moves
progressively towards the edge of D (E), occupied pseu-
doparticle states are increasingly dominated by low-e
sites, and their localization will ultimately produce strong
enhancement of interaction effects and hence strong local
moments. In fact, since (X, 'g; n; ) = 1 by charge con-
servation, it follows that

~ p, ~

= 1 for a strict quasiatomic
limit of totally nonoverlapping singly occupied states
(n; =

~ p; ~ ), refiecting the effective double exclusion princi-
ple for the occupied pseudoparticle states. In conse-
quence, at a given filling fraction y where such obtains, a
further increase in the interaction strength U will obvi-
ously not change the occupancy of the states. This is evi-
dent in (i) and (ii) of Fig. 14(A) with b, = —,', , where at a
filling fraction y =0.01, ~p, ~

=1 is unaltered when U is
increased from —,

' to —,'.
For the (b„U)'s shown in Fig. 14(A), local moments

become increasingly stable as y is decreased from half
filling. For nondisordered systems, in contrast, the re-
verse trend is more typically expected, with half-filling
being optimal for local moment formation. To illustrate
the relative effects of disorder, Fig. 14(B) shows ~p, ~

vs y
for a fixed interaction strength U= —,

' and progressively
decreasing scaled disorders, b, = —,', (i), 0.15 (ii), and 0.05
(iii), where at half filling (see Fig. 2) the system is, respec-
tively, an antiferromagnetic metal, gapless insulator, and
Hubbard insulator. In agreement with Ref. 2II, it is seen
from Fig. 14(B) that at half filling local moments become
increasingly stable as the disorder 6 is decreased while at
lower filling fractions this trend is reversed. In particu-
lar, it is clear that upon decreasing 5 half filling indeed
becomes optimal for local moment formation in the sense
that ~p, ~

decreases significantly as y is initially reduced

from the half-filled limit. However, although ~p, ~
is

shown only down to y =0.01, it is equally clear even for
the weak-disorder cases that the quasiatomic regime
again naturally emerges at suSciently small filling frac-
tions, as refiected in the small-y upturn in

~ p, ~.

VII. CONCLUSION

We have assessed numerically the UHF phase diagram
(Fig. 2) for a Gaussian site-disordered Anderson-Hubbard
model on a simple cubic lattice and at half filling y =1.
Magnetic phases (AF, SG, and P) and electric phases (M,
gapless-I, HI) were each considered and characterized,
and all relevant phase boundaries are found to occur in a
re1atively weak-coupling regime. The evolution with
filling fraction y has also been considered for representa-
tive (5, U) points. The disorder-induced enhancement of
electron interactions in leading to local moment forma-
tion is found to be differential in y, leading in particular
to a 1ow-y "quasiatomic" regime of strong local moments
and mainly singly occupied nonoverlapping pseudoparti-
cle states, regardless of the existence of moments around
half-filling.

We have sought in particular to give a microscopic ex-
planation for observed behavior, central to which is the
inhomogeneous distribution of charge and magnetization
over the sites, rejected in the site energy dependence of
n(»)l~p(»)~. Broadly speaking, the interaction strength
U determined the e range of sites which typically sustain
1ocal moments; U/6 determines the fraction of moment
carrying sites; and for given U, b, the hopping matrix ele-
ments embodied in the unperturbed simple cubic band-
width 8 = 12 T determine the extent of e-differential local
moment erosion, which is most pronounced towards the
local moment boundaries and least significant for sites on
which local moments, when they occur, are strongest.
These factors enable us, for example, to rationalize the
relative location in the (5, U) phase plane of the y =1
magnetic phases; see Sec. III.

A central link between magnetism and electronic prop-
erties stems from the fact that the sites which participate
most significantly in Fermi-level pseudoparticle states are
those with bare site energies close to the local moment
boundaries in ~p(»), in parallel to the single-impurity
Anderson model and in agreement with recent predic-
tions. ' In consequence, a combination of the Fermi-level
charge density H (»'; EF ) and the probability density
f (»; ) of efFective o.-spin site energies, when used in con-
junction with the Fermi-level IPR, L(EF), enables a ra-
tionalization of the MIT and corresponding MI phase
boundaries, in terms of an interplay between disorder and
electron interactions. Conversely, it is found that as local
moments increasingly stabilize on a larger fraction of
sites, those on which moments are strongest participate
increasingly weakly in pseudoparticle states at EI;. One
upshot of this, for example, is that in a metallic regime
with local moments, there is relatively weak overlap of
delocalized Fermi-leve1 pseudoparticle states on sites with
strong local moments, i.e., appreciable segregation of
charge carriers and local moments.

Finally we add that while UHF is mean field in the in-
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teraction strength for any disorder realization, it permits
a broad microscopic picture of the interplay between dis-
order and electron interactions. The resultant range of
physical behavior in a weak-coupling regime is quite rich,
even at this single-particle level, and we believe a sound
understanding of such to be an important prerequisite to
the systematic inclusion of many-body e6'ects, particular-
ly in the disordered interacting system; work in this direc-
tion is currently in progress.
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